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Abstract

The paper is devoted to constructing a random exponential attractor
for some classes of stochastic PDE’s. We first prove the existence of an
exponential attractor for abstract random dynamical systems and study
its dependence on a parameter and then apply these results to a nonlin-
ear reaction-diffusion system with a random perturbation. We show, in
particular, that the attractors can be constructed in such a way that the
symmetric distance between the attractors for stochastic and determinis-
tic problems goes to zero with the amplitude of the random perturbation.
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1 Introduction

The theory of attractors for partial differential equations (PDE’s) has been
developed intensively since late seventies of the last century. It is by now
well known that many autonomous dissipative PDE possesses an attractor,
even if the Cauchy problem is not known to be well posed. Moreover, one
can establish explicit upper and lower bounds for the dimension of an attrac-
tor. A comprehensive presentation of the theory of attractors can be found
in [BV92, CV02, Tem88].

The situation becomes more complicated when dealing with non-autonomous
dissipative systems. In that case, there are at least two natural ways to extend
the concept of an attractor. The first one is based on the reduction of the
non-autonomous dynamical system (DS) in question to the autonomous one
and leads to the attractor which is independent of time and attracts the images
of bounded sets uniformly with respect to time shifts. It is usually called a
uniform attractor . A drawback of this approach is that the attractor is often
huge (infinite-dimensional), even in the case when the DS considered has trivial
dynamics, with a single exponentially stable trajectory; see [CV02] and the
references therein for details.

An alternative approach treats the attractor for a non-autonomous system
as a family of time-depending subsets obtained by the restriction of all bounded
trajectories to all possible times. In that case, the resulting object is usually
finite-dimensional (as in the autonomous case), but the attraction becomes non-
uniform with respect to time shifts. Moreover, as a rule, the attraction forward
in time is no longer true, and one has only the attraction property pullback in
time, so that objects are called pullback attractors (or kernel sections in the
terminology of Vishik and Chepyzhov); see the books [CV02, CLR13] and the
literature cited there.

The theory of attractors can also be extended to the case of random dy-
namical systems (RDS) mainly based on the concept of a pullback attractor.
Various results similar to the deterministic case were obtained for many RDS
generated by stochastic PDE’s, such as the Navier–Stokes system or reaction-
diffusion equations with random perturbations. The situation is even slightly
better here since, in contrast to general non-autonomous deterministic DS, in
the case of RDS one usually has forward attraction property in probability;
see [CF94, CDF97]. Moreover, if the random dynamics is Markovian and mix-
ing, then a minimal random attractor in probability can be described as the
support of the disintegration for the unique Markovian invariant measure of the
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extended DS corresponding to the problem in question; see [KS04].
However, there is an intrinsic drawback of the theory of attractors; namely,

the rate of attraction to the (global, uniform, pullback) attractor can be arbi-
trarily slow and there is no way, in general, to express or to estimate this rate
of convergence in terms of physical parameters of the system under study. As a
consequence, the attractor is also very sensitive to perturbations which makes
it, in a sense, unobservable in experiments and numerical simulations.

This drawback can be overcome using the concept of an inertial manifold
(IM) instead. This is an invariant finite-dimensional manifold of the phase space
which contains the attractor and possesses the so-called exponential tracking
property (i.e., every trajectory of the considered DS is attracted exponentially
to a trajectory on the manifold). The rate of attraction can be estimated in
terms of physical parameters, and the manifold itself is robust with respect
to perturbations; see [FST88, Tem88] and references therein. Moreover, the
construction can be extended to the case of non-autonomous and random DS
and the resulting inertial manifold resolves also the problem with the lack of
forward attraction: under some natural assumptions, the rate of exponential
attraction to the non-autonomous/random inertial manifold is uniform with
respect to time shifts; see [CG97, BF95, CG95, CS01, CSS05] and the literature
cited there.

Unfortunately, being a kind of center manifold, an IM requires a separation
of the phase space to “fast” and “slow” variables. This leads, in turn, to very
restrictive spectral gap conditions which are violated for many interesting appli-
cations, including the 2D Navier–Stokes system, reaction-diffusion equations in
higher dimensions, damped wave equations, etc. In addition, when a stochastic
dissipative PDE is considered, e.g., with an additive white noise, to guaran-
tee the existence of the IM, one should impose an additional condition that all
nonlinear terms are globally Lipschitz continuous.

To overcome these restrictive assumptions, an intermediate (between the IM
and attractors) object, so-called exponential attractor (or inertial set), was in-
troduced in [EFNT94] for the case of autonomous DS. This is a semi-invariant
finite-dimensional set (but not necessarily a manifold) which contains the at-
tractor and possesses the exponential attraction property, like an IM. Moreover,
the rate of attraction is controlled, which leads to some stability under pertur-
bations. The initial construction of an exponential attractor given in [EFNT94]
was restricted to the case of Hilbert phase spaces only and involved the Zorn
lemma. A relatively simple and effective explicit construction of this object
was suggested later in [EMZ00], and as believed nowadays, the exponential at-
tractors are almost as general as the usual ones and no restrictive or artificial
assumptions are required for their existence; see the survey [MZ08] and the
references therein.

An extension of the theory of exponential attractors theory to the case of
non-autonomous DS (including the robustness) was given in [EMZ05] (see also
[Mir98, EMZ03] for the so-called uniform exponential attractors and [LMR10]
for a slight extension of the result of [EMZ05]). As shown there, a non-autono-
mous exponential attractor remains finite-dimensional as a pullback attractor,
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but attracts the images of bounded sets uniformly with respect to time shifts as
a uniform attractor. Thus, like an IM, a non-autonomous exponential attractor
contains the pullback one and possesses the forward attraction property, but in
contrast to the IM, no restrictive spectral gap assumptions are required.

The aim of the present paper is to extend the theory of exponential attractors
to the case of dissipative RDS. Although the theory of random attractors is often
similar to the non-autonomous deterministic one and our study is also strongly
based on the construction given in [EMZ00, EMZ05], there is a fundamental
difference between the two cases. Namely, in contrast to the deterministic case
considered in [EMZ05], a typical trajectory of an RDS is unbounded in time.
For instance, this is the case for a dissipative stochastic PDE with an additive
white noise. Thus, if we do not impose the restrictive assumption on the global
Lipschitz continuity of all nonlinear terms, then all the constants in appropriate
squeezing/smoothing properties (which play a key role in the construction of
an exponential attractor) will depend on time (in other words, will be random),
and a straightforward extension does not work. However, some time averages
of these quantities can be controlled, and this turns out to be sufficient for
constructing an exponential attractor.

As an application of the theory developed in the paper, the following problem
in a bounded domain D ⊂ Rn with a smooth boundary ∂D will be considered:

u̇− a∆u+ f(u) = h(x) + η(t, x), (1.1)

u
∣∣
∂D

= 0, (1.2)

u(0, x) = u0(x). (1.3)

Here u = (u1, . . . , uk)t is an unknown vector function, a is a k × k matrix such
that a + at > 0, f ∈ C2(Rk,Rk) is a function satisfying some natural growth
and dissipativity conditions, h(x) is a deterministic external force acting on
the system, and η is a random process, white in time and regular in the space
variables; see Section 2.2 for the exact hypotheses imposed on f and η. The
Cauchy problem (1.1)–(1.3) is well posed in the space H := L2(D,Rk), and
we denote by Φ = {ϕt : H → H, t ≥ 0} the corresponding RDS defined on a
probability space (Ω,F ,P) with a group of shift operators {θt : Ω → Ω, t ∈ R}
(see Section 2.2). We have the following result on the existence of an exponential
attractor for Φ.

Theorem A. There is a random compact set Mω ⊂ H and an event Ω∗ ⊂ Ω
of full measure such that the following properties hold for ω ∈ Ω∗.

Semi-invariance. ϕωt (Mω) ⊂Mθtω for all t ≥ 0.

Exponential attraction. There is β > 0 such that for any ball B ⊂ H we have

sup
u∈B

inf
v∈Mθtω

‖ϕωt (u)− v‖ ≤ C(B)e−βt, t ≥ 0,

where C(B) is a constant depending only on B.

Finite-dimensionality. There is a number d > 0 such that dimf (Mω) ≤ d,
where dimf stands for the fractal dimension of Mω.
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Let us now assume that the random force η in Eq. (1.1) is replaced by εη,
where ε ∈ [−1, 1] is a parameter. We denote by Mε

ω the corresponding ex-
ponential attractors. Since in the limit case ε = 0 the equation is no longer
stochastic, the corresponding attractor M = M0 is also independent of ω. A
natural question is whether one can constructMε

ω in such a way that the sym-
metric distance between the attractors of stochastic and deterministic equations
goes to zero as ε → 0. The following theorem gives a positive answer to that
question.

Theorem B. The exponential attractors Mε
ω, ε ∈ [−1, 1], can be constructed

in such a way that

ds(Mε
ω,M)→ 0 almost surely as ε→ 0,

where ds stands for the symmetric distance between two subsets of H.

We refer the reader to Section 4 for more precise statements of the results
on the existence of exponential attractors and their dependence on a parameter.
Let us note that various results similar to Theorem B were established earlier in
the case of deterministic PDE’s; e.g., see the papers [FGMZ04, EMZ05], the first
of which is devoted to studying the behaviour of exponential attractors under
singular perturbations, while the second deals with non-autonomous dynamical
systems and proves Hölder continuous dependence of the exponential attractor
on a parameter.

We emphasize that the convergence in Theorem B differs from the one in
the case of global attractors, for which, in general, only lower semicontinuity
can be established. For instance, let us consider the following one-dimensional
ODE perturbed by the time derivative of a standard Brownian motion w:

u̇ = u− u3 + εẇ. (1.4)

When ε = 0, the global attractor A for (1.4) is the interval [−1, 1] and is regular
in the sense that it consists of the stationary points and the unstable manifolds
around them. It is well known that the regular structure of an attractor is very
robust and survives rather general deterministic perturbations, and in many
cases it is possible to prove that the symmetric distance between the attractors
for the perturbed and unperturbed systems goes to zero; see [BV92, CVZ12]. On
the other hand, it is proved in [CF98] that the random attractor Aεω for (1.4)
consists of a single trajectory and, hence, the symmetric distance between A
and Aεω does not go to zero as ε→ 0 (see also [CS04] for the analogous results
for order preserving stochastic PDEs).

In conclusion, let us mention that some results similar to those described
above hold for other stochastic PDE’s, including the 2D Navier–Stokes system.
They will be considered in a subsequent publication.

The paper is organised as follows. In Section 2, we present some preliminaries
on random dynamical systems and a reaction-diffusion equation perturbed by
a spatially regular white noise. Section 3 is devoted to some general results on
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the existence of exponential attractors and their dependence on a parameter.
In Section 4, we apply our abstract construction to the stochastic reaction-
diffusion system (1.1)–(1.3). Appendix gathers some results on coverings of
random compact sets and their image under random mappings, as well as the
time-regularity of stochastic processes.

Acknowledgements. We thank the anonymous referees for pertinent crit-
ical remarks which helped to improve the presentation and to remove some
inaccuracies. This work was supported by the Royal Society–CNRS grant
Long time behavior of solutions for stochastic Navier–Stokes equations (No. YF-
DRN93583). The first author was supported by the ANR grant STOSYMAP
(ANR 2011 BS01 015 01).

Notation

Let J ⊂ R be an interval, let D ⊂ Rn be a bounded domain with smooth
boundary ∂D, and let X be a Banach space. Given a compact set K ⊂ X,
we denote by Hε(K, X) and dimf (K) its Kolmogorov ε-entropy and fractal di-
mension, respectively; see Chapter 10 in [Lor86] and Chapter V in [Tem88] for
details. Recall that

Hε(K, X) = lnNε(K), dimf (K) = lim sup
ε→0+

lnNε(K)

ln ε−1
,

where Nε(K) denotes the minimal number of closed balls of radius ε needed
to cover K. If Y is another Banach space with compact embedding Y b X,
then we write Hε(Y,X) for the ε-entropy of a unit ball in Y considered as a
subset in X. We denote by ḂX(v, r) and BX(v, r) the open and closed balls
in X of radius r centred at v and by Or(A) the closed r-neighbourhood of a
subset A ⊂ X. The closure of A in X is denoted by [A]X . Given any set C, we
write #C for the number of its elements.

