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Abstract The paper is devoted to studying the 1D viscous Burgers equation con-
trolled by an external force. It is assumed that the initial state is essentially bounded,
with no decay condition at infinity, and the control is a trigonometric polynomial of
low degree with respect to the space variable. We construct explicitly a control space
of dimension 11 that enables one to steer the system to any neighbourhood of a given
final state in local topologies. The proof of this result is based on an adaptation of
the Agrachev–Sarychev approach to the case of an unbounded domain.

1 Introduction

Let us consider the following viscous Burgers equation of the real line:

∂tu−µ∂
2
x u+u∂xu = f (t,x), x ∈ R. (1)

Here u = u(t,x) is an unknown function, µ > 0 is a viscosity coefficient, and f (t,x)
is an external force which is assumed to be essentially bounded in x and integrable
in t. Equation (1) is supplemented with the initial condition

u(0,x) = u0(x), (2)

where u0 ∈ L∞(R). Due to the maximum principle, one can easily prove the exis-
tence and uniqueness of a solution for (1), (2) in appropriate functional classes. Our
aim is to study controllability properties of (1). Namely, we assume that f has the
form

f (t,x) = h(t,x)+η(t,x), (3)

Département de Mathématiques, Université de Cergy–Pontoise, CNRS UMR8088, 2 avenue
Adolphe Chauvin, 95302 Cergy–Pontoise, France, e-mail: Armen.Shirikyan@u-cergy.fr

1

Armen.Shirikyan@u-cergy.fr


2 Armen Shirikyan

where h is a fixed regular function and η is a control, which is assumed to be a
smooth function in time with range in a finite-dimensional subspace E ⊂ L∞(R).
We shall say that (1) is approximately controllable at a time T > 0 if for any initial
state u0 ∈ L∞(R), any target û ∈C(R), and any numbers ε,r > 0 there is a smooth
function η : [0,T ]→ E such that the solution u(t,x) of problem (1)–(3) satisfies the
inequality ∥∥u(T, ·)

∥∥
L∞(R) ≤ K,

∥∥u(T, ·)− û
∥∥

L∞([−r,r]) < ε, (4)

where K > 0 does not depend on r and ε . Given a finite subset Λ ⊂ R, we denote
by EΛ the vector space spanned by the functions cos(λx) and sin(λx) with λ ∈ Λ .
The following theorem is a weaker version of the main result of this paper.

Main Theorem. Let Λ = {0,λ1,λ2,2λ1,2λ2,λ1 + λ2}, where λ1 and λ2 are in-
commensurable positive numbers, and let E = EΛ . Then Eq. (1) is approximately
controllable at any time T > 0.

We refer the reader to Section 2 for a stronger result on approximate controlla-
bility and for an outline of its proof, which is based on an adaptation of a general
approach introduced by Agrachev and Sarychev in [2] and further developed in [3];
see also [16, 14, 15] for some other extensions. Let us note that the Agrachev–
Sarychev approach enables one to establish a much stronger property: given any
initial and target states and any non-degenerate finite-dimensional functional, one
can construct a control that steers the system to the given neighbourhood of the tar-
get so that the values of the functional on the solution and on the target coincide.
However, to make the presentation simpler and shorter, we confine ourselves to the
approximate controllability. The above-mentioned property of controllability will
be analysed in [17] in the more difficult case of the 2D Navier–Stokes system.

The main theorem stated above proves the approximate controllability of the
Burgers equation by a control whose Fourier transform is localised at 11 points.
This result is in sharp contrast with the case of a control localised in the physical
space, for which the approximate controllability does not hold even for the problem
in a bounded interval. This fact was established by Fursikov and Imanuvilov; see
Section I.6 of the book [9]. Other negative results on controllability of the Burgers
equation via boundary were obtained by Diaz [7] and Guerrero and Imanuvilov [11].
On the other hand, Coron showed in [6] that any initial state can be driven to zero
by a boundary control and Fernández-Cara and Guerrero [8] proved the exact con-
trollability (with an estimate for the minimal time of control) for the problem with
distributed control. Furthermore, Glass and Guerrero [10] established global con-
trollability to non-zero constant states via boundary for small values of the viscosity
and Chapouly [4] proved the global exact controllability to a given solution by two
boundary and one distributed controls. Imanuvilov and Puel [12] proved the global
boundary controllability of the 2D Burgers equation in a bounded domain under
some geometric conditions. We refer the reader to the book [5] for a discussion of
the methods used in the control theory for the Burgers equation on a bounded in-
terval. To the best of our knowledge, the problem of controllability of the viscous
Burgers equation was not studied in the case of an unbounded domain.
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The paper is organised as follows. In Section 2, we formulate the main result
and outline the scheme of its proof. Section 3 collects some facts about the Cauchy
problem for Eq. (1) without decay condition at infinity. The proof of the main result
of the paper is given in Section 4.

Notation. Let J ⊂R be a bounded closed interval, let D⊂Rn be an open subset,
and let X be a Banach space. We denote by BX (R) the closed ball in X of radius R
centred at zero. We shall use the following functional spaces.

For p ∈ [1,∞], we denote by Lp(J,X) the space of measurable functions f : J→ X
such that

‖ f‖Lp(J,X) :=
(∫

J
‖ f (t)‖p

X

)1/p

< ∞.

