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We study nonequilibrium statistical mechanics of a Gaussian dynamical system and compute
in closed form the large deviation functionals describing the fluctuations of the entropy production
observable with respect to the reference state and the nonequilibrium steady state. The entropy
production observable of this model is an unbounded function on the phase space, and its large
deviation functionals have a surprisingly rich structure. We explore this structure in some detail.
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1. Introduction

In this paper, we prove and elaborate the results announced in Section 9 of [23].
We consider a dynamical system described by a real separable Hilbert space K
and the equation of motion

4= ek (1)

—x; = Lx;, X ,

dt t t 0
where £ is a bounded linear operator on XC. Let D be a strictly positive bounded
symmetric operator on X and (X, wp) the Gaussian random field over K with zero
mean value and covariance D. Eq. (I)) induces a flow ¢, = {¢’£} on X, and our

[335]
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starting point is the dynamical system (X, ¢., wp) (its detailed construction is given
in Section [2.1). We compute in closed form and under minimal regularity assumptions
the nonequilibrium characteristics of this model by exploiting its Gaussian nature.
In particular, we discuss the existence of a nonequilibrium steady state (NESS),
compute the steady state entropy production, and study the large deviations of the
entropy production observable w.r.t. both the reference state wp and the NESS. To
emphasize the minimal mathematical structure behind the results, in the main body
of the paper we have adopted an abstract axiomatic presentation. In Section [3]
the results are illustrated on the example of the one-dimensional harmonic crystal.
For additional information and a pedagogical introduction to the theory of entropic
fluctuations in classical nonequilibrium statistical mechanics, we refer the reader to
the reviews [23} [27].

There are very few models for which the large deviation functionals of the entropy
production observable can be computed in a closed form, and we hope that our results
may serve as a guide for future studies. In addition, an important characteristic of
a Gaussian dynamical system is that its entropy production observable is an unbounded
function on the phase space. This unboundedness has dramatic effects on the form and
regularity properties of the large deviation functionals that require modifications of
the celebrated fluctuation relations [[12, [13] |15 [16]. Although this topic has received
a considerable attention in the physics literature [1} |2 |6, |14} 19, [30432], to the best
of our knowledge, it has not been studied in the mathematically rigorous literature
on the subject. Thus, another goal of this paper is to initiate a research program
dealing with mathematical theory of extended fluctuation relations in nonequilibrium
statistical mechanics, which emerge when some of the usual regularity assumptions
(such as compactness of the phase space, boundedness of the entropy production
observable, smoothness of the time reversal map) are not satisfied.

The paper is organized as follows. In Section [2.1] we introduce Gaussian dynamical
systems. In Section we define the entropy production observable and describe
its basic properties. In Section [2.3] we introduce the NESS. Our main results are
stated in Sections [2.4] and [2.5] The entropy production observable is defined as the
phase space contraction rate of the reference measure wp under the flow ¢, and
in Section [2.6] we examine the effects of a perturbation of the reference measure
on the large deviation theory. In Section (3| we illustrate our results on two classes
of examples, toy models and harmonic chains. The proofs are given in Section H]

The focus of this paper is the mathematics of the large deviation theory of
the entropy production observable. The physical implications of our results will be
discussed in the continuation of this paper [24].

2. The model and results
2.1. Gaussian dynamical systems

In order to setup our notation, we start with some basic facts about classical
Gaussian dynamical systems. We refer the reader to [9] for a more detailed
introduction to this subject.
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Let ' be a countably infinite set and
={x = (Xwner | X, € R} =

For x € X and I C T, we denote x; = (x;)je; € R!. Let [ = (I,),er be a given
sequence of strictly positive numbers such that ) ./, =1 (we shall call such
a sequence a weight). Then

d(x,y) =Y lh——"—"—

nell

1 + |xn _ynl

is a metric on X and (X, d) is a complete separable metric space. Its Borel o-algebra
F is generated by the set of all cylinders

Ci(B) ={x € X|x; € B},

where I C T is finite and B C R/ is a Borel set.

Let v and w be two Borel probability measures on X. We shall write v <« » when
v is absolutely continuous w.r.t. . The corresponding Radon—-Nikodym derivative is
denoted by

A=V
dw
We will also use the notation]
by =10g Ay

The two measures v and @ are called equivalent, denoted v =~ w, if they are
mutually absolutely continuous, ie. ® < v and v <« w. We adopt the shorthand
v(f) = fx fdv. The relative entropy of v w.r.t. @ is defined as

if v K w,
otherwise.

Ent(v|w) = {:Zc(fvw) (2)

We recall that Ent(v|w) < 0, with equality iff v = w. For o € R, the relative Rényi
a-entropy of v w.rt. w is defined as

a€v|w .
Ent, (v]o) = {log“’(" ) <o,
—00 otherwise.
We denote by K C X the real Hilbert space with inner product
(X, ) =D Xad, 3)
nell

ie. K = K%R(F) The matrix elements of a linear operator A on Iz g wrt. its
standard basis are denoted by A,,,.

IThroughout the paper we adopt the convention logx = —oo for x < 0.
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Let X;, X; C X be real Hilbert spaces with respective inner products

Qo= hxaye =D L Xy

nel nel

(X is the dual of X; w.rt. the duality (3))). Clearly,
X cKcx cx,

with continuous and dense inclusions. All the measures on (X, ) we will consider
here will be concentrated on X;.

Let D be a bounded, strictly positive operator on K. The centered Gaussian
measure of covariance D on (X, F) is the unique Borel probability measure wp
specified by its value on cylinders

wp(Cr(B)) = —3 D0 gy

1
Jdet2z D)) /B ¢

where D; = [D;;]; je;. The measure wp is also uniquely specified by its characteristic
function

X oy~ x(y)= / ¢ dwp(x) = e~ P2,
x

The bound
/ IxlIfdep (x) = / Y bxndop(x) =Y 1D < | DI, )
x

nel nel

implies that wp(X \ X;) =0, i.e., that wp is concentrated on X;.

Let 7 be the real vector space of all trace class operators on K and ||T|; =
tr((T*T)"/?) the trace norm on 7. The pair (7,1 -l1) is a real Banach space. By
the Feldman-Hajek—Shale theorem, two Gaussian measures wp, and wp, on (X, F)

are equivalent iff T = D;' — D' € T. In this case, one has
ACUD2|0)DI (x) = /det(I + D;T) e *T»/2, )

1 1
Ent(wp, |wp,) = St (DiT(I +DiT)") - 3 logdet (I + D, T).

Note that det (I + D;T) = det (1 + DII/ZTDII/Z) =det(D,*D;'D|"*) > 0.

Let £ be a bounded linear operator on K such that £*X; C Xj. It follows that
L has a continuous extension to X; which we also denote by L. For x € X and
t € R we set

; e'Lx if x € X,
= 6
or(x) {x if x ¢ X, ©)

The map (¢, x) — ¢’£(x) is measurable and ¢, = {d)’[:},eR is a group of automorphisms
of the measurable space (X, F) describing the time evolution. We shall call ¢, the
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dynamics generated by £ and (X, ¢, wp) a Gaussian dynamical system. Note that
for wp-almost all x € X, ¢’£(x) =e'Lx for all ¢t € R.

We end this section with a simple example of a physical system fitting this
abstract framework. We follow [22] and consider a one-dimensional harmonic crystal.
We shall complete the analysis of this example in Section [3.2]

EXAMPLE 2.1. A C Z, the crystal lattice, is a finite or infinite set of consecutive
integers. The phase space and Hamiltonian of the harmonic crystal are

R @R = {(p, @) = UPutnens (Gnlnen) | Pas> gn € R},

2 2 2
Py qn (Qn _Qn—l)
=3 (B G 4 =0,
neA 2 2 2

where we set ¢, = 0 for n ¢ A (Dirichlet boundary conditions). The Hamilton

equations of motion are )
(0)-5(0)
q q

[0 —ja
'CA_(IA 0)’

ja being the restriction of the finite difference operator

where

(J@n =390 — Gn+1 — Gn-1 (7

to RA with Dirichlet boundary condition, and 1, the identity on RA (which we shall
later identify with the projection R? — R?). Clearly, for all A, j, is a bounded
self-adjoint operator on EHZQ(A) satisfying 1 < jp <S5.

To fit this model into our abstract framework, we assume that A is infinite and
set [y = A X Zy, X5 =R's = RA@®R” with the weight sequence [ = (ly.;)(n.ier s »
where [, ; = ca(1+n%)~! and ¢, is a normalization constant. One easily verifies that
L3 X%, C X7, and that the dynamics of the harmonic crystal is described by the group
e'fa. Let hy be the self-adjoint operator on K = EHZQ(A) @ZIZR(A) associated to the
quadratic form 2H,. Energy conservation implies £} hx + haL = 0. Equivalently,
the operator L, defined by

12 12 0 -/
LA:hA/ ﬁ[\h;/ = J1/2 OA )
A

is skew-adjoint. Since 1 < h, <5, this implies in particular that the group e'“A is
uniformly bounded on K,.

2.2. Entropy production observable

Our starting point is the dynamical system (X, ¢, w), where ¢ is the dynamics
on X generated by £ and w is the centered Gaussian measure with covariance D
(from now on, £ and D are fixed, and we shall omit explicit reference to them).
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The measure w is sometimes called the initial or the reference state of the system.
Observables are measurable functions f : X — C. They evolve according to

fi(x) = fod'(x).

The expectation of an observable f at time r € R is given by

o (f) =w(fy) = / fix)dw(x),

where w; = wo ¢~ is the centered Gaussian measure on (X, F) with covariance
D, = ¢'FDe't”
t _— .

D; is a bounded strictly positive operator on E]é(f‘) and w,;(X;) =1 for all . By
the Feldman—Hajek—Shale theorem, the two measures w; and w are equivalent iff
T,:=D;' — D ' e T. We shall assume more.

(G1) The map R>¢t+— T, € T is differentiable at t = 0.

As will be seen later, this condition implies that the function ¢ +— T; is
differentiable for all ¢. The entropy production observable (or phase space contraction
rate) for (X, ¢, w) is defined by

d
o(x) = _Ewtlw(x)|t:0, x ek

dt
A simple computation shows that (cf. (37))
o(x) = (x,sx) —tr(Dg), (®)
where | dT
t
=7 9
o 2 dt =0 ©)

and the derivative is understood in the sense of 7 (in particular, ¢ € 7). Since T
is continuously embedded in the Banach space of all bounded operators on K, we
have

1
c= E(ﬁ*D_l +D7'L).

REMARK. If A is a self-adjoint element of 7, then the quadratic form (x, Ax)
has a unique extension from X to an element of L'(X,dw). With a slight abuse of
notation, we shall also denote this extension by (x, Ax) (see Lemma below for
a more precise statement). Thus, the entropy production observable is a continuous
function on X and an integrable function on X w.rt. the measure w.

PROPOSITION 2.1. Suppose that [(GI)| holds. Then:

(1) The function R >t — o, € L'(X, dw) is continuous.