We shall use the following function spaces:

Lp = Lp(D) denotes the usual Lebesgue space in D endowed with the standard
norm ‖ · ‖Lp . In the case p = 2, we omit the subscript from the notation of the
norm. We shall write Lp(D,Rk) if we need to emphasise the range of functions.

W s,p = W s,p(D) stands for the standard Sobolev space with a norm ‖ · ‖s,p. In
the case p = 2, we write Hs = Hs(D) and ‖ · ‖s, respectively. We denote by
Hs

0 = Hs
0(D) the closure in Hs of the space of infinitely smooth functions with

compact support.

C(J,X) stands for the space of continuous functions f : J → X.

When describing a property involving a random parameter ω, we shall as-
sume that it holds almost surely, unless specified otherwise. Furthermore, when
dealing with a property depending on ω and an additional parameter y ∈ Y , we
say that it holds almost surely for y ∈ Y if there is a set of full measure Ω∗ ⊂ Ω
such that the property is true for ω ∈ Ω∗ and y ∈ Y .
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Given a random function fω : D → X, we shall say that it is (almost surely)
Hölder-continuous if there is γ ∈ (0, 1) such that, for any bounded ball B ⊂ Rn,
we have

‖fω(t1)− fω(t2)‖X ≤ Cω|t1 − t2|γ , t1, t2 ∈ B,

where Cω = Cω(B) is an almost surely finite random variable. If f depends
on an additional parameter y ∈ Y (that is, f = fyω(t)), then we say that f is
Hölder-continuous uniformly in y if the above inequality holds for fyω(t) with a
random constant Cω(B) not depending on y.

We denote by ci and Ci unessential positive constants not depending on
other parameters.

2 Preliminaries

2.1 Random dynamical systems and their attractors

Let (Ω,F ,P) be a probability space, {θt, t ∈ R} be a group of measure-preserving
transformations of Ω, and X be a separable Banach space. Recall that a con-
tinuous random dynamical system in X over {θt} (or simply an RDS in X) is
defined as a family of continuous mappings Φ = {ϕωt : X → X, t ≥ 0} that
satisfy the following conditions:

Measurability. The mapping (t, ω, u) 7→ ϕωt (u) from R+ × Ω × X to X is
measurable with respect to the σ-algebras BR+

⊗F ⊗ BX and BX .

Perfect co-cycle property. For almost every ω ∈ Ω, we have the identity

ϕωt+s = ϕθsωt ◦ ϕωs , t, s ≥ 0. (2.1)

Time regularity. For almost every ω ∈ Ω, the function (t, τ) 7→ ϕθτωt (u),
defined on R+×R with range in X, is Hölder-continuous with some deter-
ministic exponent γ > 0, uniformly with respect to u ∈ K for any compact
subsets K ⊂ X.

Let us note that the third property of the above definition is stronger than
the usual hypothesis on time-continuity of trajectories (e.g., see Section 1.1
in [Arn98]). This extra regularity will be important when estimating the fractal
dimension of the exponential attractor; see Section 3.3. An example of RDS
is given in the next subsection, which is devoted to some preliminaries on a
reaction-diffusion system with a random perturbation.

Large-time asymptotics of trajectories for RDS is often described in terms of
attractors. This paper deals with random exponential attractors, and we now
define some basic concepts.

Recall that the distance between a point u ∈ X and a subset F ⊂ X is given
by d(u, F ) = infv∈F ‖u − v‖. The Hausdorff and symmetric distances between
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two subsets is defined by

d(F1, F2) = sup
u∈F1

d(u, F2),

ds(F1, F2) = max
{
d(F1, F2), d(F2, F1)

}
.

We shall write dX and dsX to emphasise that the distance is taken in the metric
of X. Let {Mω, ω ∈ Ω} be a random compact set in X, that is, a family of
compact subsets such that the mapping ω 7→ d(u,Mω) is measurable for any
u ∈ X.

Definition 2.1. A random compact set {Mω} is called a random exponential
attractor for the RDS {ϕt} if there is a set of full measure Ω∗ ∈ F such that
the following properties hold for ω ∈ Ω∗.

Semi-invariance. For any t ≥ 0, we have ϕωt (Mω) ⊂Mθtω.

Exponential attraction. There is a constant β > 0 such that

d
(
ϕωt (B),Mθtω

)
≤ C(B)e−βt for t ≥ 0, (2.2)

where B ⊂ H is an arbitrary ball and C(B) is a constant that depends
only on B.

Finite-dimensionality. There is random variable dω ≥ 0 which is finite on Ω∗
such that

dimf

(
Mω

)
≤ dω. (2.3)

Time continuity. The function t 7→ ds
(
Mθtω,Mω

)
is Hölder-continuous on R

with some exponent δ > 0.

We shall also need the concept of a random absorbing set . Recall that a
random compact set Aω is said to be absorbing for Φ if for any ball B ⊂ X
there is T (B) ≥ 0 such that

ϕωt (B) ⊂ Aθtω for t ≥ T (B), ω ∈ Ω. (2.4)

All the above definitions make sense also in the case of discrete time, that is,
when the time variable varies on the integer lattice Z. The only difference is
that the property of time continuity should be skipped for discrete-time RDS
and their attractors. In what follows, we shall deal with both situations.

2.2 Reaction-diffusion system perturbed by white noise

Let D ⊂ Rn be a bounded domain with a smooth boundary ∂D. We consider the
reaction-diffusion system (1.1), (1.2), in which u = (u1, . . . , uk)t is an unknown
vector function and a is a k × k matrix such that

a+ at > 0. (2.5)
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We assume that f ∈ C2(Rk,Rk) satisfies the following growth and dissipativity
conditions:

〈f(u), u〉 ≥ −C + c|u|p+1, (2.6)

f ′(u) + f ′(u)t ≥ −CI, (2.7)

|f ′(u)| ≤ C(1 + |u|)p−1, (2.8)

where 〈·, ·〉 stands for the scalar product in Rk, f ′(u) is the Jacobi matrix for f ,
I is the identity matrix, c and C are positive constants, and 0 ≤ p ≤ n+2

n−2 . As

for the right-hand side of (1.1), we assume h ∈ L2(D,Rk) is a deterministic
function and η is a spatially regular white noise. That is,

η(t, x) =
∂

∂t
ζ(t, x), ζ(t, x) =

∞∑
j=1

bjβj(t)ej(x), (2.9)

where {βj(t), t ∈ R} is a sequence of independent two-sided Brownian mo-
tions defined on a probability space (Ω,F ,P), {ej} is an orthonormal basis
in L2(D,Rk) formed of the eigenfunctions of the Dirichlet Laplacian, and bj are
real numbers satisfying the condition

B :=

∞∑
j=1

b2j <∞. (2.10)

In what follows, we shall assume that (Ω,F ,P) is the canonical space; that is,
Ω is the space of continuous functions ω : R → H vanishing at zero, P is the
law of ζ (see (2.9)), and F is the P-completion of the Borel σ-algebra. In this
case, the process ζ can be written in the form ζω(t) = ω(t), and a group of
shifts θt acts on Ω by the formula (θtω)(s) = ω(t + s) − ω(t). Furthermore, it
is well known (e.g., see Chapter VII in [Str93]) the restriction of {θt, t ∈ R} to
any lattice TZ is ergodic.

Let us denote H = L2(D,Rk) and V = H1
0 (D,Rk). The following result

on the well-posedness of problem (1.1)–(1.3) can be established by standard
methods used in the theory of stochastic PDE’s (e.g., see [DZ92, Fla94]).

Theorem 2.2. Under the above hypotheses, for any u0 ∈ H there is a stochas-
tic process {u(t), t ≥ 0} that is adapted to the filtration generated by ζ(t) and
possesses the following properties:

Regularity: Almost every trajectory of u(t) belongs to the space

X = C(R+, H) ∩ L2
loc(R+, V ) ∩ Lp+1

loc (R+ ×D).

Solution: With probability 1, we have the relation

u(t) = u0 +

∫ t

0

(
a∆u− f(u) + h

)
ds+ ζ(t), t ≥ 0,

where the equality holds in the space H−1(D).
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Moreover, the process u(t) is unique in the sense that if v(t) is another process
with the same properties, then with probability 1 we have u(t) = v(t) for all t ≥ 0.

The family of solutions for (1.1), (1.2) constructed in Theorem 2.2 form an
RDS in the space H. Let us describe in more detail a set of full measure on
which the perfect co-cycle property and the Hölder-continuity in time are true.

Let us denote by z = zω(t) the solution of the linear equation

ż − a∆z = h+ η(t), (2.11)

supplemented with the zero initial and boundary conditions. Such a solution
exists and belongs to the space Y := C(R+, H)∩L2

loc(R+, V ) with probability 1.
Moreover, one can find a set Ω∗ ∈ F of full measure such that θt(Ω∗) = Ω∗ for
all t ∈ R and zω ∈ Y for ω ∈ Ω∗. We now write a solution of (1.1)–(1.3) in the
form u = z + v and note that v must satisfy the equation

v̇ − a∆v + f(z + v) = 0. (2.12)

For any ω ∈ Ω∗ and u0 ∈ H, this equation has a unique solution v ∈ X issued
from u0. The RDS associated with (1.1)–(1.2) can be written as

ϕωt (u0) =

{
zω(t) + vω(t) for ω ∈ Ω∗,

0 for ω /∈ Ω∗.

Then Φ = {ϕt, t ≥ 0} is an RDS in the sense defined in the beginning of
Section 2.1, and the time continuity and perfect co-cycle properties hold on Ω∗.

3 Abstract results on exponential attractors

3.1 Exponential attractor for discrete-time RDS

Let H be a Hilbert space and let Ψ = {ψωk , k ∈ Z+} be a discrete-time RDS in H
over a group of measure-preserving transformations {σk} acting on a probability
space (Ω,F ,P). We shall assume that Ψ satisfies the following condition.

Condition 3.1. There is a Hilbert space V compactly embedded in H, a ran-
dom compact set {Aω}, and constants m, r > 0 such that the properties below
are satisfied.

Absorption. The family {Aω} is a random absorbing set for Ψ .

Stability. With probability 1, we have

ψω1
(
Or(Aω)

)
⊂ Aσ1ω. (3.1)

Lipschitz continuity. There is an almost surely finite random variable Kω ≥ 1
such that Km ∈ L1(Ω,P) and

‖ψω1 (u1)− ψω1 (u2)‖V ≤ Kω‖u1 − u2‖H for u1, u2 ∈ Or(Aω). (3.2)
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Kolmogorov ε-entropy. There is a constant C and an almost surely finite random
variable Cω such that CωK

m
ω ∈ L1(Ω,P),

Hε(V,H) ≤ C ε−m, (3.3)

Hε(Aω, H) ≤ Cωε−m. (3.4)

The following theorem is an analogue for RDS of a well-known result on the
existence of an exponential attractor for deterministic dynamical systems; e.g.,
see Section 3 of the paper [MZ08] and the references therein.

Theorem 3.2. Assume that the discrete-time RDS Ψ satisfies Condition 3.1.
Then Ψ possesses an exponential attractor Mω. Moreover, the attraction prop-
erty holds for the norm of V :

dV
(
ψωk (B),Mσkω

)
≤ C(B)e−βk for k ≥ 0, (3.5)

where B ⊂ H is an arbitrary ball and C(B) and β > 0 are some constants not
depending on k.

The proof given below will imply that (3.5) holds for B = Aω with C(B) = r,
and that in inequality (3.5) the constant in front of e−βk has the form

C(B) = 2T (B)r, (3.6)

where T (B) is a time after which the image of the ball B under the mapping ψωk
belongs to the absorbing set Aσtω. Furthermore, as is explained in Remark 3.4
below, under an additional assumption, the fractal dimension dimf (Mω) can
be bounded by a deterministic constant.