2) Lo = fol o_gds holds as the Riemann integral of a continuous L'(%,dw)-
valued function. It also holds for w-almost every x € X as the Lebesgue integral
of a real-valued function.
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(3) The function R >t — etorlo ¢ LY(X, dw) is C' and

% lo — ew[\w .. 10
dte[ e o, (10)

4) wi(o) =tr(c(D; — D)) and in particular w(o) = 0.
(5) Ent(w]w) = — [; wy(o)ds.

In specific examples, it may happen that only finitely many matrix elements ¢,
are nonzero, and in this case the map x > o(x) is continuous on X. The function o
is bounded only in the trivial case o = 0. Note that 0 =0 iff v, = @ for all ¢;
this follows, for instance, from the cocycle property (38).

2.3. Nonequilibrium steady state

Our next assumptions are:

(G2) There are some numbers 0 <m < M < oo such that m < D, < M for all
t eR.

(G3) The following strong limits exist:
s-lim D, = D..

t—+00
It is clear that m < Dy < M, and LDy + D L* = 0. In what follows, we set

(1)

o om
T M-—-m

REMARK. The verification of Assumptions (G2) and (G3) in concrete models
generally rests on spectral and scattering theoretic arguments. The reader is referred
to [22, Section 1.9] for an example. Note in particular that if I' is a finite
set, then (G2) and (G3) cannot be both satisfied. Indeed, either the spectrum of
the generator £ is purely imaginary, or it contains an eigenvalue with nonzero
real part. In the first case, there exists a nonzero u € K such that the function
(u, D;u) = (e, De’ﬁ*u) is periodic. In the second case, Assumption (G2) implies
that for some nonzero u € K and t — oo

)

. (D + D) = m (Jle ™ ull® + e ull?) — oo.
In both cases we have a contradiction to Assumption (G3).

Let w4+ be the centered Gaussian measure on (X, ) with covariance D..

PROPOSITION 2.2. Suppose that (GDH(G3)| hold. Then:
(1) For any bounded continuous function f :X — R,

Jim o/ (f) = 0x(f).
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(2) 0 € LY(X,dwy) and
wi(0) = tlirinoo w(0) = tr(s(Dx — D)).

Note that

t—oo

1 [ 1
w4 (o) = lim —/ ws(0)ds = — lim —Ent(w;|w).
0 t—>oo

We shall call w, the NESS and the nonnegative number w, (o) the entropy
production of (X, ¢, w).

2.4. Entropic fluctuations with respect to the reference state

Time reversal invariance plays an important role in nonequilibrium statistical
mechanics, and in particular in formulation of the fluctuation relations. Hence, we
shall also consider the following hypothesis.

(G4) There exists a unitary involution ¢ :  — K such that ¢(X;) C X;, 9L =
—L9%, and 9D = D?9.

This assumption implies that D_, = ¢ D, for all t € R, and thus D_ =39 D9
and w; = w_ o Y. Moreover, it follows from definition (9) that ¥ ¢ = —¢®. This in
turn implies that tr(D¢) =0 and

o(x) = (x, ¢x), wy(0) = —w_(0). (12)

For simplicity of notation and exposition, we shall state and prove our main results
under the time reversal invariance assumption, which covers the cases of physical
interest. With a minor modifications of the statements and the proofs, most of our
results hold without this assumption. We leave these generalizations to the interested
reader.

The relative Rényi entropy functional, which is defined by

e, (a) = Enty (w;|w) = logw(e“ewﬂw), (13)

is a priori finite only for « € [0, 1]. To describe its properties, we introduce the
sets
J,={aeR|D‘1+aT,>0}, t e R,

and denote by C. the open upper/lower half-plane.

PROPOSITION 2.3. Suppose that and hold. Then:

(1) J; = (=6, 1 +6,) for some §; > 6 and J_, = J;.

(2) The function a — e;(a) is finite on the interval J; and is equal to +oo for
o & J;. Moreover, this function is convex, extends to an analytic function on
the cut plane CL UC_U J,, and satisfies

e;(0) =e(1) =0, e, (0) <0, e/ (1) > 0. (14)

In particular, e;(a) <0 for a € [0, 1] and e;(a) = 0 otherwise.
(3) The finite time Evans—Searles symmetry e;(a) = e;(1 —a) holds for all t and «.
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REMARK. Proposition also holds for finite-dimensional Gaussian dynamical
systems (i.e. in cases where the set I' is finite). In particular, the finite time
Evans—Searles symmetry holds for such systems. It is not hard to see that in such
cases Assumption (G2) requires the spectrum of £ to be purely imaginary and
semi-simple. Assumption (G3) and the necessity of an infinite-dimensional phase
space only becomes apparent when considering the large-time behaviour of the
system.

We now study the statistical properties of trajectories as ¢+ — +o0o. The intervals J,
do not necessarily form a monotone family, and we define the minimal interval

J =liminf J, = UM
T>0t>T
Clearly, one has J = (=4, 1+ §), where § = liminf;_, » §; > §.
THEOREM 2.1. Suppose that (GD)H(G4)] hold.
(1) The limit
1
e(w) ;= lim —e; () (15)

t——+oo

exists for o € J. Moreover, the function e(a) is convex on the interval J and

satisfies the relations
e(0) =e(1) =0, ¢(0) = —wi(0) <0, 16
(1) =wy(o) >0, e(l —a) =e(a). (16)

(2) The function e(a) extends to an analytic function on the cut plane CLUC_U J,
and there is a unique signed Borel measure v with support contained in R\ J
such that [ |r|~'d|v|(r) < oo and

e(@) = —/ 10g<1 — g)dv(r). (17)
R r

(3) The Large Deviation Principle holds in the following form. The function
I(s) = sup (ozs — e(—a))

—ael

is convex, takes values in [0, c0], vanishes only at s = w, (o), and satisfies the
Evans—Searles symmetry relation

I(—s)=1(s)+s for s € R. (18)
Moreover, there is ¢ > 0 such that, for any open set J C (—wy(0)—¢, wy(0)+¢),
we have
1 L[ .
lim —logw|ixeX | - [ oix)dse Tt ) =—inf I(s). (19)
t—>o0 t Jo seJ
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(4) The Central Limit Theorem holds. That is, for any Borel set B C R, we have

tlg(r)loa) ({x eXx ' %/0 (05(x) — w4 (0)) ds € B}) = /Be_xz/za(;—xm,

where a = e’ (1).
(5) The strong law of large numbers holds. That is, for w-a.e. x € X, we have

t
lim l/ os(x)ds = w4 (o). (20)
t—o0 f 0

REMARK 1. In general, the two limiting measures w_ and wy are distinct. This
property is closely related to the strict positivity of entropy production. In fact,
it follows from the second relation in (I2) that if w_ = w4, then wy(oc) =0 as
well as w_(o) =0, while any of these two conditions imply that the function e(x)
vanishes on [0, 1] and, hence, identically in view of analyticity.

REMARK 2. The representation of e(o) as a logarithmic potential of a signed
measure is somewhat surprising, and its mathematical and physical significance
remains to be studied in the future. The measure v is related to the spectral measure
of the operator Q (see the proof of Theorem [2.T] for more details).

Now let {t,} C R, be a sequence such that §,, — 5. We define J = (— 3, 1 +3).

Note that, by Proposition n 3| (1), we have § > 8. In the case when § coincides
with § = limsup,_, ., 8, we write J instead of J.

THEOREM 2.2. Suppose that (G1)H(G4)| hold and {t,} C R, is a sequence
satisfying the above hypothesis.

(1) Let Q =D*(D=' — D;")D'?. Then
1 1
35951 D

Furthermore, since the function g(z) =z 'log(1 —z) is analytic in the cut plane

C\ [1, 00), the operator-valued function
E(@) = —aD"g(@@)D2?, (22)

is analytic in the cut plane C, UC_UJ.
(2) For a € J, the following relation holds,

e(a) := lim ! e,n () =tr(E(x)¢), (23)

n—oo

and if @ € R is not in the closure of J, then

1
lim sup t_et” () = o0. 24)

n—oo n

Moreover; the function é(«) is convex on the interval J and satisfies relations (16).



ENTROPIC FLUCTUATIONS IN GAUSSIAN DYNAMICAL SYSTEMS 345

(3) The Large Deviation Principle holds in the following form. The function
[(s) = sup (as — é(—a)) (25)

—aelJ

is convex, takes values in [0, o0), vanishes only at s = w, (o), and satisfies the
Evans—Searles symmetry relation (I8). Moreover, for any open interval J C R,
we have

1
lim —logw ({x eX
n4>u>%

In
l/ oy (x)ds € j}) = — inf I (s). (26)
n J0o seJ

REMARK 1. The functions e(«) constructed in Theorem coincide with e(a)
on the minimal interval J. Moreover, by Part (2) of Theorem the functions e
constructed for different sequences {z,} must coincide on the common domain of
definition.

REMARK 2. If § = oo, then é(a) = e(a) =0 for « € R.

REMARK 3. The local Large Deviation Principle described in Part (3) of The-
orem is an immediate consequence of the local Girtner-Ellis theorem (see
Appendix A.2 in [22]). The global Large Deviation Principle described in Part (3)
of Theorem [2.2] cannot be deduced from the Girtner-Ellis theorem. Our proof of
the LDP exploits heavily the Gaussian structure of the model and is motivated by
Exercise 2.3.24 in [[10], see also [3, 4l [8] for related results.

2.5. Entropic fluctuations with respect to the NESS

We now turn to the statistical properties of the dynamics under the limiting
measures wy. In view of the time-reversal invariance it suffices to study the
case of one of these measures, and we shall restrict ourselves to w,. Let us set
(cf. Part (2) of Proposition [2.1)

ey (@) =logwy (e~ orlo) = log w, (e_‘" Jo o= d“) =logwy (e_“ foos d‘v),

where the last relation follows from the invariance of w, under the flow ¢’. Note
that, a priori, e, (o) might not be finite for any o # 0.

THEOREM 2.3. Suppose that (GDH(G4A)| hold. Then:
(1) For any t € R, the function R > a — e, () € (—00, +00] is convex.
(2) The set
J'={aeR|D;'—aT, > 0} (27)

is an open interval containing (—38,6), and the function e, () is real analytic
on J; and takes value +00 on its complement.
() Let J* be the interior of the set

liminf J;* = |_J (1) /"

T>0t>T
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Then J* is an open interval containing (-8, 8). Moreover, for o € J*, the limit
1

ey(a) = lim —e; 4 () (28)
t—oo

exists and defines a real-analytic function on J*. Finally, if a is not in the
closure of J*, then
1
lim sup ;e,+(a) = +4o00. 29)

—>0o0

(4) The Large Deviation Principle holds in the following form. The function

I7(s) = sup (as — ey (—a))
—(XElJr
is convex, takes values in [0, 00], and vanishes only at s = w4 (o). Moreover,
there is an open interval 1" containing w, (o) such that, for any open set

J cIt,

1 1 [
lim —log w, ({xe% ‘ —/ as(x)dsej}) = —inf I (s).
t t Jo seJ

—0o0

(5) The Central Limit Theorem holds. That is, for any Borel set B C R,

lim o ({x €Xx ‘ L/I (05(x) —wy(0)) ds € B}) = / e,x2/2a+—dx
o0 T NN § + = 5 ,—27'[(1_,_’

where a, = €' (0).
(6) The strong law of large numbers holds. That is, for wi-a.e. x € X, we have
1 t
lim — os(x)ds = wy(0).
n—oo t 0
(7) Let J be as in Theorem Then e, (a) = e(a) for a € J* N J. Moreover,
there is an open interval J© C I such that 1" (s) = I(s) for s € J*.