Proof. We repeat the scheme used in the case of deterministic dynamical sys-
tems. However, an essential difference is that we have a random parameter and
need to follow the dependence on it. In addition, the constants entering various
inequalities are now (unbounded) random variables, and we shall need to apply
the Birkhoff ergodic theorem to bound some key quantities.

Step 1: An auxiliary construction. Let us define a sequence of random finite
sets Vk(ω) in the following way. Applying Lemma 5.1 with δω = (2Kω)−1r to
the random compact set Aω, we construct a random finite set U0(ω) such that

ds
(
Aω, U0(ω)

)
≤ δω, (3.7)

ln
(
#U0(ω)

)
≤ 2mCωδ

−m
ω ≤ (4/r)mCωK

m
ω . (3.8)

Since Kω ≥ 1, we have δω ≤ r/2, whence it follows that U0(ω) ⊂ Or(Aω).
Setting V1(σ1ω) = ψω1 (U0(ω)), in view of (3.1), (3.2), and (3.7), we obtain

ψω1 (Aω) ⊂
⋃

u∈V1(σ1ω)

BV (u, r/2) =: C1(ω), V1(σ1ω) ⊂ Or/2
(
ψω1 (Aω)

)
∩ Aσ1ω.

11



Now note that C1(ω) is a random compact set in H. Moreover, it follows
from (3.3) and (3.8) that

Hε(C1(ω), H) ≤ ln
(
#V1(σ1ω)

)
+H2ε/r(V,H)

≤ (4/r)mCωK
m
ω + (r/2)mCε−m. (3.9)

Applying Lemma 5.1 with δω = (4Kσ1ω)−1r to C1(ω), we construct a random
finite set U1(ω) such that

ds
(
C1(ω), U1(ω)

)
≤ δω,

ln
(
#U1(ω)

)
≤ Hδω/2(C1(ω), H) ≤ (4/r)mCωK

m
ω + 2mCKm

σ1ω.

Repeating the above argument and setting V2(σ2ω) = ψσ1ω
1 (U1(ω)), we obtain

ψσ1ω
1

(
C1(ω)

)
⊂

⋃
u∈V2(σ2ω)

BV (u, r/4) =: C2(ω),

V2(σ2ω) ⊂ Or/4
(
ψσ1ω
1 (C1(ω)

)
∩ Aσ2ω.

Moreover, C2(ω) is a random compact set H whose ε-entropy satisfies the in-
equality (cf. (3.9))

Hε(C2(ω), H) ≤ ln
(
#V2(σ2ω)

)
+H4ε/r(V,H)

≤ (4/r)mCωK
m
ω + 2mCKm

σ1ω + (r/4)mCε−m.

Iterating this procedure and recalling that σk : Ω→ Ω is a one-to-one transfor-
mation, we construct random finite sets Vk(ω), k ≥ 1, and unions of balls

Ck(ω) :=
⋃

u∈Vk(σkω)

BV (u, 2−kr)

such that the following properties hold for any integer k ≥ 1:

ψωk (Aω) ⊂ Ck(ω), (3.10)

Vk(ω) ⊂ O21−kr

(
ψ
σ−1ω
1 (Ck−1(σ−kω))

)
∩ Aω, (3.11)

ln
(
#Vk(ω)

)
≤ (4/r)mCσ−kωK

m
σ−kω

+ 2mC

k−1∑
j=1

Km
σj−kω

. (3.12)

Step 2: Description of an attractor. Let us define a sequence of random
finite sets by the rule

E1(ω) = V1(ω), Ek(ω) = Vk(ω) ∪ ψσ−1ω
1

(
Ek−1(σ−1ω)

)
, k ≥ 2.

The very definition of Ek implies that

ψω1 (Ek(ω)) ⊂ Ek+1(σ1ω). (3.13)

12



and since #Vk(ω) ≤ #Vk+1(σ1ω), it follows from (3.12) that

ln
(
#Ek(ω)

)
≤ ln k + ln

(
#Vk(ω)

)
≤ ln k + (4/r)mCσ−kωK

m
σ−kω

+ 2mC

k−1∑
j=1

Km
σj−kω

. (3.14)

Furthermore, it follows from (3.10) that

dV
(
ψωk (Aω), Vk(σkω)

)
≤ 2−kr, k ≥ 0. (3.15)

We now define a random compact set Mω by the formulas

Mω =
[
M′ω

]
V
, M′ω =

∞⋃
k=1

Ek(ω). (3.16)

We claim that Mω is a random exponential attractor for Ψ . Indeed, the semi-
invariance follows immediately from (3.13). Furthermore, inequality (3.15) im-
plies that

dV
(
ψωk (Aω),Mσkω

)
≤ 2−kr for any k ≥ 0.

Recalling that Aω is an absorbing set and using inclusion (2.4), together with
the co-cycle property, we obtain

dV
(
ψωk (B),Mσkω

)
≤ dV

(
ψσTωk−T (AσTω),Mσk−T (σTω)

)
≤ 2T−kr,

where T = T (B) is the constant entering (2.4). This implies the exponential
attraction inequality (3.5) with β = ln 2 and C(B) = 2T (B)r. It remains to
prove that Mω has a finite fractal dimension. This is done in the next step.

Step 3: Estimation of the fractal dimension. We shall need the following
lemma, whose proof is given at the end of this subsection.

Lemma 3.3. Under the hypotheses of Theorem 3.2, for any integers l ≥ 0,
k ∈ Z, and m ∈ [0, l], we have

dV
(
Ek(σkω), ψσk−mωm (Aσk−mω)

)
≤ 22−(k−l)r

l∏
j=1

Kσk−jω. (3.17)

Inequality (3.17) with m = l and ω replaced by σ−kω implies that

dV
(
Ek(ω), ψ

σ−lω
l (Aσ−lω)

)
≤ 22−(k−l)r

l∏
j=1

Kσ−jω, (3.18)

where k ≥ 1 is arbitrary. On the other hand, in view of (3.15) with k = l and
ω replaced by σ−lω, we have

dV
(
ψ
σ−lω
l (Aσ−lω), Vl(ω)

)
≤ 2−lr.

13



Combining this with (3.18), we obtain

dV

( ⋃
k≥n

Ek(ω), Vl(ω)

)
≤ r
(

2−l + 22−(n−l)
l∏

j=1

Kσ−jω

)
, (3.19)

where n ≥ 1 and l ∈ [1, n] are arbitrary integers. Since {Ek(ω)} is an increasing
sequence and Vl(ω) ⊂ El(ω) ⊂Mω for any l ≥ 1, inequality (3.19) implies that

dsV

(
Mω,

n⋃
l=1

Vl(ω)

)
≤ r inf

l∈[1,n]

(
2−l + 22−(n−l)

l∏
j=1

Kσ−jω

)
=: εn(ω), (3.20)

where n ≥ 1 is arbitrary. If we denote by Nε(ω) the minimal number of balls of
radius ε > 0 that are needed to cover Mω, then inequality (3.20) implies that
Nεn(ω)(ω) ≤

∑n
k=1 #Vk(ω). Since Vk ⊂ Ek and #Vk(ω) ≥ #Vk−1(σ−1ω), it

follows from (3.12) that

lnNεn(ω)(ω) ≤ ln
(
n#En(ω)

)
≤ ln

(
n2 #Vn(ω)

)
≤ 2 lnn+ (4/r)mCσ−nωK

m
σ−nω + 2mC

n−1∑
k=1

Km
σ−kω

. (3.21)

SinceKm ∈ L1(Ω,P), by the Birkhoff ergodic theorem (see Section 1.6 in [Wal82]),
we have

lim
n→∞

1

n

n∑
k=1

Km
σ−kω

= ξω, (3.22)

where ξω is an integrable random variable. This implies, in particular, that
n−1Km

σ−nω → 0 as n → ∞. By a similar argument, n−1Cσ−nωK
m
σ−nω → 0 as

n→∞. Combining this with (3.22) and (3.21), we derive

lnNεn(ω)(ω) ≤ 2mCξωn+ oω(n), (3.23)

where, given α ∈ R, we denote by oω(nα) any sequences of positive random
variables such that n−αoω(nα) → 0 a. s. as n → ∞. On the other hand, since
the function log2 x is concave, it follows from (3.22) that

m

l

l∑
j=1

log2Kσ−jω ≤ log2

(1

l

l∑
j=1

Km
σ−jω

)
= log2

(
ξω + oω(1)

)
, (3.24)

whence we conclude that the random variable εn defined in (3.20) satisfies the
inequality

εn(ω) ≤ r inf
l∈[1,n]

(
2−l + 4 · 2−(n−l)(ξω + oω(1))l/m

)
.

Taking l = mn
(
2m+ log2(ξω + oω(1))

)−1
, we obtain

εn(ω) ≤ 5 exp
(
− mn ln 2

2m+ log2(ξω + oω(1))

)
. (3.25)

14



Combining this inequality with (3.23), we derive

lim
n→∞

lnNεn(ω)(ω)

ln ε−1n (ω)
≤ 2mCξω(ln ξω + 2m)

m ln 2
=: dω.

It is now straightforward to see

dimf (Mω) = lim sup
ε→0+

lnNε
ln ε−1

≤ dω. (3.26)

The proof of the theorem is complete.

Remark 3.4. It follows from (3.26) that if the random variable ξω entering the
Birkhoff theorem is bounded (see (3.22)), then the fractal dimension of Mω

can be bounded by a deterministic constant. For instance, if the group of shift
operators {σk} is ergodic, then ξω is constant, and the conclusion holds. This
observation will be important in applications of Theorem 3.2.

Proof of Lemma 3.3. The co-cycle property (2.1) and inclusion (3.1) imply that
ψ
σk−mω
m (Aσk−mω) ⊃ ψ

σk−lω
l (Aσk−lω) for m ≤ l. Hence, it suffices to estab-

lish (3.17) for m = l.
We first note that inequality (3.2), inclusion (3.11), and the definition of Ck(ω)

imply that 1

dV
(
Vn(ω), ψ

σ−1ω
1 (Vn−1(σ−1ω)

)
≤ 22−nrKσ−1ω,

where n ≥ 1 is an arbitrary integer, and we set V0(ω) = U0(ω). Combining this
with (3.2) and the co-cycle property, for any integers n ≥ 1 and q ≥ 0 we derive

dV
(
ψωq (Vn(ω)), ψ

σ−1ω
q+1 (Vn−1(σ−1ω)

)
≤ 22−nr

q∏
j=0

Kσj−1ω. (3.27)

Applying (3.27) to the pairs (n, q) = (k − i, i), i = 0, . . . , l − 1, with ω replaced
by σk−iω, using the triangle inequality, and recalling that Kω ≥ 1, we obtain

dV
(
Vk(σkω), ψ

σk−lω
l (Vk−l(σk−lω))

)
≤ r

l−1∑
i=0

22−k+i
i∏

j=0

Kσk−i+j−1ω

≤ 22−(k−l)r

l∏
j=1

Kσk−jω ,

where k ≥ 1 and p ∈ [1, k] are arbitrary integers. A similar argument based on
the application of (3.27) to the pairs (n, q) = (k−s− i, s+ i), i = 0, . . . , l−s−1,

1In the case n = 1, the left-hand side of this inequality is zero.
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with ω replaced by σk−sω, enables one to prove that for any integer n ∈ [1, k]
we have

dV
(
ψσk−sωs (Vk−s(σk−sω)), ψ

σk−lω
l (Vk−l(σk−lω))

)
≤ 22−(k−l)r

l∏
j=1

Kσk−jω ,

(3.28)
where s ∈ [0, l − 1] is an arbitrary integer. Recalling that Vn(ω) ⊂ Aω for any
n ≥ 1 (see (3.11)), we deduce from (3.28) that

dV
(
ψσk−sωs (Vk−s(σk−sω)), ψ

σk−lω
l (Aσk−lω)

)
≤ 22−(k−l)r

l∏
j=1

Kσk−jω (3.29)

for any integer s ∈ [0, k − 1]. Since

Ek(σkω) =

k−1⋃
s=0

ψσk−sωs (Vk−s(σk−sω)),

inequality (3.29) immediately implies (3.17) with m = l.

3.2 Dependence of attractors on a parameter

We now turn to the case in which the RDS in question depends on a parameter.
Namely, let Y ⊂ R and T ⊂ R be bounded closed intervals. We consider a
discrete-time RDS Ψy = {ψy,ωk : H → H, k ≥ 0} depending on the parameter
y ∈ Y and a family2 of measurable isomorphisms {θτ : Ω → Ω, τ ∈ T }. We
assume that θτ commutes with σ1 for any τ ∈ T , and the following uniform
version of Condition 3.1 is satisfied.

Condition 3.5. There is a Hilbert space V compactly embedded in H, almost
surely finite random variables Ryω, Rω ≥ 0, and positive constants m, r, and
α ≤ 1 such that Ryω ≤ Rω for all y ∈ Y , and the following properties hold.

Absorption and continuity. For any ball B ⊂ H there is a time T (B) ≥ 0 such
that

ψy,θτωk (B) ⊂ Ayω for k ≥ T (B), y ∈ Y , τ ∈ T , ω ∈ Ω, (3.30)

where we set Ayω = BV (Ryω). Moreover, there is an integrable random
variable Lω ≥ 1 such that

|Ry1θτ1ω −R
y2
θτ2ω
| ≤ Lω

(
|y1 − y2|α + |τ1 − τ2|α

)
(3.31)

for y1, y2 ∈ Y , τ1, τ2 ∈ T , and ω ∈ Ω.

2This family of isomorphisms is needed to describe the regularity of dependence of random
objects on ω. In the next subsection, when dealing with continuous-time RDS, we shall take
for θτ the underlying group of measure-preserving transformations.
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Stability. With probability 1, we have

ψy,ω1

(
Or(Ayω)

)
⊂ Ayσ1ω for y ∈ Y . (3.32)

Hölder continuity. There are almost surely finite random variables Ky
ω,Kω ≥ 1

such that Ky
ω ≤ Kω for all y ∈ Y , (RK)m ∈ L1(Ω,P), and

‖ψy1,θτ1ω1 (u1)−ψy2,θτ2ω1 (u2)‖V ≤ Ky1,y2
ω

(
|y1−y2|α+|τ1−τ2|α+‖u1−u2‖H

)
(3.33)

for y1, y2 ∈ Y , τ1, τ2 ∈ T , u1, u2 ∈ Or(Ay1ω ∪ Ay2ω ), and ω ∈ Ω, where we
set Ky1,y2

ω = max(Ky1
ω ,K

y2
ω ).

Kolmogorov ε-entropy. Inequalities (3.3) holds with some C not depending on ε.

In particular, for any fixed y ∈ Y , the RDS Ψy satisfies Condition 3.1
and, hence, possesses an exponential attractor My

ω. The following result is
a refinement of Theorem 3.2.

Theorem 3.6. Let Ψy be a family of RDS satisfying Condition 3.5. Then there
is a random compact set (y, ω) 7→ My

ω with the underlying space Y × Ω and a
set of full measure Ω∗ ∈ F such that the following properties hold.

Attraction. For any y ∈ Y , the family {My
ω} is a random exponential

attractor for Ψy. Moreover, the attraction property holds uniformly in y and ω
in the following sense: for any ball B ⊂ H there is C(B) > 0 such that

sup
y∈Y

dV
(
ψy,ωk (B),My

σkω

)
≤ C(B)e−βk for k ≥ 0, ω ∈ Ω∗, (3.34)

where β > 0 is a constant not depending on B, k, y, and ω.

Hölder continuity. There are finite random variables Pω and γω ∈ (0, 1]
such that

dsV (My1
ω ,My2

ω ) ≤ Pω|y1 − y2|γω for y1, y2 ∈ Y , ω ∈ Ω∗. (3.35)

If, in addition, the random variable ξω entering (3.22) is bounded, then γω can
be chosen to be constant, and we have the inequality

dsV (My
θτ1ω

,My
θτ2ω

) ≤ Qω|τ1 − τ2|γ for y ∈ Y , τ1, τ2 ∈ T , ω ∈ Ω∗, (3.36)

where γ ∈ (0, 1], and Qω is a finite random constant.

In addition, it can be shown that all the moments of the random variables Pω
and Qω are finite. The proof of this property requires some estimates for the rate
of convergence in the Birkhoff ergodic theorem. Those estimates can be derived
from exponential bounds for the time averages of some norms of solutions. Since
the corresponding argument is technically rather complicated, we shall confine
ourselves to the proof of the result stated above.
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Proof of Theorem 3.6. To establish the first assertion, we repeat the scheme
used in the proof of Theorem 3.2, applying Corollary 5.3 and Lemma 5.5 instead
of Lemma 5.1 to construct coverings of random compact sets. Namely, let us
denote by Uyk (ω), V yk (ω), and Cyk(ω) with y ∈ Y the random sets described in
the proof of Theorem 3.2 for the RDS Ψy. In particular, Uyk (ω) is a random
finite set such that

ds
(
Uyk (ω), Cyk(ω)

)
≤
(
2k+1Kσkω

)−1
r, k ≥ 0, (3.37)

where Cy0 (ω) = Ayω and

Cyk(ω) =
⋃

u∈V yk (σkω)

BV (u, 2−kr), V yk (σkω) = ψ
y,σk−1ω
1

(
Uyk−1(ω)

)
(3.38)

for k ≥ 1. We apply Corollary 5.3 to construct a random finite set R 7→ U0,R

satisfying (5.14)–(5.16) with δ = r
2Ky

ω
and then define Uy0 (ω) := U0,Ryω . The

subsequent sets Uyk (ω), k ≥ 1, are constructed with the help of Lemma 5.5.
What has been said implies the following bound for the number of elements
of Uyk (ω) (cf. (3.12)):

ln
(
#Uyk (ω)

)
≤ 4
(
32
r

)m
CyωK

m
ω + 4mC

k∑
j=1

Km
σjω,

where Cyω = C(Ryω)m. This enables one to repeat the argument of the proof
of Theorem 3.2 and to conclude that the random compact set defined by rela-
tions (3.16) is an exponential attractor for Ψy (with a uniform rate of attrac-
tion).

We now turn to the property of Hölder continuity forMy
ω. Inequalities (3.35)

and (3.36) are proved by similar arguments, and therefore we give a detailed
proof for the first of them and confine ourselves to the scheme of the proof for
the other. Inequality (3.35) is established in four steps.

Step 1. We first show that

dsV
(
V y1k (ω), V y2k (ω)

)
≤ |y1 − y2|α

k∑
j=1

j∏
i=1

Kσ−iω, (3.39)

where |y1−y2| ≤ 1. The proof is by induction on k. For k = 1, the random finite
set Uy0 (ω) does not depend on ω. Recalling that V y1 (ω) = ψ

y,σ−1ω
1 (Uy0 (σσ−1

ω))
and using (3.33), for |y1 − y2| ≤ 1 we get the inequality

dsV
(
V y11 (ω), V y21 (ω)

)
≤ Kσ−1ω|y1 − y2|α,

which coincides with (3.39) for k = 1. Assuming that inequality (3.39) is estab-
lished for 1 ≤ k ≤ m, let us prove it for k = m+ 1. In view of Lemma 5.5, the
random finite set Uym(ω) satisfying (3.37) can be constructed in such a way that

ds
(
Uy1m (ω), Uy2m (ω)

)
≤ ds

(
V y1m (σmω), V y2m (σmω)

)
.
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Combining this with (3.33), we see that

dsV
(
V y1m+1(ω), V y2m+1(ω)

)
≤ Kσ−1ω

{
|y1 − y2|α + dsV

(
V y1m (σ−1ω), V y2m (σ−1ω)

)}
.

Using inequality (3.39) with k = m and ω replaced by σ−1ω to estimate the
second term on the right-hand side, we arrive at (3.39) with k = m+ 1.

Step 2. We now prove that

dsV (My1
ω ,My2

ω ) ≤ 2εn(ω) + |y1 − y2|α
n∑
k=1

k

k∏
i=1

Kσ−iω, (3.40)

where n ≥ 1 is an arbitrary integer and εn(ω) is defined in (3.20). Indeed,
inequality (3.20), which was proved in the case of a single RDS, remains true in
the present parameter-dependent setting:

dsV

(
Myp

ω ,

n⋃
k=1

V
yp
k (ω)

)
≤ εn(ω), p = 1, 2.

Combining this with (3.40) and the obvious inequality

dsV (A1 ∪A2, B1 ∪B2) ≤ dsV (A1, B1) + dsV (A2, B2),

we derive

dsV (My1
ω ,My2

ω ) ≤ 2εn(ω) +

n∑
k=1

dsV (V y1k (ω), V y2k (ω)).

Using (3.39) to estimate each term of the sum on the right-hand side, we arrive
at (3.40).

Step 3. Suppose now we have shown that

n∑
k=1

k

k∏
i=1

Kσ−iω ≤ exp(ζnω n), n ≥ 1, (3.41)

where ζnω ≥ 1 is a sequence of almost surely finite random variables such that

lim
n→∞

ζnω =: ζω <∞ with probability 1.

In this case, combining (3.40) with (3.25) and (3.41), we derive

dsV (My1
ω ,My2

ω ) ≤ 10 exp(−ηnω n) + exp(ζnω n)|y1 − y2|α, (3.42)

where we set

ηnω =
m ln 2

2m+ log2(ξω + oω(1))
.

We wish to optimize the choice of n in (3.42). To this end, first note that

lim
n→∞

ηnω =: ηω =
m ln 2

2m+ log2 ξω
> 0.
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Let n1(ω) ≥ 1 be the smallest integer such that

ζnω ≤ 2ζω, ηnω ≥
ηω
2

for n ≥ n1(ω), (3.43)

and let n2(ω, r) be the smallest integer greater than 2η−1ω γω ln r−1, where the
small random constant γω > 0 will be chosen later. Note that if

r ≤ τω := exp
(
−n1(ω)ηω

2γω

)
,

then n2(ω, r) ≥ n1(ω). Combining (3.42) and (3.43), for |y1 − y2| ≤ τω and
n = n2(ω, |y1 − y2|), we obtain

dsV (My1
ω ,My2

ω ) ≤ 10 exp(−ηωn/2) + exp(2ζωn)|y1 − y2|α

≤ 10 |y1 − y2|γω + |y1 − y2|α−8ζωγω/ηω .

Choosing

γω =
αηω

ηω + 8ζω
, (3.44)

we obtain

dsV (My1
ω ,My2

ω ) ≤ 11 |y1 − y2|γω for |y1 − y2| ≤ τω.

This obviously implies the required inequality (3.35) with an almost surely finite
random constant Pω.

Step 4. It remains to prove (3.41). In view of (3.24), we have

k∏
i=1

Kσ−iω ≤
(
ξω + oω(1)

)n/m
for 1 ≤ k ≤ n. (3.45)

It follows that

n∑
k=1

k
k∏
i=1

Kσ−iω ≤
n(n+ 1)

2

(
ξω + oω(1)

)n/m
,

whence we obtain (3.41) with

ζnω = ζω + oω(1), ζω =
1

m
ln ξω. (3.46)

This completes the proof of (3.35). It is straightforward to see from (3.44) and
the explicit formulas for ζω and ηω that if ξω ≥ 1 is bounded, then γω can be
chosen to be independent of ω.