REMARK. This theorem is a refinement of Proposition 9.5 in [23]. We point
out that parts (1) and (3) of that proposition are inaccurately formulated: in part
(1), the interval (—4,14 &) has to be replaced with (—4, ), while in part (3) the
interval (—(o);+ — ¢, (0)4+ + ¢) has to be replaced with ((o)+ — ¢, (0)+ + €).

Finally, we have the following analogue of Theorem [2.2] on statistical properties
of the dynamics under the limiting measure w;. Let {z,} C Ry be an arbitrary
increasing sequence going to oo such that the intervals J,© defined by converge

to a limiting interval J.

THEOREM 2.4. Under the hypotheses of Theorem the following assertions
hold.
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(1) For a € J*, the limit

1
ér(o) = lim —e, 1 () (30)
n—o00 %

exists and defines a real-analytic function on J. If a does not belong to the
closure of JT, then

1
limsup —e;,+ (o) = o0.
n—oo n

Moreover, é,(a) and tr(E(a)g) coincide on their common domain of definition.
(2) The Large Deviation Principle holds in the following form. The function
I(s) = sup (as —é4(—a))
—aej+

is convex, takes values in [0, 00] and vanishes only at s = w, (o). Moreover,
for any open interval J C R, we have

1 1 [ n
lim —logwy ({x eX —/ os(x)ds € j}) = —inf I (s).
I Jo seJ

The proof of this result is completely similar to that of Theorem and
therefore we omit it.

REMARK. Unlike in the case of the Evans-Searles symmetry, there is no a priori
reason why the limiting intervals J* should be symmetric around o = %, and indeed
in all cases we know where J* can be computed, this property does not hold. Hence,
the relation e, (x) = ¢, (1 —«) may fail since one side may be finite and the other
infinite, leading to the failure of the Gallavotti-Cohen symmetry I T(—s) = I* (s)+s.
The fact that for unbounded entropy production observables the Gallavotti-Cohen
symmetry may fail is known in the physics literature [1}, [2, |6l |14} |19, [30H32]. In some
of these works one can also find various prescriptions how the entropy production
observable can be modified so as to restore the Gallavotti-Cohen symmetry. We
shall discuss this topic in the continuation of this paper [24].

2.6. Perturbations

We shall consider the following type of perturbation of the reference state w.
Let P be a bounded self-adjoint operator on K such that D~' + P > 0. To avoid
trivialities, we assume that P is not the zero operator. Let

D" ="'+ P)!
and let w” be the centered Gaussian measure with covariance D”. Obviously,
D = (D' + P!,

where P, = e £ Pe™C. We consider the following two cases, assuming that

[(GDH(G4)| hold for D.
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Case 1. P is a nonnegative trace class operator such that 9P = P®¥, and
s-lim P, = 0.

t—+o00

In this case, @’ and w are equivalent and [(G1)H(G4)| also hold for D”. Moreover,
using the superscript P to denote the objects associated with the initial measure w?,
we easily check that

1
Di=Di  E'@=E@, ¢"=c+(LP+PL), (") =wi0),

where we used (22) to derive the second relation. We also see that the functions
e’ (a) and e(a) coincide on J N JP. It is possible, however, that J¥ # J and
JTP £ J*, and in fact the difference could be quite dramatic. Indeed, let us fix
P and consider the perturbation AP for A > 0. Pick a unit vector ¢ such that
Py = kg with k > 0.

We consider first the case of J*¥. One easily sees that for any o > 1,

(@, (D" +aT! ) < % —A((@ = Dk —alp, Pg)). €19

There exists #y such that for ¢ > ty, (¢ — )k — (¢, P,¢) > (@ — 1)x/2. Hence, for
t >ty and A > 2a/km(a — 1) the right-hand side of (31)) is negative which implies
that o« > 1+ §*". Thus

8 =liminf§" <o —1

—>0o0

provided A > 2a/km(a — 1). Letting now o« | 1 we conclude that

lim 6*" =0,
A—00
and the intervals J** collapse to [0, 1] in the limit A — oco.

To deal with the case of J*™*F, we set v, = e'“y for a > 0 and Yar = ¢ for
o < 0. A simple analysis yields

I+ ||
[VaI? — AMal(c — (¢, Pip)).

Wars (DY —aTH )y, <

Repeating the previous argument, one shows that the length of the interval J™*
goes to zero as A — 0o, so that the intervals J ™% collapse to {0}.

Case 2. P >0, 9P = P?¥, and P, = P for all r € R.
Hypotheses |(G1)H(G4)| again hold for D”, and we have
DY =(;'+P)7, P =g, ot =o0.

Replacing P with AP, it is easy to see that &, defined by @ satisfies
lim;_, o 8*7 = o0o. Since (=87, 1+ 8*") c J* and (=8*F,8"") c J™*F, we see
that the intervals J** and J™% extend to the whole real line in the limit A — oo.
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3. Examples
3.1. A toy model

Suppose that the generator L satisfies £* = —L, and let ¢ € K be a unit vector
such that the spectral measure for £ and ¢ is purely absolutely continuous. Let

D=1+A\P,,

where P, = (¢, -)¢ and A > —1. Then D, = I 4+ AP,, where ¢, = Loy is
a continuous curve of unit vectors converging weakly to zero as t — +4oo. Let
A+ = (]| £ 1) denote the positive/negative part of A. One easily verifies that
(GH(G3)| hold with m =1—XA_, M =14+ A, and Dy = I, so that

8= ! +
T2
Without loss of generality we may assume that [(G4) holdsEI Since (1 +AP,,,)‘1 =

I — HLAPI/, for any unit vector  and any A # —1, we have

B A
D 1+aE=I—m((1—a)P¢+aP¢t),

D' —aT, =1 A
+ e 1+ A

O‘(Psﬂ_Pt/Jr)'

Using the simple fact that for any two linearly independent unit vectors ¢, ¢ and
all a,b eRR,

2
sp(aP, +bPy) = {0} U a;bﬂ:\/(azb) +ab(y, p)? ¢,

one easily shows that
I+ A
lo| < .

5 1 N 142 1 I+ { cR
= —_ A L. Al T = o
' 4 20— (p,0)b) 2 ! AV = (9, ¢)?

Recalling that (¢, ¢;) — 0 as t — +oo we see that for all A > —1, § =8 =4 and
Jt =(=8%,8") where

8+=1+X= 8 for L € (—1,0],
(A 1+6 for A € [0, 00).

2That can be always achieved by replacing K with K & K, £ with £ ® L*, ¢ with %gﬂ @ ¢, and setting
V(1 @) = v &Y.
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Furthermore, evaluating relations and established below, we obtain
2
1+

)\.2
er(@) = —1log (1 - maz (1— (g, <Pt)2)) .

e(a) = —3 log (1 + a(l—a)(1 —(fp,%)z)>,

It follows that

1 0 for o — 1| <1+,
lim —e, (o) = =2l <2
=00t +00 for |a—%|>%+6,

0 f st
lim —e;y () = or fe| <%,
=00 ¢ +00 for |o| > 8.
Finally, one easily computes the Legendre transforms of these limiting functions,
1) =G +8)ls| = L. Its)=8"1sl.

While the first one satisfies the fluctuation relation, i.e. / (s)+%s is an even function,
the second one does not.

3.2. The one-dimensional crystal

We continue the discussion of Example 2.1} Our starting point is harmonic crystal
on A =7 and in this case we drop the subscript A. For our purposes we will
view this crystal as consisting of three parts, the left, central, and right, specified
by

A@ = (—OO, _1]’ AC = {0}7 Ar = [15 OO)

In what follows we adopt the shorthands Hy, = Hy, ha, = h¢, ja, = je, etc. Clearly
X=X, X, X,, K=K/ eK.oK,,
where K; = Eﬁ(AS) <) Eﬁ(AS) for s =¢,c,r, and
H=Hy+Ve+V,

where
Hy=H,+ H.+ H,

and Ve(p,q) = —qoq-1, V:(p,q) = —qoq1.
The reference state w is the centered Gaussian measure with covariance

D=D;®D.® D,

where
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I is the identity on Z]%Q(AS), and 7y > 0. Thus, initially the left/right parts of the
crystal are in thermal equilibrium at temperature 7/.. The Hamiltonian V;,, couples
the left/right parts of the crystal to the oscillator located at the site » =0 and this
allows for the transfer of the energy/entropy between these two parts. The entropic
fluctuation theorems for this particular Gaussian dynamical system concern statistics
of the energy/entropy flow between the left and right parts of the crystal.

Hypotheses [(GI)H(G4)| are easily verified following the arguments of Chapter 1
in the lecture notes [22] and one finds that

( ) (TK - Tr)2
o) =K———,
R
where k = («/3— 1)/2x, and
(@) tog(1 4+ L= T’ (1 —a) (32)
= —«lo _— — .
e(a Kk log T o o
Note that e(«) is finite on the interval J, = (—4§,, 1+ §,), where
in(Ty, T,
= M, (33)
|TZ - Trl

and takes the value +4oco outside the interval J,. Note also that §, can take any
value in (0, oco) for appropriate choices of Ty, T, € (0, 00). The measure v in Part
(2) of Theorem [2.1] is

V=KD 5, +KkDiys,,

where %, is the Dirac measure centered at a.
We finish this section with several remarks.

REMARK 1. The intervals J, J* can be strictly smaller then J,. To see this,
fix T, 8, o > 1, and set T, = (1 +8,")T; to ensure relation (33). Let ¢ € K be
such that (¢, h.¢) = 1. One has

1
(@, (D7 +aTg) = Y — (1 =)@, h) +algr, hsg)

s R
where ¢, = e "“¢. Since the skew-adjoint operator L has purely absolutely continuous
spectrum and 4. is compact, there exists fy > O such that
a—1

20

for all ¢t > ty. Moreover, since the Hamiltonian flow is uniformly bounded there
exists a constant C such that

(@ he@) = (e P02, k=2 h ™1 2e T n 1 2g) <

o
T,

7 (A =) (@, hepre) + (@, heprpr)) < C
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Summing up, if 7; > 4CT.«/(x — 1), then
— % 1ocZ <0

— < .