We now turn to the scheme of the proof of (3.36). Suppose we have shown
that (cf. (3.39))

dsV
(
V yk (θτ1ω), V yk (θτ1ω)

)
≤ Dk(ω)|τ1 − τ2|α for y ∈ Y , |τ1 − τ2| ≤ 1, (3.47)
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where we set

Dk(ω) = cLσ−kω

k∏
i=1

Kσ−iω +

k∑
j=1

j∏
i=1

Kσ−iω, (3.48)

and c ≥ 1 is the constant in (5.12). In this case, repeating the argument used
in Step 2, we derive (cf. (3.40))

dsV (My
θτ1ω

,My
θτ2ω

) ≤ εn(θτ1ω) + εn(θτ2ω) +Dn(ω) |τ1 − τ2|α, (3.49)

where n ≥ 1 is an arbitrary integer and εn(ω) is defined in (3.20). If we prove
that (cf. (3.41))

Dn(ω) ≤ exp(ζnω n), lim
n→∞

ζnω = ζ ∈ R+ a. s., (3.50)

then the argument of Step 3 combined with the boundedness of ξω implies the
required inequality (3.36). To prove (3.50), note that, by the Birkhoff theorem,
there is an integrable random variable λω ≥ 1 such that

n∑
k=1

Lσ−kω = nλω + oω(n), n ≥ 1.

Combining this with (3.41), we obtain inequality (3.50) (with larger random
variables ζnω).

Thus, it remains to establish inequality (3.47). Its proof is by induction on k.
It follows from (5.16) and (3.31) that

ds
(
U0(θτ1ω), U0(θτ2ω)

)
≤ c

∣∣Rθτ1ω −Rθτ2ω∣∣ ≤ cLω|τ1 − τ2|α.
Since V y1 (ω) = ψ

y,σ−1ω
1 (U0(σ−1ω)), using (3.33) we derive the inequality

dsV
(
V y1 (θτ1ω), V y1 (θτ2ω)

)
≤ Kσ−1ω

(
1 + cLσ−1ω

)
|τ1 − τ2|α,

which coincides with (3.47) for k = 1. Let us assume that (3.47) is true for
k = m and prove it for k = m + 1. In view of (5.23), the random finite
set Uym(ω) satisfies the inequality

ds
(
Uym(ω1), Uym(ω2)

)
≤ ds

(
V ym(σmω1), V ym(σmω2)

)
,

where ωi = θτiω for i = 1, 2. It follows that

dsV
(
V ym+1(ω1), V ym+1(ω2)

)
≤ Kσ−1ω

{
|τ1 − τ2|α + ds

(
V ym(σmω1), V ym(σmω2)

)}
.

The induction hypothesis now implies inequality (3.47) with k = m + 1. The
proof of Theorem 3.6 is complete.

As in the case of Theorem 3.2, inequality (3.34) holds for B = Aω with
C(B) = r. Furthermore, if the group of shift operators {σk} is ergodic, then
the Hölder exponent in (3.35) is a deterministic constant (cf. Remark 3.4).
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Finally, if ψy,ωk , Ryω, and Ky
ω do not depend on ω for some y = y0 ∈ Y , then the

exponential attractorMy0
ω constructed in the above theorem is also independent

of ω. Indeed, My
ω was defined in terms of ψy,ωk , Ryω, Ky

ω and the random finite
sets Uyk (ω) that form δ-nets for the random compact sets Cyk(ω). As is mentioned
after the proof of Lemma 5.5, these δ-nets are independent of ω if so are the
random compact sets to be covered. Using this observation, it is easy to prove
by recurrence that Cy0k (ω) and Uy0k (ω) do not depend on ω, and therefore the
same property is true for the attractor My0

ω .

3.3 Exponential attractor for continuous-time RDS

We now turn to a construction of an exponential attractor for continuous-time
RDS. Let us fix a bounded closed interval Y ⊂ R and consider a family of
RDS Φy = {ϕy,ωt : H → H, t ≥ 0}, y ∈ Y . We shall always assume that the
associated group of shift operators θt : Ω→ Ω satisfies the following condition.

Condition 3.7. The discrete-time dynamical system {θkτ0 : Ω → Ω, k ∈ Z} is
ergodic for any τ0 > 0.

Given τ0 > 0, consider a family of discrete-time RDS Ψy = {ψy,ωk , k ∈ Z+}
defined by

ψy,ωk (u) = ϕy,ωkτ0(u), u ∈ H, k ≥ 0, ω ∈ Ω.

with the group {σk = θkτ0 , k ∈ Z} as the associated family of shift operators.
The following theorem is the main result of this section.

Theorem 3.8. Suppose there is τ0 > 0 such that the family {Ψy, y ∈ Y } satis-
fies Condition 3.5, in which T = [−τ0, τ0] and the measurable isomorphism θτ
coincides with the shift operator. Furthermore, suppose that Condition 3.7 is
also satisfied, Ayω = BV (Ryω) is a random absorbing set for Φy, and the map-
ping

(t, τ, y, u) 7→ ϕy,θτωt (u), R+ × [−τ0, τ0]× Y × V → H, (3.51)

is uniformly Hölder continuous on compact subsets with a universal determinis-
tic exponent. Then there is a random compact set (y, ω) 7→ My

ω in H with the
underlying space Y × Ω such that the following properties hold.

Attraction. For any y ∈ Y , the random compact set My
ω is an exponen-

tial attractor for Φy. Moreover, the fractal dimension of My
ω is bounded by a

universal deterministic constant, and the attraction property holds for the norm
of V uniformly with respect to y ∈ Y :

dV
(
ϕy,ωt (B),My

θtω

)
≤ C(B)e−βt, t ≥ 0, y ∈ Y. (3.52)

Here B ⊂ H is an arbitrary ball, C(B) and β are positive deterministic con-
stants, and the inequality holds with probability 1.

Hölder continuity. The function (t, y) 7→ My
θtω

is Hölder-continuous from
Y × R to the space of random compact sets in H with the metric dsH . More
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precisely, there is γ ∈ (0, 1] such that for any T > 0 and an almost surely finite
random variable Pω,T we have

dsH
(
My1

θt1ω
,My2

θt2ω

)
≤ Pω,T

(
|t1 − t2|γ + |y1 − y2|γ

)
(3.53)

for y1, y2 ∈ Y , t1, t2 ∈ [−T, T ], and ω ∈ Ω.

Proof. By rescaling the time, we can assume that τ0 = 1. Let us denote
by {M̃y

ω} the random compact set constructed in Theorem 3.6 for the fam-
ily of discrete-time RDS Ψy and define

My
ω =

⋃
τ∈[0,1]

ϕy,θ−τωτ

(
M̃y

θ−τω

)
. (3.54)

We shall prove that {My
ω} possesses all the required properties.

Step 1: Measurability. Let us show that (y, ω) 7→ My
ω is a random compact

set. We need to prove that, for any u ∈ H, the function

(y, ω) 7→ inf
v∈My

ω

‖u− v‖

is measurable. To this end, we shall apply Proposition 5.6 to the family of
compact sets

(y, ω) 7→ K(y,ω) = {(τ, u) ∈ [0, 1]×H : u ∈ M̃y
θ−τω
}

and the random mapping

ψ(y,ω) : [0, 1]×H → H, (τ, u) 7→ ϕy,θ−τωτ (u).

It is straightforward to see that My
ω = ψ(y,ω)(K(y,ω)). If we prove that ψ(y,ω)

and K(y,ω) satisfy the hypotheses of Proposition 5.6, then we can conclude
that My

ω is a random compact set in H.
For any fixed (y, ω), the mapping (τ, u) 7→ ψ(y,ω)(τ, u) is continuous. On

the other hand, the measurability in ω and the continuity in y of the mapping

ϕ
y,θ−τω
τ (u) imply that, for any fixed (τ, u), the mapping ψ(y,ω)(τ, u) is measur-

able. Furthermore, for any (τ, u) ∈ [0, 1]×H, the mapping

(y, ω) 7→ inf
(τ ′,u′)∈K(y,ω)

(
|τ − τ ′|+ ‖u− u′‖

)
= inf
τ ′∈Q∩[0,1]

(
inf

u′∈M̃y
θ−τω

‖u− u′‖
)

is measurable, so that K(y,ω) is a random compact set. Thus, the application of
Proposition 5.6 is justified.

Step 2: Semi-invariance. Since {M̃y
ω} is an exponential attractor for the

discrete-time RDS Ψy, for any y ∈ Y with probability 1 we have

ϕy,ωk (M̃y
ω) ⊂ M̃y

θkω
, k ≥ 0.
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It follows that, for any rational s ∈ R and y ∈ Y , the inequality

ϕy,θsωk (M̃y
θsω

) ⊂ M̃y
θk+sω

, k ≥ 0, (3.55)

takes place almost surely. The continuity in (s, y) of all the objects entering
inequality (3.55) implies that it holds, with probability 1, for all s ∈ R, y ∈ Y ,
and k ≥ 0. The semi-invariance can now be established by a standard argument.
Namely, for any τ ∈ [0, 1] and t ≥ 0, we choose an integer k ≥ 0 so that
σ = t+ τ − k ∈ [0, 1) and write

ϕy,ωt
(
ϕy,θ−τωτ

(
M̃y

θ−τω

))
= ϕ

y,θ−τω
k+σ

(
M̃y

θ−τω

)
= ϕy,θk−τωσ

(
ϕ
y,θ−τω
k

(
M̃y

θ−τω

))
⊂ ϕy,θ−σ(θtω)σ

(
M̃y

θk−τω

)
= ϕy,θ−σ(θtω)σ

(
M̃y

θ−σ(θtω)

)
⊂My

θtω
,

where we used (3.55) to derive the first inclusion. Since the above relation is
true for any τ ∈ [0, 1], we conclude that My

ω is semi-invariant under ϕωt .

Step 3: Exponential attraction. We first note that, with probability 1,

sup
y∈Y

dV
(
ϕy,ωk (Aω),My

θkω

)
≤ r e−βk, k ≥ 0.

cf. discussion following Theorem 3.2. It follows that

sup
y∈Y

dV
(
ϕy,θsωk (Aθsω),My

θk+sω

)
≤ r e−βk, k ≥ 0, (3.56)

where the inequality holds a.s. for all rational numbers s ∈ R. The continuity
in s of all the objects entering inequality (3.56) implies that, with probability 1,
it remains true for all s ∈ R. We now fix an arbitrary ball B ⊂ H and denote
by T (B) ≥ 0 the instant of time after which the trajectories starting from B
are in Aθtω. For any t ≥ T (B) + 1, we choose s ∈ [T (B), T (B) + 1) such that
k := t− s is an integer and use the cocycle property to write

dV
(
ϕy,ωt (B),My

θtω

)
= dV

(
ϕy,θsωk (ϕy,ωs (B)),My

θtω)

)
≤ dV

(
ϕy,θsωk (Aθsω),My

θk+sω)

)
.

Taking the supremum in y ∈ Y and using (3.56), we obtain

sup
y∈Y

dV
(
ϕy,ωt (B),My

θtω

)
≤ r e−βk ≤ r eT (B)+1e−βt.

This proves inequality (3.52) with C(B) = r eT (B)+1.

Step 4: Fractal dimension. As was established in the proof of Theorem 3.2,
the fractal dimension of M̃y

ω admits the explicit bound (see (3.26))

dimf (M̃y
ω) ≤ 2mCξω(ln ξω + 2m)

m ln 2
,
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where ξω is the random variable defined in (3.22). Since the group {σk} is

ergodic, ξω is constant, and dimf (M̃y
ω) can be estimated, with probability 1, by

a constant not depending on y and ω. Since the function τ 7→ ϕ
y,θ−τω
τ (u) and

τ 7→ M̃y
θ−τω

are Hölder continuous with a deterministic exponent, it is easy to
prove that the fractal dimension of My

ω is bounded by a universal constant.

Step 5: Time continuity. Since mapping (3.51) is Hölder continuous, the
required inequality (3.53) will be established if we prove that (3.53) is true

for M̃y
ω. However, this is an immediate consequence inequalities (3.35), (3.36)

and the ergodicity of the group of shift operators {σk}. The proof of the theorem
is complete.

As in the case of discrete-time RDS, if ϕy,ωt , Ryω, and the random objects
entering Condition 3.5 do not depend on ω for some y0, then the exponential
attractor My0

ω is also independent of ω. This fact follows immediately from

representation (3.54), because ϕ
y0,θ−τω
τ and M̃y0

θ−τω
do not depend on ω.

4 Application to a reaction–diffusion system

4.1 Formulation of the main result

In this section, we apply Theorem 3.8 to the reaction-diffusion (1.1) in which the
amplitude of the random force depends on a parameter. Namely, we consider
the equation

u̇− a∆u+ f(u) = h(x) + ε η(t, x), x ∈ D, (4.1)

where D ⊂ Rn is a bounded domain with smooth boundary and ε ∈ [−1, 1] is
a parameter. Concerning the matrix a, the nonlinear term f , and the external
forces h and η, we assume that they satisfy the hypotheses described in Sec-
tion 2.2, with the stronger condition p ≤ n

n−2 for n ≥ 3. Moreover, we impose
a higher regularity on the external force, assuming that

h ∈ H1
0 (D,Rk) ∩H2(D,Rk), B3 :=

∞∑
j=1

λ3jb
2
j <∞, (4.2)

where λj denotes the jth eigenvalue of the Dirichlet Laplacian. This condition
ensures that almost every trajectory of a solution for Eq. (4.1) with f ≡ 0 is
a continuous function of time with range in H3. The following theorem is the
main result of this section.

Theorem 4.1. Under the above hypotheses, for any ε ∈ [−1, 1] problem (4.1),
(1.2) possesses an exponential attractor Mε

ω. Moreover, the sets Mε
ω can be

constructed in such a way that M0
ω does not depend on ω, the fractal dimension

of Mε
ω is bounded by a universal deterministic constant, the attraction property

holds uniformly with respect to ε, and

dsH
(
Mε1

ω ,Mε2
ω

)
≤ Pω|ε1 − ε2|γ for ε1, ε2 ∈ [−1, 1], (4.3)

where γ ∈ (0, 1] is a constant and Pω is an almost surely finite random variable.
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To prove this result, we shall apply Theorem 3.8. For the reader’s conve-
nience, let us describe briefly the conditions we need to check, postponing their
verification to the next subsection.

Recall that H = L2, V = H1
0 , and the probability space (Ω,F ,P) and

the corresponding group of shits operators θt were defined in Section 2.2. The
ergodicity of the restriction of {θt} to any lattice τ0Z is well known (see Condi-
tion 3.7), and the Kolmogorov ε-entropy of a unit ball in V regarded as a subset
in H can be estimated by Cε−n, where n is the space dimension (see the fourth
item of Condition 3.5). We shall prove that the following properties are true for
a sufficiently large τ0 > 0.

Absorbing set. There are random variables Rεω, Rω ≥ 0 such that Rεω ≤ Rω
for all ε ∈ [−1, 1], R ∈ Lq(Ω,P) for any q ≥ 1, and for any ball B ⊂ H and a
sufficiently large T (B) > 0 we have

uε,θτω(t;u0) ∈ BV (Rεθtω) for t ≥ T (B), |τ | ≤ τ0, |ε| ≤ 1, u0 ∈ B, (4.4)

where uε,ω(t;u0) denotes the solution of (4.1), (1.2), (1.3). Moreover, Rεω satis-
fies inequality (3.31) with yi = εi ∈ [−1, 1] for an integrable random variable Lω
and a deterministic constant α ∈ (0, 1].

Stability. There is r > 0 such that

uε,ω(τ0;u0) ∈ BV (Rεθτ0ω) for |ε| ≤ 1, u0 ∈ Or
(
BV (Rεω)

)
. (4.5)

Hölder continuity. There is α > 0 such that, for any T > 0 and any random
variable rω > 0 all of whose moments are finite, one can construct a family of
random variables Kε

ω ≥ 1 satisfying the inequalites

‖uε1,θτ1ω(t1;u01)− uε2,θτ2ω(t2;u02)‖
≤ Kε1,ε2

ω

(
|ε1 − ε2|+ |τ1 − τ2|α + ‖u01 − u02‖+ |t1 − t2|α

)
, (4.6)

‖uε1,θτ1ω(τ0;u01)− uε2,θτ2ω(τ0;u02)‖1
≤ Kε1,ε2

ω

(
|ε1 − ε2|+ |τ1 − τ2|α + ‖ũ01 − ũ02‖

)
, (4.7)

where |εi| ≤ 1, |τi| ≤ τ0, 0 ≤ ti ≤ T , u0i ∈ BV (rω), ũ0i ∈ BH(rω), and we set
Kε1,ε2
ω = max{Kε1

ω ,K
ε1
ω }. Moreover, there is a random variable Kω belonging

to Lq(Ω,P) for any q ≥ 1 such that Kε
ω ≤ Kω for all ε ∈ [−1, 1].

We shall also prove that the random variables R0
ω and K0

ω are constants.
If these properties are established, then all the hypotheses of Theorem 3.8 are
fulfilled, and its application to the RDS associated with problem (4.1), (1.2)
gives the conclusions of Theorem 4.1.

4.2 Proof of Theorem 4.1

Step 1: Absorbing set. Let Uε,ω(t) be the unique stationary solution of the
equation

u̇− a∆u = ε η(t, x), t ∈ R, (4.8)
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supplemented with the Dirichlet boundary condition (1.2). It is straightforward
to see that, with probability 1,

Uε,θτω(t) = εUω(t+ τ), t, τ ∈ R, (4.9)

where Uω(t) = U1,ω(t). Using the Itô formula and the regularity assump-
tion (4.2), one can prove that 3

E eδ suptMt <∞, Mt(ω) := ‖Uω(t)‖23 +

∣∣∣∣∫ t

0

‖Uω(s)‖24 ds
∣∣∣∣−C(1 + |t|), (4.10)

where δ > 0 and C > 0 are deterministic constant, and the supremum is taken
over t ∈ R. Moreover, by Proposition 5.8, inequality (5.29) holds for U .

Solutions of (4.1), (1.2) can be written as

uε,θτω(t, x) = εUω(t+ τ, x) + vε,τ,ω(t, x), (4.11)

where v = vε,τ,ω is the solution of the problem

v̇ − a∆v + f(v + εUω(t+ τ)) = h(x), (4.12)

v
∣∣
∂D

= 0, (4.13)

v(0, x) = v0(x), (4.14)

where v0(x) = u0(x)− εUω(τ, x). In what follows, we shall often omit the sub-
scripts ε and ω to simplify notation. We wish to derive some a priori estimates
for v. Since the corresponding argument is rather standard, we only sketch it.

Taking the scalar product of (4.12) in L2 and carrying out some transfor-
mations, we derive

∂t‖v‖2 + c1
(
‖v‖2 + ‖v‖21 + ‖v‖p+1

Lp+1

)
≤ C1

(
1 + ‖h‖2−1 + ‖εU‖p+1

Lp+1

)
, (4.15)

where U = Uω(·+ τ), and we used inequalities (2.5), (2.6), and (2.8). Let us fix
any δ ∈ (0, c1). Applying the Gronwall inequality, using the continuity of the
embedding H1 ⊂ Lp+1, and recalling that |τ | ≤ τ0, we obtain

‖v(t)‖2 + c1

∫ t

0

e−c1(t−σ)
(
‖v‖21 + ‖v‖p+1

Lp+1

)
dσ ≤ e−c1t‖v0‖2 +Rε,1θtω, (4.16)

where we set

Rε,1ω = C1

∫ 0

−∞
eδσ
(
1 + ‖h‖2−1 + ‖εUω(σ + τ0)‖p+1

1

)
dσ.

We now derive a similar estimate for the H1 norm of v. Taking the scalar
product of (4.12) with −2(t− s)∆v in L2, after some transformations we derive

∂t
(
(t− s)‖∇v‖2

)
+ c2(t− s) ‖v‖22
≤ ‖∇v‖2 + C2(t− s)

(
1 + ‖h‖2 + ‖v‖p+1

Lp+1 + ‖εU‖p+1
2

)
.

3For instance, see Proposition 2.4.10 in [KS12] for the more complicated case of the Navier–
Stokes system.
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Integrating in t ∈ (s, s+ 1), we obtain

‖∇v(s+ 1)‖2 + c2

∫ s+1

s

(σ − s)‖∆v‖2dσ

≤ C3 +

∫ s+1

s

(
‖∇v‖2 + C2‖v‖p+1

Lp+1

)
dσ + C2

∫ s+1

s

‖εU‖p+1
2 dσ,

where C3 = C2(1 + ‖h‖2). Taking s = t − 1 and using (4.16) to estimate the
second term on the right-hand side, we obtain

‖v(t)‖21 ≤ C3 + C4

(
e−c1t‖v0‖2 +Rε,1θtω

)
+ C2R

ε,2
θtω
, t ≥ 1, (4.17)

where we set 4

Rε,2ω =

∫ 0

−∞
eδ(σ+3)‖εUω(σ + τ0)‖p+1

2 dσ.

Let us define Rεω by the relation

(Rεω)2 = 8
(

1 +C3 +C4R
ε,1
ω +C2R

ε,2
ω + sup

σ≤0

(
eδ(σ+2τ0)‖εUω(σ+ τ0)‖21

))
(4.18)

and set Rω = R1
ω. It is clear that Rεω ≤ Rω for all ε ∈ [−1, 1]. Relations (4.11)

and (4.17) imply that

‖uε,θτω(t)‖21 ≤ 2C4e
−c1t

(
‖u0‖2 +‖εUω(τ)‖2

)
+4−1(Rεθtω)2−1, t ≥ 1, (4.19)

whence we see (4.4) holds for any ball B ⊂ H and a sufficiently large T (B) > 0.
Moreover, it follows from (4.10) and (4.18) that all the moments of Rω are finite.
Finally, Proposition 5.8 and the stationarity of U imply that Rεω satisfies (3.31)
with a constant α ∈ (0, 1/2) and an integrable random variable Lω.

Step 2: Stability. It follows from (4.18) that the stability property (4.5) with
parameters r > 0 and τ0 > 0 will certainly be satisfied if

2C4e
−c1τ0

(
(Rεω + r)2 + ‖εUω(τ)‖2

)
+ 4−1(Rεθτ0ω)2 − 1 ≤ (Rεθτ0ω)2. (4.20)

Let us note that
(Rεθtω)2 ≥ e−δt(Rεω)2, t ≥ 0. (4.21)

We now take an arbitrary r > 0 and choose τ0 > 0 so large that

4C4e
−c1τ0r2 ≤ 1, 16C4e

−(c1−δ)τ0 ≤ 1.

In this case, inequality (4.20) holds, so that the stability condition is fulfilled.

Step 3: Hölder continuity. Representation (4.11) implies that it suffices to
establish analogues of (4.6) and (4.7) for solutions of problem (4.12)–(4.14).

4To have an absorbing set, one could take for Rε,2ω the integral of ‖εUω(σ + τ0)‖p+1
2 in

σ ∈ [−3, 0]. However, in this case the stability condition may not hold, and therefore we

define Rε,2ω in a different way. Our choice ensures that (4.21) holds for the radius of the
absorbing ball.
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Namely, we first prove that for any random variable rω > 0 with finite moments
there is a family of almost surely finite random variables K̃ε

ω such that

‖v1(t)− v2(t)‖ ≤ K̃ε1,ε2
ω

(
‖ε1Uω1 − ε2Uω2‖L∞(0,T ;H1) + ‖v01 − v02‖

)
,

(4.22)

‖v1(τ0)− v2(τ0)‖1 ≤ K̃ε1,ε2
ω

(
‖ε1Uω1 − ε2Uω2‖L∞(0,τ0;H2) + ‖v01 − v02‖

)
,

(4.23)

where |εi| ≤ 1, |τi| ≤ τ0, 0 ≤ t ≤ T , v0i ∈ BH(rω), and we set ωi = θτiω,

vi(t) = vεi,τi,ω, and K̃ε1,ε2
ω = max{K̃ε1

ω , K̃
ε2
ω }. Moreover, our proof will imply

that K̃ε
ω ≤ K̃ω for all ε ∈ [−1, 1], where the random constant K̃ belongs to

Lq(Ω,P) for any q ≥ 1. Once these properties are established, the Hölder
continuity of Uω(t) and relations (4.10) and (4.11) will prove inequalities (4.6)
and (4.7) with t1 = t2. We shall next show that the solutions of (4.12)–(4.14)
with v0 ∈ BV (rω) satisfy the inequality

‖vε,τ,ω(t1; v0)− vε,τ,ω(t2; v0)‖ ≤ K̃ε
ω|t1 − t2|α, t1, t2 ∈ [0, T ], (4.24)

with possibly a larger random constant K̃ε
ω with the same property. This will

complete the proof of the property of Hölder continuity and that of Theorem 4.1.