2T, T,

for all ¢t > £y and hence § < «. Thus, in the limit 7, — oo the interval J collapses
to [0,1]. In a similar way one can show that in the same limit the interval J*
collapses to {0}. On the other hand, arguing as in the Case 2 of Section [2.6] one
can always take Ty/,, T, — 0 in such a way that in this limit the intervals J, J©
extend to the whole real line.

(0, (D' +aT)e) <

REMARK 2. Somewhat surprisingly, even in the simplest example of the harmonic
crystal discussed in this section, it appears difficult to effectively estimate the location
of the intervals J, J© outside of the perturbative regimes. In particular, the subtleties
regarding the location of these sets were overlooked in Sections 1.11, 1.14 and 1.15
of the lecture notes [22[]. These difficulties raise many interesting questions and we
leave the complete analysis of these aspects as an open problem.

REMARK 3. An interesting question is whether one can find P such that for the
perturbed reference state w® as defined in Section one has J = J,. That can
be done as follows. Set B, = 1/T;, suppose that 8, > B, and let

P = (IBr - ,Bc)lc 0
0 (B +2Be —3Bc)je + Beve + Brvr |

where v,/ denotes the self-adjoint operator associated with the quadratic form 2V,,.
One easily checks that

DP = (B.h — Xn{")7",

aM la,ua. O
¢ 0 jZ(N) ’

and je(N) denotes the restriction of the operator to RAYAc with Neumann
boundary condition. We are concerned with the interval

JP={a eR|(D") ' +aT” > 0}.

where X =8, — B, > 0,

Since
(DtP)’l — B — Xe’“:*hsz)e”E i (,Br . Xetthl/ZhéN)hfl/ZeftL> n\2,
a simple computation gives
(D) ' +aT?
—pl2 <,3r — (- a)thl/zh((zN)hfl/z . aXe’thl/zhsz)h”/ze*’L) n'2,
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and hence
JP={a eRIB/X > 1 —a)h PRV "2t aetn= ' 2pV n=12e 1y,

Si /X =146 d
ince B,/ + 6, an OghéN)fh,

we have that for all ¢, (—6,,1+6,) C JzP'

Thus, lim, 8" =6, and J* = J,.

REMARK 4. In contrast to Remark 3, we do not know whether there exists P
such that for the perturbed reference state w” one has J*¥ = J,.

REMARK 5. In the equilibrium case 7, =7, =T we have w (o) =0, and one
may naively expect that o does not fluctuate with respect to w and w,, i.e. that
e(ax) = e (a) =0 for all a, and that I(s) = I (s) = oo if s # 0. If one also takes
T. =T and the perturbed reference state described in Remark 3, then o = 0, and
the above expectation is obviously correct. On the other hand, for the reference state
determined by D, in the high-temperature regime 7 — oo, T, fixed, the interval J
collapses to [0, 1] while the interval J* collapses to {0}. Hence, in this regime,
the rate functions 7 (s) and I *(s) are linear for s <0 and s > 0, with the slopes
of the linear parts determined by the end points of the finite intervals J and J+,
and the entropy production observable has nontrivial fluctuations.

REMARK 6. The scattering theory arguments of [22]] that lead to the derivation
of the formula (32) extend to the case of inhomogeneous one-dimensional harmonic
crystal with Hamiltonian

2 (O 2 Kn( n— Yn— )2
HA(p,q)=Z(%+ 2q”+ 1 2q 1 )
neiA

where w, and k, are positive numbers satisfying
Cl<w,k, <C for all n € Z,
and C > 1 is a constant. In this case the operator j is the Jacobi matrix
(J@n = (@n + kn + Knt1)qn — KnGn—1 — Kn+1qn+1, n € 2.

One easily verifies that Hypotheses [(GT)| [(G2), and [(G4)| hold. If j has absolutel
i(G3)

continuous spectrum (considered as a self-adjoint operator on E%C(Z)), then

also holds. Moreover, w, (o) and e(x) can be computed in closed form in terms
of the scattering data of the pair (j, jo), where jo = j, ® j. & j, (for related
computations in the context of open quasi-free quantum systems we refer the reader
to [21, 22 [25]). The formulae for w (o) and e(w) involve the scattering matrix
of the pair (j, jo and estimating the location of the intervals J, JT is difficult.

3In the case of harmonic crystal considered in this section, j is a discrete Laplacian and the absolute values
of the entries of the scattering matrix of the pair (j, jo) are either Os or 1s. For this reason the formula (32)
for e(a) has a particularly simple form.
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However, the interesting aspect of the formula for e(x) is that it allows to express
the measure v in Part (2) of Theorem in terms of the scattering data. The
mathematical and physical significance of this representation remain to be studied
in the future. Finally, the scattering methods can be extended to treat an arbitrary
number of infinite harmonic reservoirs coupled to a finite harmonic system. The
discussion of such extensions is beyond the scope of this paper.

4. Proofs
4.1. An auxiliary lemma

Using the notation and conventions of Section we have the following simple
result.

LEMMA 4.1.

() If A = A* € T, then the quadratic form EHZR(F) 3 x > galx) = (x, Ax)
has a unique extension to an element of L'(X,dwp) with a norm satisfying
llgalli < IIDI|Ally. Moreover,

qu (x) dwp(x) = tr(DA). (34)

(2) Let R >t +— A, = A € T be differentiable at t = ty and let Ato be its
derivative. Then the map R >t + qa, € L'(X, dwp) is differentiable at t = to
and

d

E qu = thO'

=1

(3) If 1 does not belong to the spectrum of A, then the function T > X — F(X) =
det(I — X) is differentiable at X = A and its derivative is given by

(DAF)(X) = —F(A) tr((I — A)7'X). (35)
Proof:

Part (1) By Eq. @), the function x > ®,(x) = (y,x) belongs to L*(X,dwp) for
y € X]. Moreover, Fubini’s theorem yields the estimate

ENEE y,-y,-/xix, dop(x) = Y Dijyiyj = (y, Dy) < IDIlIlyI>,  (36)
i,jer i,jer
which implies that the linear map y — @, has a unique extension @ : EHZR(F) —
L*(X,dwp), such that |®| < | D|'>.

A self-adjoint A € 7 has a spectral representation A = ), axgi(¢x, -), wWhere
the a; are the eigenvalues of A and the corresponding eigenvectors ¢ form an
orthonormal basis of ¢%(I"). It follows that ga(x) = >, a;®P,, (x)* from which we
conclude that g4 extends to an element of L'(X,dwp) with

lgalli <) " larl 19y 13 < D lal 1D = ID] Al
k k
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The last equality in Eq. yields
[ a1 don) = 3 a0, 18 = Y ator. D = w(AD)
k k

which proves the identity (34).

Part (2) It follows from Part (1) that the linear map 7 3 A > g4 € L'(X,dwp)
is bounded and hence C!.

Part (3) Using a well-known property of the determinant (see Theorem 3.5 in [29]),
we can write

F(A+X) =detd — (A+ X)) =det((I — A)I — (I — A)~'X)
=det(I — A)det(I — (I — A)~'X)
= F(A)det( — (I — A)~'X).

To evaluate the second factor on the right-hand side of this identity, we apply the
formula

det(/ + Q) = 14+ > _tr(Q™),

k=1

where Q"% denotes the k-th antisymmetric tensor power of Q (see [29]). Since
1011 < (k)~'||Q|I¥, one has the estimate

12l
|det(/ + Q) — 1 —tw(Q)| < el — 1 —Q|; < eTIIQII%-

It follows that

detl — (I — A 'X)=1—-t( — A'X)+O(XID,
as X — 0 in 7. Thus, we can conclude that

F(A+X)— F(A) = —FA) u( — A™'X)+ O(IX|D.

and the result follows. O

4.2. Proof of Proposition 2.1]
Part (1) Up to the constant tr(Dg) (which is well defined since ¢ € T), o is given
by the quadratic form g, which is in L'(X,dw) by Lemma (1). For x € X,
1.e. w-a.e. x € X, one has
1 * *
0;(x) — oy (x) = 5 <x, (e'F et — e'F gesa)x) ,

whence, setting ¢, = ¢'£" ce’S and applying again Lemma (1), it follows that

1
lor — osll L1z dw) = EHD” ls: — g5l
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Thus, it suffices to show that the function ¢ — ¢; € 7 is continuous. This immediately
follows from the norm continuity of the group e'“, the fact that ¢ € 7, and the
well-known trace inequality ||[AB]|l; < ||A]l ||B]l;. We note, in particular, that

ot Lt .y < IDICA+ e 1) s for t € R.
Part (2) From Eq. (5), we deduce that

1 1
Lolw = 3 logdet(I + DT;) — EqT[. 37

Now note that 7, = D, — D! satisfies the cocycle relation
Tips =T+ e Te " (38)

It thus follows from Assumption [(GI)| that the function ¢ +— T; € T is everywhere
differentiable and that its derivative is given by

T, = —2¢.,. (39)

Lemma [{.1] (3) and the chain rule imply that the first term on the right-hand side
of is a differentiable function of ¢. Using Eq. (35), an elementary calculation
shows that

1d
—~—logdet({ + DT, = —tr(Dg).
5 7 logdet(q + DT)| = ~tr(Ds)

Applying Lemma [4.1I] (2) to the second term on the right-hand side of Eq. (37),

one further gets
1d

57 91 =95 =ds© ¢
Summing up, we have shown that
d
EEwHwZO_I, t ER

Since the function ¢t — o_; € L'(¥,dw) is continuous by Lemma (1), and
Lo =0, we can use Riemann’s integral to write

t
Ew;lw:f o_sds. 40)
0

The fact that, for w-almost every x € X, one has

Loylo(X) = f o_s(x)ds, (41)
0

follows from Theorem 3.4.2 in [20].
Part (3) From the cocycle relation

Loyisio = Loyl + Loglw 0 @', (42)
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we infer
1 d
_ (ezws\w _ 1 _ SO_) ¢—t dwt

1
& =— (eza’r—b—ﬂw — eewzlw) —0_; elorlo =
N

N w

and hence

1 4
/ |ss|dw=—/ lefosto — 1 — so| da
x

e =1 =t dot [ [t = o] do
|s| | X

To prove that relation (| . holds in L'(X,dw), it suffices to show that both terms
on the right-hand side of this inequality vanish in the limit s — O.