We begin with (4.22). To simplify the presentation, we shall assume that
n ≥ 3. In what follows, we denote by {Kε,i

ω , ε ∈ [−1, 1]} (where i ≥ 1) families
of random variables that can be bounded by a random constant belonging to
Lq(Ω,P) for any q ≥ 1. The difference v = v1 − v2 satisfies the equation

v̇ − a∆v + f(u1)− f(u2) = 0 (4.25)

and the boundary and initial conditions (4.13) and (4.14), where ui = vi+εiU
ωi

and v0 = v01− v02. Taking the scalar product of (4.25) with 2v in L2 and using
the “monotonicity” assumption (2.7), we derive

∂t‖v‖2 + 2c3‖∇v‖2 ≤ −
(
f(u1)− f(u2), v

)
≤ C‖v‖2 + C5

(
‖ξ‖Lq + ‖|u1|p−1ξ‖Lq + ‖|u2|p−1ξ‖Lq

)
‖v‖1

≤ C‖v‖2 + c3‖∇v‖2 + C6

(
1 + ‖u1‖2(p−1)Lp+1 + ‖u2‖2(p−1)Lp+1

)
‖ξ‖21,

where q = 2n
n+2 and ξ = ε1U

ω1 − ε2Uω2 . Applying the Gronwall inequality, we
obtain

‖v(t)‖2+c3

∫ t

0

eC(t−σ)‖∇v‖2dσ ≤ eCt‖v0‖2+C7 max{Kε,1
ω ,Kε,2

ω }‖ξ‖2L∞(0,T ;H1),

(4.26)
where 0 ≤ t ≤ T , C7 = C7(T ), and we set

Kε,1
ω =

∫ T

0

(
1 + ‖uε,ω(σ)‖p+1

Lp+1

)
dσ.
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Inequality (4.26) immediately implies (4.22).

To prove (4.23), we first note that, in view of (4.26), there is a measurable
function s : Ω→ R such that, with probability 1, we have sω ∈ [ τ04 ,

3τ0
4 ] and

‖∇v(sω)‖2 ≤ C8

(
‖v0‖2 +Kε,1

ω ‖ξ‖2L∞(0,τ0;H1)

)
. (4.27)

Let us take the scalar product of (4.25) with −2∆v in L2. After some transfor-
mations, we obtain

∂t‖∇v‖2+2c4 ‖∆v‖2 ≤ C8

(
1+‖u1‖p−1Ln(p−1) +‖u2‖p−1Ln(p−1)

)
‖v+ξ‖Lq‖∆v‖, (4.28)

where q = 2n
n−2 . Since H1 ⊂ Lq and H1 ⊂ Ln(p−1), applying the interpolation

and Cauchy–Schwartz inequalities, from (4.28) we derive

∂t‖∇v(t)‖2 + c4 ‖∆v‖2 ≤ C9

(
1 + ‖u1‖4(p−1)1 + ‖u2‖4(p−1)1

)
(‖v‖2 + ‖ξ‖21).

Integrating in t ∈ [sω, τ0] and using (4.26), (4.27) and (4.19) (we can assume
that τ0 ≥ 4), we obtain (4.23).

It remains to establish inequality (4.24). We shall only outline its proof.
Taking the scalar product of (4.12) with −2∆v and using some standard argu-
ments (cf. derivation of (4.17)), we obtain∫ T

0

‖∆v‖2dσ ≤ C10‖v0‖21 +Kε,2
ω .

Combining this with (4.10) and (4.12), we see that∫ T

0

‖v̇‖2dσ ≤ Kε,3
ω .

It follows that v is Hölder continuous with the exponent 1/2. Since Uω is also
Hölder continuous in time, in view of (4.11) we arrive at the required result.
Finally, it is not diffucult to see that the random variables R0

ω and K0
ω are

constant. The proof of the theorem is complete.

5 Appendix

5.1 Coverings for random compact sets

In this section, we have gathered three auxiliary results on coverings of random
compact sets by balls centred at the points of random finite sets. The first of
them establishes the existence of a “minimal” covering with an explicit bound
of the number of balls in terms of the Kolmogorov ε-entropy of the random
compact set in question.
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Lemma 5.1. Let {Aω} be a random compact set in a Hilbert space H. Then
for any measurable function δ = δω satisfying the inequality 0 < δ ≤ 1 one can
construct a random finite set Uδ(ω) ⊂ H such that for

ds
(
Aω, Uδ(ω)

)
≤ δω, (5.1)

ln
(
#Uδ(ω)

)
≤ Hδω/2(Aω, H). (5.2)

Moreover, if δω ≡ δ is constant, then one can replace δω/2 in the right-hand
side (5.2) by δ.

Note that inequality (5.1) is equivalent to the inclusions

Aω ⊂
⋃

u∈Uδ(ω)

BH(u, δω), Uδ(ω) ⊂ Oδω (Aω). (5.3)

Proof. We first assume that δω ≡ δ. Let {uk} ⊂ H be a dense sequence. For
any k = {k1, . . . , kn} ⊂ N, define the random varable

Zω(k) =

 1, Aω ⊂
n⋃
i=1

B(uki , δ),

0, otherwise.

Since Aω is a (random) compact set, for any ω there is a finite subset k ⊂ N
such that Zω(k) = 1. Let Ωn be the set of those ω ∈ Ω for which there is an
n-tuple k ⊂ N such that Zω(k) = 1 and Zω(k ′) = 0 for any subset k ′ ⊂ N
containing less than n elements. Then we have Ω = ∪n≥1Ωn. Furthermore,
since Ωn is the intersection of the measurable sets⋂

#k=n−1

{Zω(k) = 0} and
⋃

#k=n

{Zω(k) = 1},

we have Ωn ∈ F for any n ≥ 1. Thus, it suffices to construct Uδ on each
subset Ωn.

Indexing the set of all n-tuples k ⊂ N in an arbitrary way, it is easy to
construct measurable functions Ik : Ωn → {0, 1} such that, for any ω ∈ Ωn, we
have

#k(ω) = n, Aω ⊂
⋃

k∈k(ω)

BH(uk, δ), BH(uk, δ) ∩ Aω 6= ∅, (5.4)

where k(ω) = {k ∈ N : Ik(ω) = 1} and k ∈ k(ω) in the third relation. We claim
that Uδ(ω) = {uk, k ∈ k(ω)} satisfies the required properties. Indeed, for any
u ∈ H, we have

d(u, Uδ(ω)) = min{‖u− uk‖ : Ik(ω) = 1}, ω ∈ Ωn,

whence it follows easily that Uδ(ω) is a random finite set. Furthermore, inclu-
sions (5.3) (which are equivalent to inequality (5.1)) are consequences of the
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second and third relations in (5.4). Let us prove that inequality (5.2) holds
with δω/2 replaced by δω; that is,

lnn ≤ Hδ(Aω, H) for ω ∈ Ωn. (5.5)

To see this, note that the set Aω admits a covering by balls {Bj} such that

ln
(
#{Bj}

)
≤ Hδ(Aω, H), diam(Bj) ≤ δ.

Choosing arbitrary points ukj in every ball Bj , we see that one can cover Aω by
the balls {BH(ukj , δ)}. The choice of n now implies that n ≤ #{Bj}, whence
it follows that (5.5) holds.

We now turn to the case of an arbitrary function δω such that 0 < δω ≤ 1.
Let us define Ω(k) = {ω ∈ Ω : 2−k < δω ≤ 21−k}, so that Ω = ∪k≥1Ω(k). In
view of what has been proved above, on each Ω(k) one can construct a random
finite set Uk(ω) such that, for ω ∈ Ω(k), we have

ds
(
Aω, Uk(ω)

)
≤ 2−k, ln

(
#Uk(ω)

)
≤ H2−k(Aω, H).

Setting Uδ(ω) = Uk(ω) for ω ∈ Ω(k), we obtain the required covering. The proof
of the lemma is complete.

The second result shows that, if a random compact set depends on a param-
eter in a Lipschitz manner, then the random finite set constructed above can
be chosen to have a similar dependence on the parameter. To prove it, we shall
need the following auxiliary construction.

Let us denote by ∆n ⊂ Rn the set of vectors θ = (θ1, . . . , θn) such that
θi ≥ 0 and

∑
i θi = 1. Given subsets Wi ⊂ H, 1 ≤ i ≤ n, a vector θ ∈ ∆n, and

a number α > 0, we define

[W1, . . . ,Wn]αθ =

{ n∑
i=1

θiui : ui ∈Wi, ‖ui − uj‖H ≤ α for 1 ≤ i, j ≤ n
}
.

It is straightforward to check that

ln
(
#[W1, . . . ,Wn]αθ

)
≤ ln(#W1) + · · ·+ ln(#Wn), (5.6)

ds
(
[W1, . . . ,Wn]αθ1 , [W1, . . . ,Wn]αθ2

)
≤ α|θ1 − θ2|, (5.7)

where θj = (θj1, . . . , θ
j
n) and |θ1 − θ2| = maxi |θ1i − θ2i |. Moreover, if A ⊂ H and

ri ≥ 0 are such that

A ⊂
⋃
u∈Wi

BH(u, ri), 1 ≤ i ≤ n,

then for any θ ∈ ∆n we have

A ⊂
⋃

u∈[W1,...,Wn]rθ

BH(u,max{ri, 1 ≤ i ≤ n}), (5.8)

where r = max{ri + rj , 1 ≤ i, j ≤ n}.
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Proposition 5.2. Let Y ⊂ R be a closed interval and let {Ayω, y ∈ Y } be a
family of random compact sets in a Hilbert space H such that

ds(Ay1ω ,Ay2ω ) ≤ C |y1 − y2| for y1, y2 ∈ Y , (5.9)

where C ≥ 1 is a finite random constant. Then there exists a random finite set
(δ, y, ω) 7→ Uδ,y(ω) with the underlying space (0, 1]× Y × Ω such that

ds
(
Ayω, Uδ,y(ω)

)
≤ δ, (5.10)

ln
(
#Uδ,y(ω)

)
≤ 4H2−4δ(Ayω, H), (5.11)

ds
(
Uδ1,y1(ω), Uδ2,y2(ω)

)
≤ c

(
|δ1 − δ2|+ C |y1 − y2|

)
, (5.12)

where y, y1, y2 ∈ Y , δ, δ1, δ2 ∈ (0, 1], and c ≥ 1 is an absolute constant.

In particular, taking a measurable function δ = δω with range in (0, 1], we
can construct a random finite set (y, ω) 7→ Uδ,y(ω) such that

ds
(
Uδ,y1(ω), Uδ,y2(ω)

)
≤ cC |y1 − y2|, (5.13)

and inequalities (5.10) and (5.11) hold with δ = δω in the right-hand side.
The proof given below will imply that if Ayω does not depend on ω for some

y = y0, then the random set Uδ,y(ω) satisfying (5.10)–(5.12) can be chosen in
such a way that Uδ,y0(ω) is also independent of ω. Furthermore, if Ayω does
not depend on ω for all y ∈ Y , then Uδ,y is also independent of ω. The latter
observation implies the following corollary used in the main text.

Corollary 5.3. Let V ⊂ H be two Hilbert spaces with compact embedding. Then
there is a random finite set (δ,R) 7→ Uδ,R with the underlying space (0, 1]×R+

such that

dsH
(
BV (R), Uδ,R

)
≤ δ, (5.14)

ln
(
#Uδ,R

)
≤ 4Hδ/16R(V,H), (5.15)

dsH(Uδ,R1
, Uδ,R2

) ≤ c |R1 −R2|, (5.16)

where R,R1, R2 ≥ 0 and δ ∈ (0, 1] are arbitrary, and c > 0 is an absolute
constant.