To estimate the first term we note that the inequality e* — 1 — ¢ > 0 (which
holds for ¢ € R) combined with Eq. (34) and implies

1
|S| / |€ oslo — 1 — wr|0)| do = | | (a)(e a)slw) —1- / Zws‘w dw)
x
1

—|= (tr(DTS) — logdet(I + DTS))‘ :
N

By Assumption [(GI)|, the map s +— T is differentiable in 7 at s = 0. Since Ty =0,
we can write
0) )

hm—/ |efosto — 1 — €, 10| da)_ —(tr(DT) -
s—0 |S|
Using Lemma [.1] (3) and the chain rule, we get
d . .
- (@(DT,) — log det(I + DT,)) ‘ | =w(DTy) —r(DTy) = 0.
s 5=

To deal with the second term, we use Eq. , Fubini’s theorem and Lemma (D)

to write
1 1
/ (0_su —0) du 5/ / |q§_m,§| dodu
0 0o Jx

L/ |€ws‘w—sa| dw:/
Is| Jx x

1
< I1D| f I — cllidu,
0

and since the map s > ¢, is continuous in 7, the dominated convergence theorem

yields |

lim ls—su — slhidu = 0.
s—0 0
Part (4) Relation (§) implies that

w(0) = w(oy) = /3€qg, do —tr(Dg),
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and formula yields

w;(0) = tr(D(g; — ¢)) = tr(s(D; — D)).
Part (5) Starting from definition (2)) and using the cocycle relation (42)), we obtain

Ent(w, |0) = — / Coyo dwy, = / Co o do.
x x
Eq. (1) and Fubini’s theorem further yield

—t t t
Ent(w,|w) :f / o_sdsdw = —/ / oydsdw = —f ws (o) ds.
xJo xJo 0

4.3. Proof of Proposition 2.2]

Part (1) We have to show that w,, the Gaussian measure of covariance D., is the
weak limit of the net {w;};,~o. Since the cylinders form a convergence determining
class for Borel measures on X (see Example 2.4 in [5]), it suffices to show that
lim; o0 w;(C;(B)) = w4+ (C;(B)) holds for any finite subset / C I' and any Borel

set B Cc R’. By Hypotheses [((G2)H(G3), one has lim, .o D;; = D4 ; and

~L,pt _lx)?
e t, <e 2M ,

for all x € R’. It follows that lim,_, o D, Il = D;’II as well as lim;_, o det(2r D, ;) =

det(2mr D4 ;) so that

1 —1
2(x Dt Ix) e_j(x’D+.,1x) dx,

1
1/det(ZJTD, ) ,/ B JdetRx Dy 1) ./z;

holds by the dominated convergence theorem The same argument applies to w_.
Part (2) Follows directly from Lemma [.1| (1) and Proposition 2.1] (4).

4.4. Proof of Proposition 2.3
Part (1) Let us note that o € J; if and only if
D' +ae ™' D leF — D > 0. (43)

It follows that J; is open. For 6 € [0, 1], we can write
D' +6a(e X D E — D~ 1)—9(0 +a(eE'D e — —1))+(1—9)D—1,

whence o € J; = 6 € J; and we can conclude that J; is an interval. Multiplying (43)
by ¥ from the left and the right and using the relations © = ¥* = 9~!, we obtain

D71 _'_a(etL*Dflet[, _ Dfl) > 0’ (44)

whence we see that « € J_,. By symmetry, we conclude that J_, = J,. Furthermore,

multiplying by ¢ '£" and e '£ from the left and the right, respectively, we

obtain .
aD '+ (1 —a)e £’ D eE > 0.
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It follows that 1 — « € J;, and by symmetry, we conclude that o € J; if and only
if 1 —a € J;. Thus, J, is an open interval symmetric around o« = %
Part (2) For any bounded operator C > 0 on Z%(F) and for any «,t € R such that
C~'+aT, >0, formulae (B) and (37) allow us to write

det(I + DT)))"
Loyl _ !
el doc _\/ det(/ +aCT,)) e ay - @)

By definition D~! +aT; > 0 for o € (=&,1+&;). Taking C = D in @) and
integrating over X, one easily checks that

1
er(@) = %log det(I + DT,) — 5 logdet(I +aDT,) (46)

for all +t € R and o € (—§&;,1 4+ §;). The first term on the right-hand side of
this identity is linear in « and hence entire analyticE] The determinant in the
second term is also an entire function of «, and its logarithm is analytic on the
set where the operator I + aDT; is invertible; see Section IV.1 in [17]. Writing
I[+aDT, = D(D~'+aT,), we see that I +a DT, is invertible for o € J,. Furthermore,

since
I +aDT, =aD"?*@ '1 + D'?*1,D"*)D~'/2,

and the operator D'/2T;D'/? is self-adjoint, we conclude that I +aDT; is invertible
for « € C\ R. Hence, the function ¢,(«) is analytic in the cut plane CL UC_ U J,.
Its convexity is a well-known property of Rényi’s relative entropy and follows from
Holder’s inequality applied to Eq. (I3), and relations (14) are easy to check by
a direct computation.

It remains to prove that e,(0) = +oo for o ¢ J;,. To this end, we first note
that the spectrum of D~! is contained in the interval [M~! m~!] and that the
operator o7, is compact. By the Weyl theorem on essential spectrum, it follows
that the intersection of the spectrum of the self-adjoint operator D~' +«T; with the
complement of [M~',m~'] consists of isolated eigenvalues. Thus, if « ¢ J,, then
there are finitely many orthonormal vectors {¢;}, numbers A; > 0, and an operator
B > ¢l with ¢ > 0 such that

D' +aT, =— ij(q)j, Je; + B.
j=1
It follows that

« 1 ¢ _
w(e*‘erlo) = (det(I + DT,)) /2/ exp{—ij|((pj,x)|2}e CBO24(dx).  (47)
X 2 j=1

Since B— D' €T and D™' + B > 0, we conclude from (3) that e=*89/2¢(dx)
coincides, up to a numerical factor C > 0, with a centered Gaussian measure whose

4We shall see in the proof of Theorem that it is in fact identically equal to zero.
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covariance operator is equal to D’ := (D! + B)~!. Hence, we can rewrite (#7) in
the form

1 n
a)(eaﬁwzlw) :C/ exp{i ij|((pj,x)|2}a)1y(dx).
X j=1

Since the support of wp coincides with the entire space, this integral is infinite.
Part (3) Using the cocycle relation (2), we can write

“lonio) = log (e i)

e(1 —a) = logw(eterloe
= log w (e~ @rlo*?") = log w(e®-11) = e_, (a).

Now note that, by [(G4), the measure w is invariant under ¥, whence we conclude
that w_, = w; 0¥ and £y, 0 0 = £y_, 0. It follows that e_, (@) = e;(a). Combining
this with the above relation, we obtain the Evans—Searles symmetry.

4.5. Proof of Theorem 2.1]
Part (1) We first prove the existence of limit (I5). Let us set

D)= (1 —a)D™" +aD )" (48)

and recall that e,(«) can be written in the form ([6). Using the relations (33), (39),
Lemma [.1] (3) and the chain rule we obtain

d .
- logdet(/ +aDT)) = tr((I +«DT,)'aDT,) = =20 tr(Dy(a)s-,)

= 2u tr(D_,(l — a)g). (49)

In particular, for « = 1 the derivative is equal to zero for any ¢ € R, whence we
conclude that the first term in (46) is identically equal to zero. Let us now fix
o« € J and choose fy > 0 so large that o € J; for ¢ > 1y. It follows from (@6)

and (9) that
1 1 20 (!
cen(a) = —epy (@) — 7/ tr(D—s(1 — a)g)ds. (50)

o
By Assumption [(G3)]
s-limD_(1 —e) = D_(1 —a) := (@D~ + (1 - D=7,
and since ¢ is trace class, it follows that
Y11)120 tr(Ds(l — a)g) = tr(D_(l — oz)g).

Combining this with (30), we conclude that for « € J,

lim le,(oz) = 2u tr(D,(l — a)g). oD

t——+oo f

SNote that this computation does not use [(G4)
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Once the existence of limit is known, we can easily obtain the required properties
of e(a). The convexity of e(w) and the first and last relations in follow
immediately from the corresponding properties of e;(«). Furthermore, it follows
from and the invariance of @ under ¢ that

eﬁ(O):/ﬁwﬂw(x)a)(dx):// os(x)dsa)(dx)z—/ / os(x)ds w(dx).
X x JO X JO

In view of Part (2), the limit e(w) is analytic on its domain of definition. By
Theorem 25.7 in [26], 1
lim —e;(a) = €' (),

t—oo

for « € J. Using Fubini’s theorem and Part (2) of Proposition 2.2] we derive

1 1 (!
e'(0) = tl_lglo ;e;(O) =—lim - | w(oy)ds =—wi(c)=—tr(¢D,).

t—oo 0

The third relation in now follows from the fourth one.
Part (2) The analyticity of e(«) follows from Relation (5I). We now prove (I7).
Let © be the spectral measure of Q for the linear functional induced by the

trace class operator pY ngl_/ 2. In other words, pu is the signed Borel measure such
/ f@udg) =t(f(QD¢D?), (52)

that
for any bounded continuous function f :R — C. By Eq. (2I), the measure p has
its support in the interval [—5_1, (14 6)"']. One easily checks that

fro / F@ g uidg).

defines a continuous linear functional on the Fréchet space Cyp(R) of compactly
supported continuous functions f : R — C. By the Riesz representation theorem
(see Chapter 2 in [28]), it follows that there exists a signed Borel measure v,
with support on (—oo, —§] U [1 4§, 00), such that

/ fryv(dr) = f f@Hg ' udg). (53)

A standard argument based on the monotone class technique shows that (53)) remains
valid for any bounded measurable function f. Decomposing the measures p and v
into their positive and negative parts, we easily deduce from (53) that

/f(r)lvl(dr) =ff<q1>|q|‘|u|<dq>,

for all bounded continuous f. In particular, taking f(r) = % outside a small
neighbourhood of zero and using (52)), we derive

v|(dr)
/ " =/|M|(dq) < IDY*¢D?|) < 0.
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Recalling relation (which will be established below) and using with
f(r) = —log(1 —ar~") on the support of v, we obtain

e(@) = —atr(g@@)D*¢D!?) = - / ag(aq)u(dq)

= —fq_llog(l —agq)u(dg) = —/log(l —ar Yvr).

This relation coincides with (I7).
To prove the uniqueness, let v, v, be two signed Borel measures with support
in R\ J, satisfying [ |r|~'|vx|(dr) < oo, k =1,2, and such that

/log(l —ar Yy (dr) = /log(l —ar Hvy(dr)

for o € J. Differentiating, we derive that

/'dvl(r) :/dvz(r) (54)

r—ao r—a

for « € J. By analytic continuation (54) holds for all @ € C; UC_. Since the

linear span of the set of functions {(r —a)~'|a € C; UC_} is dense in Cy(R),

(33) yields that for any f € Co(R), [ fdvi = [ fdv,. Hence vy = v,.

Part (3) The fact that [ is a convex function taking values in [0, +o00] follows

immediately from the definition. The relation ¢'(0) = w_(0) = —wy (o) and the

regularity of e imply that I vanishes only at s = w; (o). The validity of (I8) is

a straightforward consequence of the last relation in (16). Let us prove (19).
Consider the following family of random variables {X;};c(0.00) defined on the

probability space (X, F, w),
1 t
Y, = —/ oy ds.
t Jo

By Proposition [2.1] (2) and the symmetry relations @ =wo® and o o = —0, we
have

e; () = log w(e”‘(wt\w) = logw(e” Joo=s ds) =logw(e™ Jo o ‘“) = log a)(ef""z’),

so that ¢;(—a) is the cumulant generating function of the family {X;};[0,00). Applying
a local version of the Girtner—Ellis theorem (see Theorem 4.65 in [22]), we conclude
that (T9) holds with

¢ =min(—w;(0) — dte(=3), —wy(0) + 3 e(1 + 9))
= min(e’(0) — d*e(—8), 0 e(1 +8) — €'(1)),

where d%Te(a) denotes the right/left derivative of e(w). The fact that ¢ > 0 follows
from the convexity and analyticity of e(w).

Part (4) As was shown above, e,(—«) is the cumulant generating function of {%,}.
Therefore, by Bryc’s lemma (see [7] or Section 4.8.4 in [22]), the CLT will be



ENTROPIC FLUCTUATIONS IN GAUSSIAN DYNAMICAL SYSTEMS 363

established if we prove that ¢;(«) extends analytically to a disc D, = {a € C| || < ¢}
and satisfies the estimate

1
sup  —le ()] < oo, (55)

t>1y,0€Dg

for some ) > 0. The analyticity was established in Part (2) of Proposition [2.3]
Using the representation (50), one easily sees that in order to prove (33) it suffices
to show that

sup || Di(e) ] < oo. (56)

teR,|1—a|<e
An elementary analysis shows that Assumption [(G2)| implies the lower bound

(I—a)p-'+ap-1> 2M=m
s t —MM+m

for t,s € R and « € [—§,1 4+ §]. Since for z € C,
Re (1 —2)D; ' +zD; ') = (1 —Rez)D;' +RezD; ",

we have the upper bound

(6+3—la—1), (57)

—1 MM+ m
I (1—=2D;' +zD]") || < Ry

for s, € R and z in the strip {z € C|Rez € (—§,1 4+ §)}. Thus, the required

estimate (56) holds provided € < 3.

Part (5) We first note that the differentiability of e(«) at zero and a local version

of Theorems I1.6.3 in [11] (which holds with identical proof) implies that, for any

& > 0 and any integer n > 1,

o({x € X||Z, —wi(0)] = &) < e,

(5+1—|Rez— 1))~ (58)

where a(e) > 0 does not depend on n. By Theorems 11.6.4 in [11], it follows that

n

lim l os(x)ds = wy(0) %59)

n—oon J

for w-a.e. x € X. Suppose now we have shown the following inequality for some

r<l1,
n+t
/ os(x)ds

where ng(x) > 0 is an integer that is finite for w-a.e. x € X. In this case, we can
S -

write
1 t 1 n 1 n+t 1 n
— [ os(x)ds —— | os(x)ds oy(x)ds oy(x)ds
t Jo nJo n\|J, 0

_|_ J—

n2
where n is the integer part of t and 7 =t —n. It follows from that the first
term on the right-hand side goes to zero for a.e. x € X, and the second goes to

sup <@m+1 for n > ny(x), (60)

0<r<1

’
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zero in view of (59). Combining this with (39), we obtain (20). Thus, it remains
to establish (60).

Let us fix an arbitrary r € (0,1) and denote by &,(x) the expression on the
left-hand side of (60). In view of the first relation in (12, we have

‘i:n(x) = Sup

0<t<l

n—+t r . n—+t
/ (e'~x, gce~x)ds| = sup |(x, Snt X) |, St :=/ gy ds.
n 0<r<l n

Suppose we have constructed a sequence {B,} of self-adjoint elements of 7 such
that, for any n >0,
sup |(x, GasX)| < O, Bax),  [1Bali < C, (61)
0<t<l
where C > 0 does not depend on n. In this case, introducing the events A, = {x €
X|&,(x) = (n+1)"}, for sufficiently small ¢ > 0, we can write

w(A,) < e () < 7D (det(I — 26DB,)) ", (62)

where we used the fact that the Gaussian measures on X with covariance operators
D. = (D~'—2¢B,)"! and D are equivalent, with the corresponding density given

by (see ()
Apyp(x) = (det(I — 26 DB,)) 2B,

In view of the second inequality in (6I)), the determinant in (62) is bounded from
below by a positive number not depending on n > 0 for sufficiently small ¢ > 0. Thus,
the series ), w(A,) converges, and by the Borel-Cantelli lemma, inequality (60)
holds with an almost surely finite integer ng(x).

We now prove (6I). From Assumption we derive

* *
MZD,:etﬁDetﬁ Zmez[,et[, ’

M2
le'“ | < (—) , (63)
m

holds. Since ¢ € T is self-adjoint, one has |(x, ¢x)| < (x,]|s|x) for all x € K.
Hence

so that the uniform bound

n+1 n+1
sup () Guix)] < / (e*Ex, cex)lds < / (@Cx, [cle'Cx)ds = (x, Bux),
n n

0<r<l

where il .
B, :/ L\ clettds
n

is a self-adjoint element of 7 such that

M
1Balli = — NIl
m

The proof of Theorem [2.1] is complete.
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4.6. Proof of Theorem [2.2]

Part (1) Let {s,} be an arbitrary sequence converging to 8. Recall that D~!+aT;, > 0
for o € J;,. Multiplying this inequality by e*“/?> from the right and by e*£/2
from the left, we obtain

(1—a)D; ,+aD,}, >0,

for any « € J;,. Invoking Assumptions [(G2)H(G3)l we can pass to the limit in the
last inequality to get
(1—a)D-" +aD}' >0,

for any o € J. Taking o = 14+ 68 and o = —8 and performing some simple
estimation, we obtain inequality (2I). Furthermore, it follows from (21 that «Q < 1
for a € (-8, 1+6), whence we_conclude that the operator function (22 is analytic
in the cut plane C; UC_ U (-4, 1+ §).

Part (2) We first prove the existence of the limit in (23). To this end, we shall
apply Vitali’s convergence theorem to the sequence of functions

1
hn(a) = t_el‘n(a)v n= 19 o€ Jtn‘
By the very definition of 3, for any & > O there is N, such that, for all n > N,
the function £, is analytic in the cut plane C_ U C, U J, where

Jo=(=84e1+8—-e)CJ,.
By the proof of Part (4) of Theorem (more precisely Eq. (58)), the functions
h, are uniformly bounded in any disk or radius less than 6 around o« = 0. By the
Cauchy estimate, the same is true of their derivatives /).

Let Ky be the compact subset of (C_ UC, U J;) \ {0} described on the left of
Figure [l From definition (48) we infer

1

D, (@) =D"?(14+«Q,) 'D'?=zD"?*(z— 0,)"'D'?,  z=——,

o

where Q, = D'2T, D'/? is a self-adjoint element of 7. By definition, a € J, iff
I +a0, >0, ie.

sp(Qn) C (—(1+8,)7. 8, Cc(—(U+5—e)" G- (64)

for all n > N.. Since the function @ +— z = —1/0 maps Ky to a set which is
uniformly separated from sp(Q,) (see Fig. [I)), it follows from the spectral theorem
that 2|
Z
sup || Dy, ()|l < [ID]l sup

.— <
n>Ng n>Ng dlSt(Z’ Sp(Qn))
aeKy -z lek

Applying Lemma [.1] (3) to Eq. (#6) (recall that the first term on the right-hand
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Ima Imz

Re Rez

Fig. 1. A compact region Ko C (C-UC4 U Je) \ {0} and its image under the map « — z = —1/a. The thick
lines in the a-plane are the cuts R\ Jg. By Eq. (64), if n > N, then the spectrum of Q, lies inside the thick
line of the z-plane.

side of the latter vanishes) and integrating Eq. (39) to express 7;, we obtain

1 1
(@) = =5 te(D,, @T;,) = /0 (r(Dy, (@) 6y, )ds.

n

The bound (63) further yields

, M
|y ()] < sl liDy, (@),

and the previous estimate allows us to conclude that the sequence {A},>n, is
uniformly bounded in Kj.

Summing up, we have shown that {A)},>x, is uniformly bounded on any compact
subset of C_UC, U J; and since /,(0) = 0, the same is true of the sequence
{hu}n=n.. By Part (1) of Theorem @, the sequence {h,(«x)} converges for o € J.
By Vitali’s theorem (see Section 1.A.12 in [18]]), we conclude that the sequence {4, }
converges uniformly on any compact subset of C_UC, U Js, and the limit is an
analytic function on it. Since ¢ > 0 was arbitrary, we see that the middle term in (23)
is well defined for any « € C_UC+Uf and is an analytic function on this domain.

To prove the second equality in (23), since both left- and right-hand sides
are analytic functions on C_ U C, U J it suffices to establish it for o € J.
The lower bound (57) shows that D,(«) is bounded and strictly positive for all
t € R and a € (48,1 +6). It follows from Eq. and Lemma [{.1] (1) that
Loy € L' (X, dop, ). Moreover, Eq. @3) shows that for f € L'(X, dwp, @),

w(e oo f)
w(e*terlo)
Using this relation with f = £,,|,, integrating the identity

@Dy (f) = (65)

eorlo = | +f etorog, 1, dy
0
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against w, and applying Fubini’s theorem, we obtain

w(e*torlo)y =1 +/ C‘)(eﬂ“)"‘“)wD;(y)(Zwtlw) dy.
0

Resolving this integral equation (which reduces to a linear differential equation) for
o > w(eferlo), we derive

w (o) = exp(f a)D,(y)(ﬂw,w)dV)-
0
Taking the logarithm, dividing by 7, and using #I), we obtain

1 1 [«
;ez(a) /wD;(y)(szlw)dV— //le(y)(U s)dsdy

f / 0, (0_1y) dsdy. (66)
It follows from (34) and the first relation in (12) that
0D, (0-15) = tr(Dy(y) 515) = tr(e " EDi(y)e ™)
—tr (((1 — )DL + yD;(I‘,S))‘Ig) .
Combining this with Hypothesis [(G3)| and a continuity property of the trace, we
derive
lim wp, ) (0—1s) = tr(Dys) = wp, (0)  for y € (=8,1448), s € (0, 1),

where we set D, = ((1 — y)D-' 4+ yDI")~'. The bound (58) allows us to apply
the dominated convergence theorem to Eq. (66), and conclude that

1 o 1
e(a) = lim —e,(a) :/ f wp. (o) dsdy
t—oo 0 0 14

o
:/ tr(D,s)dy, o€ (=8,1+5). (67)
0
Writing 5), =D - yQ)*lDl_/z, we further get

e(or) = /u w(DY*(1 —yQ)~'DY*¢)dy,
0

and performing the integral yields Eq. (23) for « € (=68, 1+ 9).

Finally, to prove (24)), it suffices to note that if « does not belong to the
closure of J then, for infinitely many n > 1, o ¢ J,, and by Proposition 2),
e, (o) = +o0.