To prove this result, it suffices to apply Proposition 5.2 to the non-random
compact set BV (R) depending on the parameter R ∈ R+.

Proof of Proposition 5.2. Without loss of generality, we assume that the random
variable C is constant, since one can represent Ω as the union of the subsets
Ωl = {ω ∈ Ω : l ≤ C < l + 1} and construct required random finite sets on
each Ωl.

Let us fix an integer k ≥ 1 and denote by νk < C−12−k−4 the largest number
such that Nk := ν−1k is an integer. We now set ykj = jνk for j ∈ Z+. In view of

Lemma 5.1, there are random finite sets Ukj (ω) ⊂ H such that

ds
(
Ayjω , Ukj (ω)

)
≤ 2−k−3, (5.17)

ln
(
#Ukj (ω)

)
≤ H2−k−3(Ayjω , H), (5.18)
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where we write yj instead of ykj to simplify the notation. We now need the

following lemma, whose proof 5 is given at end of this section.

Lemma 5.4. Let A1, . . . , A4 be the vertices of a rectangle Π ⊂ R2. Then there
are Lipschitz functions θi : Π→ [0, 1], 1 ≤ i ≤ 4, such that

4∑
i=1

θi(A) = 1,

4∑
i=1

θi(A)Ai = A for A ∈ Π.

Let θi(A), 1 ≤ i ≤ 4, be the functions constructed in Lemma 5.4 for the
rectangle Π = [2−k, 21−k] × [yj , yj+1]. For 2−k < δ ≤ 21−k and yj ≤ y ≤ yj+1,
denote by Aδ,y ∈ Π the point with the coordinates (δ, y). Let us define

Uδ,y(ω) = [Ukj , U
k+1
j , Ukj+1, U

k+1
j+1 ]2

−k−1

θ(δ,y) ,

where θ(δ, y) = (θi(Aδ,y), 1 ≤ i ≤ 4) ∈ ∆4. We claim that Uδ,y(ω) satisfies the
required properties.

Indeed, it follows from the choice of yj that

ds(Ayjω ,Ayω) ≤ 2−k−4 for yj ≤ y ≤ yj+1. (5.19)

Combining this with (5.17), we see that

ds
(
Ayω, Ukj (ω)

)
≤ 2−k−2. (5.20)

Inclusion (5.8) now implies that

d
(
Ayω, Uδ,y(ω)

)
≤ 2−k−2 ≤ δ/4. (5.21)

On the other hand, the definition of Uδ,y(ω) and inequality (5.20) imply that

d
(
Uδ,y(ω),Ayω

)
≤ 2−k ≤ δ.

Combining this with (5.21), we obtain (5.10).
Inequality (5.19) implies that an ε-covering for Ayω with yj ≤ y ≤ yj+1 is an

(ε+ 2−k−4)-covering for Ayjω . Taking ε = 2−k−4, we see that

H2−k−3(Ayjω , H) ≤ H2−k−4(Ayω, H).

Combining this with (5.18) and (5.6), we obtain (5.11):

ln
(
#Uδ,y(ω)

)
≤ 4H2−k−3(Ayjω , H) ≤ 4H2−k−4(Ayω, H) ≤ 4H2−4δ(Ayω, H).

Finally, inequality (5.12) follows from (5.7) and the explicit form of the func-
tions θi(A) (see (5.24)):

ds
(
Uδ1,y1 , Uδ2,y2

)
≤ 2−k−1|θ(Aδ1,y1)− θ(Aδ2,y2)|
≤ 2−k−1(νk2−k)−1

(
νk|δ1 − δ2|+ 2−k|y1 − y2|

)
≤ 1

2 |δ1 − δ2|+ 8C |y1 − y2|.

The proof of the proposition is complete.
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Π2

Figure 1: Division of Π into four rectangles

And, finally, our third result refines Proposition 5.2 in a particular case.

Lemma 5.5. Let Y be an arbitrary metric space, let K ⊂ H be a compact
subset, let (y, ω) 7→ V y(ω) be a random finite set, and let

Ayω =
⋃

v∈V y(ω)

(v +K).

Then there is a random finite set (δ, y, ω) 7→ Uδ,y(ω) with the underlying space
(0, 1]× Y ×H such that (5.10) holds, and

ln
(
#Uδ,y(ω)

)
≤ ln(#V y(ω)

)
+Hδ/2(K, H), (5.22)

ds
(
Uδ,y1(ω1), Uδ,y2(ω2)

)
≤ ds

(
V y1(ω1), V y2(ω2)

)
. (5.23)

Proof. Applying Lemma 5.1 to the random compact set δ 7→ δK with the un-
derlying space (0, 1], we construct a random finite set δ 7→ Uδ such that

ds(δK, Uδ) ≤ δ2, ln(#Uδ) ≤ Hδ2/2(δK, H) = Hδ/2(K, H).

It is straightforward to see that the random set

Uδ,y(ω) = δ−1Uδ + V y(ω) = {δ−1u+ v : u ∈ Uδ, v ∈ V y(ω)}

possesses all required properties.

As is clear from the proof, if V y(ω) does not depend on ω for some y = y0,
then the random set Uδ,y0(ω) constructed in Lemma 5.5 is also independent
of ω.

Proof of Lemma 5.4. Given a point A ∈ Π, we divide the rectangle Π into four
smaller rectangles Πi (see Figure 1). It is easy to prove that the functions

θi(A) =
Area(Πi)

Area(Π)
, 1 ≤ i ≤ 4, (5.24)

possess the required properties.

5We thank A. Iftimovici for the simple geometric argument proving Lemma 5.4.
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5.2 Image of random compact sets

Proposition 5.6. Let X and Y be Polish spaces, let (Ω,F) be a measurable
space, let {Kω, ω ∈ Ω} be a random compact set in X, and let ψω : X → Y
be a family of continuous mappings such that, for any u ∈ X, the mapping
ω 7→ ψω(u) is measurable from Ω to Y . Then {ψω(Kω), ω ∈ Ω} is a random
compact set in Y .

Proof. By Proposition 1.6.3 in [Arn98], a mapping ω 7→ Kω from Ω to the
family of closed subsets of X defines a random closed set if and only if there is
a sequence of random variables ξn : Ω→ X such that Kω =

[
{ξn(ω), n ≥ 1}

]
X

.
Since Kω is compact for any ω ∈ Ω, we have

ψω(Kω) = ψω
([
{ξn(ω), n ≥ 1}

]
X

)
=
[
ψω
(
{ξn(ω), n ≥ 1}

)]
Y

=
[
{ψω(ξn(ω)), n ≥ 1}

]
Y
.

It remains to note that ψω(ξn(ω)) are Y -valued random variables, and therefore
the right-hand side of the above relation defines a random compact set in Y .

5.3 Kolmogorov–Čentsov theorem

The Kolmogorov–Čentsov theorem provides a sufficient condition for Hölder-
continuity of trajectories of a random process. We shall need the following
qualitative version of that result, which is a particular case6 of Theorem 1.4.4
in [Kun97].

Theorem 5.7. Let X be a Banach space and let {ξt, 0 ≤ t ≤ T} be an X-valued
random process with almost surely continuous trajectories that is defined on a
probability space (Ω,F ,P) and satisfies the inequality

E ‖ξt − ξs‖2pX ≤ Cp|t− s|
p for any t, s ∈ [0, T ], p ≥ 1, (5.25)

where Cp > 0 is a constant not depending on t and s. Then for any γ ∈ (0, 1/2)
there is a constant Kγ > 0 and an almost surely positive random variable tγ
such that

‖ξt(ω)− ξs(ω)‖X ≤ Kγ |t− s|γ for |t− s| ≤ tγ(ω), (5.26)

E t−qγ <∞ for any q ≥ 1. (5.27)

Let us emphasise that we assume from the very beginning the continuity of
almost all trajectories of ξt, so that we do not need to modify our process.

Sketch of the proof. We repeat the argument used in Section 2.2.B of [KS91].
Without loss of generality, we can assume that T = 1. Let us fix any γ ∈ (0, 1/2)
and introduce the events

Ω(k)
n =

{
ω ∈ Ω : ‖ξk/2n(ω)− ξ(k−1)/2n(ω)‖X ≥ 2−γn

}
, Ωn =

2n⋃
k=1

Ω(k)
n ,

6We need, however, the additional inequality (5.27), which is not mentioned in [Kun97].
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where n ≥ 1 and 1 ≤ k ≤ 2n. It follows from (5.25) and the Chebyshev
inequality that

P
(
Ω(k)
n

)
≤ Cp2−np(1−2γ).

Summing up over k = 1, . . . , 2n, we derive

P(Ωn) ≤ Cp2−nαp , αp = −1 + p(1− 2γ).

Choosing p ≥ 1 so large that αp > 0 and applying the Borel–Cantelli lemma,
we construct an almost surely finite random integer n0 ≥ 1 such that ω /∈ Ωn
for n ≥ n0(ω) and ω ∈ Ωn0−1 if n0(ω) ≥ 2. In particular, we have

‖ξk/2n(ω)− ξ(k−1)/2n(ω)‖X ≥ 2−γn for n 6= n0(ω), k = 1, . . . , 2n. (5.28)

As is shown in the proof of Theorem 2.8 of [KS91, Chapter 2], inequality (5.28)
implies (5.26) with Kγ = 2/(1 − 2−γ) and t0 = 2−n0 . Thus, the theorem will
be proved if we show that E 2qn0 <∞ for any q ≥ 1.

To this end, note that {n0 = m} ⊂ Ωm−1 for any m ≥ 2. It follows that

E 2qn0 ≤ 2q +

∞∑
m=2

2qmP(Ωm−1) ≤ 2q + Cp

∞∑
m=2

2qm−αp(m−1).

Choosing p ≥ 1 so large that αp > q, we see that the series on the right-hand
side of the above inequality converges.

Note that one can rewrite (5.26) and (5.27) in the form

‖ξt(ω)− ξs(ω)‖X ≤ Cγ(ω) |t− s|γ t, s ∈ [0, T ],

where Cγ is a random variable with finite moments. We now apply the above
result to establish a time-regularity property for the process Uω defined in the
beginning of Section 4.2.

Proposition 5.8. For any γ ∈ (0, 1/2) and any T > 0 there is a random
variable Cγ,T > 0 all of whose moments are finite such that

‖U(t)− U(s)‖2 ≤ Cγ,T |t− s|γ for t, s ∈ [−T, T ]. (5.29)

Proof. In view of the remark following the proof of Theorem 5.7, it suffices
to check that U satisfies inequality (5.25) with [0, T ] replaced by [−T, T ] and
X = H1. Since U is stationary, we can assume that s = 0. Equation (4.8)
implies that

U(t)− U(0) =

∫ t

0

a∆U(r) dr + ζ(t),

whence, applying the Hölder inequality, it follows that

‖U(t)− U(0)‖2p2 ≤ 22p−1
{
|t|p
(∫ t

0

‖a∆u‖22dr
)p

+ ‖ζ‖2p2

}
.
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Using (4.10), we see that the mean value of first term on the right-hand side
can be estimated by C|t|p. Thus, the required inequality will be established if
we show that

E ‖ζ‖2p2 ≤ Cp|t|p. (5.30)

To this end, we note that ‖ζ‖22 =
∑
j c

2
jβ

2
j (t), where cj = bjλj . The mono-

tone convergence theorem and the Burkholder inequality (see Theorem 2.10
in [HH80]) imply that

E ‖ζ‖2p2 = lim
n→∞

E
( n∑
j=1

c2jβ
2
j (t)

)p
≤ C1 lim

n→∞
E
∣∣∣∣ n∑
j=1

cjβj(t)

∣∣∣∣2p

= C2(p) lim
n→∞

(
|t|

n∑
j=1

c2j

)p
≤ C3(p) |t|p,

where we used the fact that
∑
j cjβj(t) is a zero-mean Gaussian random vari-

able with variance t
∑
j c

2
j . This proves (5.30) and completes the proof of the

proposition.
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