Part (3) The required properties of the rate function I follow from (T6) and
elementary properties of the Legendre transform. Thus, we shall only prove (26).
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In doing so, we shall assume that the interval J is finite; in the opposite case, the
result follows immediately from the Girtner-Ellis theorem; see Section 4.5.3 in [[10].
Moreover, we shall consider only the nondegenerate situation in which w, (o) > 0.
The analysis of the case wy (o) =0 is similar and easier.

Let us extend é(«) to the endpoints of the interval J by the relation

A . 1 A n

e(a) = limsup —e; (), o€ {-8,1+46}.
t——+00 t

Since the extended function ¢ is convex and, hence, continuous at any point where it

is finite, the Legendre transform of e(—a) coincides with / defined by (23). In view
of a well-known result on the large deviation upper bound (e.g. see Theorem 4.5.3
in [10]), the following inequality holds for any closed subset F C R,

1 ™ A
—/ os(x)ds € F}) < —inf I(s).
tn 0 seF

Since [ is also continuous, this upper bound easily implies that (24) will be
established if we prove the inequality

1
limsup — logw ({x eX

n—oo n

1
liminf — logw ({x eX

n—00 tn

L[ A
—/ os(x)ds € 0}) > — inf I(s), (68)
n Jo NS
where O C R is an arbitrary open set. A standard argument shows that it suffices
to prove (68) for any open interval 7 C R. Let us set

s~ =— lim é(a), sT=—lim &' ().

atl+d al—8

In view of the local version of the Girtner—Ellis theorem (see Theorem 4.65 ilﬂ 122,
relation @ is true for any interval J C (s—,st). Thus, it suffices to consider the
case when J = J,. = (s —&,5 + &), where +(s —sy) > 0. The proof of (68) is
divided into several steps.

Step 1: Reduction. We first show that the required inequality will be established
if we prove that, for any § € R satisfying the inequality £(§ — sy) > 0 and any
e >0,

Jim inf - log (B, (5, ¢)) = —1(§ £ e), (69)

n—o00 tn

where B,(S,¢) = {x € X| |tn_1£wt,,\w + §|] < ¢}. Indeed, we have

f(s) _ {A—(l ++8)s —e” for s < s;, (70)

és —e for s > s™,

6In the formulation of Theorem 4.65 in [22], it is required that the limit of 7~ le,n (@) as n — oo should
exist for any « in the closure of J. However, the same proof works also in the case when the limits exist only
for @ € J.
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where e~ (respectively, e™) is the limit of é(a) as a 4 1434 (respectively, o | —8).
In particular, the rate function [ is everywhere finite and continuous. It follows
from (69) and inequality (68) with J C (s—,s™) that

l/no*s(x)ds € jgg})
In 0

1
= lim hmmf—logw(B (s, 8)) > I(s)

e—0t n—oo

1
lim liminf —logw ({x eX

g0t n—oo0 f,

where § € R is any point. A well-known (and simple) argument implies the required
lower bound (68) for any interval J C R. Thus, we need to establish (69). To
simplify the notation, we shall consider only the case when § > s, (assuming that
Sy < 00).

Step 2: Shifted measures. Let us fix § > st and denote ¢ (o) = ¢,(—a) and
é(a) = e(—a). Since é;n is a monotone increasing function mapping the interval
—Jy, = (=1—=46,,,8,) onto (—oo,00) (see [@0)), for any n > 1 there is a unique
number «, € —J, such that ¢; («,) = t,5. Following a well-known idea in the
theory of large deviations, let us define a sequence of measures v, on X by their
densities B

Avnlw - exp(_angwm\w — €y, (an))~
Suppose we have proved that

liminfv,(B,(, ¢)) > 0. (71)
n—oo
In this case, assuming that o, > 0, we can write
w(B,,(f, 8)) = / exp(ocnﬁwrn o + €, (oc,,))dv,,
Bp (5,6)

= CXP(tnOln(—§ —&) t e, (an))vn (Bn(§’ 8))»
whence it follows that

1 1
hmlnft—loga)(B (s, s)) > hmlnf(an( §s—e&)+ " —éy, (an)). (72)
n— o0 n n
If we know that ) 1
lim «, =6, liminf —eé,, (o) > et (73)
n— 00 n—oo f,

then o, > 0 for n large enough and inequality ( and relation immediately
imply the required result (69). Thus, we need to prove (7I) and (73).

Step 3: Proof of (73). Since «, € —J,, and §, — §, the first relation in (73)
will be established if we show that

liminfa, = 4. (74)

n—oQ
Suppose this is not the case. Then there is ¢ > 0 and a sequence n;y — 400
such that —1 < @,, <6 —¢&, where the first inequality follows from the fact that
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é;ﬂ () > 0 and é;n(—l) < 0. To simplify notation, we assume that the entire
sequence {o,} satisfies this inequality. It follows that

1 1 "
st <§= t—é;n (ap) < t—é;n 6 —e) for any n > 1. (75)
n n

Since %e,n () are convex functions converging to the smooth function e(a) for
o€ —f, by Theorem 25.7 in [26], we have

1 R
lim —é, () = &'(a) for any o € —J,
n—oot,
and the limit is uniform on any compact subset of —J. Comparing this with (73),
we see that sT < ¢é'(§ —¢). It follows that & is constant on the interval [§ — ¢, §]
and, hence, by analyticity and the first relation in (I6), the function e(cr) vanishes.
This contradicts the assumption that w;(c) > 0 and proves (74).

We now establish the second relation in (73). For any y € (0, 8), we have

An

ey, (an) = €, (y) +/ ey, (@) da > &, (y) + (o, — y)é;, (0),
v

where we used the facts that e’ is nondecreasing and that «, > y for sufficiently
large n > 1, in view of the first relation in (73). It follows that

liminflém () = E(y) + (5 — ¥)&(0).

n—-oo f

Passing to the limit as y — §, we obtain the required inequality.
Step 4: Proof of (/1). Let us introduce trace class operators

Q,=D"T,D'?  M,=1;'U-0,0,)""'Qu, n=1
Since o, € —J;,, the operator I —«, Q, is strictly positive and M, is well defined.

Suppose we have shown that

1 1
l)n(f()(n)): ,lL(f(Yn)), Xn - _tn zwtnlwv Yn - E(x’ Mnx)9 n = la

(76)
where f :R — R is an arbitrary bounded measurable function and p is the centered
Gaussian measure on X with the covariance operator /. In this case, taking f to
be the indicator function of the interval [J; ., we can write

va(Bn (3, 6)) = u(fx € X11Y,(x) — 5| < &}) =: pu(e) for any n > 1.
Thus, the required assertion will be established if we prove that

in{ pn(e) >0 for any ¢ > 0. 77
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To this end, let us assume that we have proved that
M :=sup | M, ||, < oo, tr(M,) = 25. (78)
n>1
We now use the following lemma, whose proof is given in the end of this
subsection (cf. Lemma 2 in [8, Section 3].)

LEMMA 4.2. Let u be the centered Gaussian measure on X with the covariance
operator 1. Then for any positive numbers k and € there is p(k,e) > 0 such that

u(fx € X |, Mx) — te(M)]| < &}) > plx. ) (79)
for any self-adjoint operator M € T satisfying the inequality |M|; < k.
In view of (78), we have
Y,(x) — 5§ = (x, %Mnx) — tr(%Mn).

Applying Lemma with « =29, we see that (77) holds. Thus, to complete the
proof of the theorem, it remains to establish and (78).

Step 5: Proof of the auxiliary assertions. Simple approximation and analyticity
arguments show that, to prove (76), is suffices to consider the case in which
f(x) =e"", where y € R is sufficiently small. Thus, we need to check that

v (eXp(=y 1, oy 1)) = p(e”'™). (80)

Recalling the construction of «, and using the relation e;(x) = —%log det(/ —a Q)

(see (46)), we write

v (exp(=y 1y, 1)) zf exp(—(vt, " + on)loy, 0 — &, (@) ) (dx)
x
~ _ ~ —1/2
= exp(e, (v, ' +an) — &, (a)) = det(I — y M,) 2,

This expression coincides with the right-hand side of (80).

Finally, to prove (78), we first note that the equality follows immediately from
the choice of «, and the relation ¢€)(a) = %tr((] — aQ,)_lQ,). To establish the
inequality, we start by using (39) and (63) to get the bound

" 1/2 1/2 M2
10l s/ ID'?¢_;D'?|1ds < —tullslh. (81)
0

Writing the spectral decomposition of the compact self-adjoint operator M,, we
easily show that
My =t"U+a,0,)7'Q,,
where AT and A~ stand the positive and negative parts of a self-adjoint operator A,
and we used that fact that o, > 0 for sufficiently large n (see (74)). Combining
this relation with (§I), we derive
2

- -1 ——1 - M
(M) =1, ' tr((] + @, Q;) Qn)S?“S'”l-
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Recalling the second relation in (78)), we conclude that
M2
Myll1 = te(IMy) = te(My, +2M,7) <2 (s + ?Hglh) .

The proof of Theorem is complete. O

Proof of Lemma We set Y(x) = (x, Mx) and note that u(Y) = tr(M).
Let us denote by {P;, I C R} the family of spectral projections for M and, given
a number 6 > 0, write M = M=% + M>?, where M= = M P,_p ). Accordingly, we
represent Y in the form

YO =Y @) +Y"), ¥ = (x, M¥x) — r(M=’).

Now note that the random variables Y=? and Y>? are independent under the law .
It follows that the probability P(M, ) given by the left-hand side of satisfies
the inequality

P(M,e) = u({lY™"] < /2, 1Y=| < ¢/2})
= u({IY=% < e/2)u({1Y="] < &/2}). (82)

We claim that both factors on the right-hand side of this inequality are separated
from zero. Indeed, to estimate the first factor, we note that

k= M|y = 6 rank(M*?), (83)

where rank(M>%) =: N, stands for the rank of M>?. Denoting by A; the eigenvalues
of M indexed in the nonincreasing order of their absolute values, we see that

Ny Ny
2 A0 =D =) Ixf =1l
j=1 j=1

where {x;} are the coordinates of x in the orthonormal basis formed of the
eigenvectors of M. Combining this with (83), we derive

Y= (x)| =

Ny e
(Y0 )l < e/2) = u{ >l i < Z}

No

> [ Treflx =11 < @eNo) e} = p(8)”,
j=1

where 8§ = £0/(2«?), and p(8) > 0 is the probability of the event |x?> —1| < § under
the one-dimensional standard normal law. To estimate the second factor in (82), we
use the Chebyshev inequality

p{lY= ) <e/2) =1 - u{r="() = e/2} — u{~Y="(x) = ¢/2}
> 1 — pu(exp(y Y= — ye/2)) + u(exp(—yY=! — ye/2)), (84)
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where y > 0 is sufficiently small and will be chosen later. We have
u(exp(yY=")) = exp{—ytur(M=") — logdet(1 — y M=)}
= exp{—1tr(2y M= +log(I — 2y M=*))}. (85)
Now note that if 4|y|60 < 1, then
(=2yM=")"

o0
2y M=% +log(I — 2y M=% =
y sl —2yM~) =} —

n=2
Recalling that [|[M=’|| <6 and [M=’|; <k and using the inequality |tr(AB)| <
|All1]B], it follows that

oo
|tr(2y M= +log(I — 2y M="))| < Y " 12y0]" "2|y |k < 8ky?0.
n=2

Substituting this into (83), we see that, if |y| < (40)~!, then ,u(exp(yY S(9)) <
exp(4/cy20). A similar estimate holds for p,(exp(—yYfe)). Combining these in-

equalities with (84) and choosing y = £, we derive

<6 2 &
p{lY=(x)] < e/2} =1 —2exp(4cy’0 — ye/2) = 1 — 2exp| — )
64k 6
The right-hand side of this inequality can be made greater than zero by choosing
a sufficiently small 6 > 0 which will depend only on « and e. (I

4.7. Proof of Theorem

The proof of this result is verty similar to that of Theorems [2.1 and 2.2] and
we shall only outline the proof.
Part (1) Follows from Holder’s inequality as in the proof of Proposition (2).
Part (2) Since 0 € J;", the fact that J,* is an interval follows immediately from the
following property: if a € J,, then fa € J;7 for € (0, 1). To prove the analyticity,
note that, by Eq. (#3), one has

—at _[(dett + DT))™"
e wt\wdw+ — © N
det(l —aD,T;) (D' —aTy)

This relation implies that the function
1
ery (o) = —% logdet(/ + D1 T,) — 5 logdet(I — aD,T;)

|
_ —%logdet(l + D'2T,DV?) — 5 log det(l «D*T,DY?)  (86)

is real analytic in o on the open interval defined by the condition / —ozDL/ 2T,D1+/ 50

and takes the value 400 on its complement (where the intersection of the spectrum



374 V. JAKSIC, C.-A. PILLET and A. SHIRIKYAN

of I —ole/ 2T,D1/ ? with the negative half-line is nonempty). The above inequality
coincides w1th the one defining J;".
Part (3) The fact that J© is an interval follows immediately from its definition. To
prove that J;" O (=8, §), note that, in view of Hypothesis for any f, € R
we have

I —aD{?’T,D)” = D> (D' — (D' = D')DY* > %

This expression is positive for |a| < 8.

To prove the existence of limit (28) and its analyticity on J*, we repeat the
argument used in the proof of Theorem [2.2] (2). Namely, let us introduce the family
of operators D;" (a) = (Djrl —aT,)~!, which are well defined for o € (—8,8). Then
the following analogue of relation (63)) is valid,

w(e o f)

w (e erlo)
The argument used in the derivation of (66) gives that

_et+(a) / / a)D+(y)(cr_”) dsdy,

while Hypothesis [(G2)[ and the relation er‘:DJre’ﬁ = D, valid for r € R imply that

")Dj(a)(f) = for feL'(X, da)DrJr(a)).

~1
—tsL —tsL* - -1 lyl
e "D (y)e ™ = (D (Dt(1 5 - D} ) =M (1 — 7)
Following again the argument in the proof of Theorem (2), for o € (—4,68) we
derive 1 @
er() = lim —e;y () = —f wp,_ (o) dy. (87)
t—o0 0 Y
Now note that D;_ y = 19D ©, whence it follows wp (a) wp,, wy (oo) = —wp, (o).

Substituting this into (87) and recalling (67), we see that
et (@) =/ wp, (o)dy =e(n) for o € (-4, 6). (88)
0

We have thus established the existence of limit (28) on the interval (—3§,8) C J +.
The fact that it exists for any o € J* and defines a real-analytic function can be
proved with the help of Vitali’s theorem (cf. proof of Part (2) of Theorem [2.2).
Finally, relation (29) is established by the same argument as ([24).

Parts (4-6) The proofs of the large deviation principle, central limit theorem,
and strong law of large numbers for the time average of the entropy production
functional under the limiting law w, are exactly the same as for w (see Parts (3-5)
of Theorem [2.1)), and therefore we will omit them.

Part (7) The fact that the functions e, («) and e(«) coincide on the intersection
JT N J follows from (88) and their analyticity. The equality of the corresponding
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rate functions on a small interval around w4 (o) is a straightforward consequence
of (88) and the definition of the Legendre transform. O

Acknowledgment

This research was partly supported by CNRS PICS Project RESSPDE, NSERC
(VJ.) and ANR (C.-A.P. and A.S.; grants 09-BLAN-0098 and 2011-BS01-015-
01). The work of C.-A.P. has been carried out in the framework of the Labex
Archimede (ANR-11-LABX-0033) and of the A*MIDEX project (ANR-11-IDEX-
0001-02), funded by the “Investissements d’Avenir” French Government program
managed by the French National Research Agency (ANR). C.-A.P. and A.S. also
acknowledge the hospitality and excellent working conditions at the Mathematics
Department of McGill University where part of this work was done. Another part
of this work was done during the visits of V.J. to the Erwin Schrodinger Institute
in Vienna and the Isaac Newton Institute in Cambridge. V.J. is grateful to these
institutions for their hospitality.

REFERENCES

[1] M. Baiesi, T. Jacobs, C. Maes and S. Skantzos: Fluctuation symmetries for work and heat, Phys. Rev. E
74 (2006), 021111.
[2] A. Baule and E. G. D. Cohen: Steady state work fluctuations of a dragged particle under external and
thermal noise, Phys. Rev. E 80 (2009), 011110.
[3] B. Bercu, F. Gamboa and M. Lavielle: Sharp large deviations for Gaussian quadratic forms with applications.
ESAIM Probab. Statist. 4 (2000), 1.
[4] B. Bercu, F. Gamboa and A. Rouault: Large deviations for quadratic forms of stationary Gaussian
processes, Stoch. Proc. Appl. 71 (1997), 75.
[5] P. Billingsley: Convergence of Probability Measures, Wiley, New York 1999.
[6] F. Bonetto, G. Gallavotti, A. Guiliani and F. Zamponi: Chaotic hypothesis, fluctuation theorem and
singularities, J. Stat. Phys. 123 (2006), 39.
[7]1 W. Bryc: A remark on the connection between the large deviation principle and the central limit theorem,
Stat. Prob. Lett. 18 (1993), 253.
[8] W. Bryc and A. Dembo: Large deviations for quadratic functionals of Gaussian processes, J. Theo-
ret. Probab. 10 (1997), 307.
[9] I P. Cornfeld, S. V. Fomin and Ya G. Sinai: Ergodic Theory, Springer, Berlin 1982.
[10] A. Dembo and O. Zeitouni: Large Deviations Techniques and Applications, Springer, New York, 1998.
[11] R. S. Ellis: Entropy, Large Deviations, and Statistical Mechanics, Springer, Berlin 1985. Reprinted in the
series Classics of Mathematics (2006).
[12] D. J. Evans, E. G. D. Cohen and G. P. Morriss: Probability of second law violation in shearing steady
flows, Phys. Rev. Lett. 71 (1993), 2401.
[13] D. J. Evans and D. J. Searles: Equilibrium microstates which generate second law violating steady states,
Phys. Rev. E 50 (1994), 1645.
[14] J. Farago: Injected power fluctuations in Langevin equations, J. Stat. Phys. 107 (2002), 781.
[15] G. Gallavotti and E. G. D. Cohen: Dynamical ensembles in nonequilibrium statistical mechanics,
Phys. Rev. Lett. 74 (1995), 2694.
[16] G. Gallavotti and E. G. D. Cohen: Dynamical ensembles in stationary states, J. Stat. Phys. 80 (1995),
931.
[17] 1. C. Gohberg and M. G. Krein: Introduction to the Theory of Linear Nonselfadjoint Operators, American
Mathematical Society, Providence, Rhode Island 1969.



376

[18]
[19]
[20]
[21]

[22]

[23]
[24]
[25]

[26]
[27]

[28]
[29]

[30]
[31]

[32]

V. JAKSIC, C.-A. PILLET and A. SHIRIKYAN

R. C. Gunning and H. Rossi: Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood
Cliffs, N.J. 1965.

R. J. Harris, A. Rdkos and G. M. Schiitz: Breakdown of Gallavotti-Cohen symmetry for stochastic
dynamics, Europhys. Lett. 75 (2006), 227.

E. Hille and R. S. Phillips: Functional Analysis and Semigroups, American Mathematical Society,
Providence, Rhode Island 1957.

V. Jaksi¢, B. Landon and C.-A. Pillet: Entropic fluctuations in XY chains and reflectionless Jacobi matrices,
Annales Henri Poincaré 14 (2013), 1775.

V. Jaksi¢, Y. Ogata, Y. Pautrat and C.-A. Pillet: Entropic fluctuations in quantum statistical mechanics—an
introduction, In Quantum Theory from Small to Large Scales, J. Frohlich, M. Salmhofer, V. Mastropietro,
W. De Roeck and L.F. Cugliandolo editors. Oxford University Press, Oxford 2012.

V. Jaksi¢, C.-A. Pillet and L. Rey-Bellet: Entropic fluctuations in statistical mechanics I. Classical dynamical
systems, Nonlinearity 24 (2011), 699.

V. Jaksi¢, C.-A. Pillet and A. Shirikyan: Entropic fluctuations in thermally driven harmonic networks, In
preparation (2016).

B. Landon: Stationary non-equilibrium states of infinite harmonic systems, Master’s thesis, McGill
University (2013).

R. T. Rockafellar: Convex Analysis. Princeton University Press, Princeton, N.J. 1997.

L. Rondoni and C. Mejia-Monasterio: Fluctuations in non-equlibrium statistical mechanics: models,
mathematical theory, physical mechanisms. Nonlinearity 20 (2007), 1.

W. Rudin: Real and Complex Analysis. McGraw-Hill, New York 1987.

B. Simon: Trace Ideals and their Applications, Second edition, Mathematical Surveys and Monograph,
120, American Mathematical Society, Providence, Rhode Island 2005.

R. van Zon and E. G. D. Cohen: An extension of the fluctuation theorem, Phys. Rev. Lett. 91 (2003),
110601.

P. Visco et all.: Fluctuations of power injection in randomly driven granular gases, J. Stat. Phys. 125
(2006), 533.

P. Visco: Work fluctuation for a Brownian particle between two thermostats, J. Stat. Mech. P06006 (2006).



	Introduction
	The model and results
	Gaussian dynamical systems
	Entropy production observable
	Nonequilibrium steady state
	Entropic fluctuations with respect to the reference state
	Entropic fluctuations with respect to the NESS
	Perturbations

	Examples
	A toy model
	The one-dimensional crystal

	Proofs
	An auxiliary lemma
	Proof of Proposition 2.1
	Proof of Proposition 2.2
	Proof of Proposition 2.3
	Proof of Theorem 2.1
	Proof of Theorem 2.2
	Proof of Theorem 2.3