In the case p = ∞, this norm should be replaced by ess supt∈J ‖ f (t)‖X .
For an integer k ∈ [0,+∞], we write Ck(J,X) for the space of k times continuously
differentiable functions on J with range in X and endow it with natural norm. In the
case k = 0, we omit the corresponding superscript.
For an integer s ≥ 0, we denote by Hs(D) the Sobolev space on D of order s with
the standard norm ‖ · ‖s. In the case s = 0, we write L2(D) and ‖ · ‖.
L∞ = L∞(R) is the space of bounded measurable functions f : R → R with the
natural norm ‖ f‖L∞ . The space L∞(D) is defined in a similar way.

W k,∞(R) is the space of functions f ∈ L∞ such that ∂
j

x f ∈ L∞ for 0≤ j ≤ k.
C∞

b = C∞
b (R) stands the space of infinitely differentiable functions f : R→ R that

are bounded together with all their derivatives.
Hs

ul = Hs
ul(R) is the space of functions f : R→ R whose restriction to any bounded

interval I ⊂ R belongs Hs(I) such that

‖ f‖Hs
ul

:= sup
x∈R
‖ f (x+ ·)‖Hs([0,1]) < ∞.

If J = [a,b] and X = Hs
ul or Hs

ul∩L∞, then C∗(J,X) stands for the space of functions
f : J→ X that are bounded and continuous on the interval (a,b] and possess a limit
in the space Hs

loc as t→ a+.
We denote by Ci unessential positive constants.

2 Main result and scheme of its proof

We begin with the definition of the property of approximate controllability. As will
be proved in Section 3, the Cauchy problem (1), (2) is well posed. In particular, for
any T > 0, any integer s≥ 0, and any functions u0 ∈ L∞(R) and f ∈ L1(JT ,Hs

ul∩L∞),
there is a unique solution u ∈C∗(JT ,Hs

ul∩L∞) for (1), (2).
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Definition 1. Let T > 0, let h ∈ L1(JT ,Hs
ul) for any s ≥ 0, and let E ⊂ C∞

b be a
finite-dimensional subspace. We shall say that problem (1), (3) is approximately
controllable at time T by an E-valued control if for any integer s≥ 0, any numbers
ε,r > 0, and any functions u0 ∈ L∞ and û ∈Hs

ul there is η ∈C∞(JT ,E) such that the
solution u(t,x) of (1)–(3) satisfies the inequality

‖u(T, ·)‖Hs
ul∩L∞ ≤ Ks, ‖u(T, ·)− û‖Hs([−r,r]) < ε, (5)

where Ks > 0 is a constant depending only on ‖u0‖L∞ , ‖û‖Hs
ul

, T , and s (but not on r
and ε).

Recall that, given a finite subset Λ ⊂R, we denote by EΛ ⊂C∞
b the vector span of

the functions cos(λx) and sin(λx) with λ ∈ Λ . The following theorem is the main
result of this paper.

Theorem 1. Let T > 0, h ∈ L2(JT ,Hs
ul) for any s≥ 0, let λ1 and λ2 be incommensu-

rable positive numbers, and let Λ = {0,λ1,λ2,2λ1,2λ2,λ1+λ2}. Then problem (1),
(3) is approximately controllable at time T by an EΛ -valued control.

A proof of this theorem is given in Section 4. Here we outline its scheme. Let us
fix an integer s≥ 0 and functions u0 ∈ L∞ and û ∈ Hs

loc. In view of the regularising
property of the resolving operator for (1) (see Proposition 5), there is no loss of
generality in assuming that u0 ∈C∞

b , and by a density argument, we can also assume
that û ∈C∞

b . Furthermore, as is proved in Section 4.5, if inequalities (5) are estab-
lished for s = 0, then simple interpolation and regularisation arguments show that it
remains true for any s≥ 1. Thus, it suffices to prove (5) for s = 0.

Given a finite-dimensional subspace G⊂C, we consider the controlled equations

∂tu−µ∂
2
x u+B(u) = h(t,x)+η(t,x), (6)

∂tu−µ∂
2
x (u+ζ (t,x))+B(u+ζ (t,x)) = h(t,x)+η(t,x), (7)

where η and ζ are G-valued controls. We say that Eq. (6) is (ε,r,G)-controllable
at time T for the pair (u0, û) (or simply G-controllable if the other parameters are
fixed) if one can find η ∈ C∞(JT ,G) such that the solution u of (6), (2) satisfies
inequalities (5) with s = 0. The concept of (ε,r,G)-controllability for (7) is defined
in a similar way.

We need to prove that (6) is EΛ -controllable. This fact will be proved in four
steps. From now on, we assume that functions u0, û ∈C∞

b (R) and the positive num-
bers T , ε , and r are fixed and do not follow the dependence of other quantities on
them.

Step 1: Extension. Let us fix a finite-dimensional subspace G⊂C∞
b . Even though

Eq. (7) is “more controlled” than Eq. (6), the property of G-controllability is equiv-
alent for them. Namely, we have the following result.

Proposition 1. Equation (6) is G-controllable if and only if so is Eq. (7).
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Step 2: Convexification. Let us fix a subset N ⊂C∞
b invariant under multiplication

by real numbers such that
N ⊂ G, B(N)⊂ G. (8)

We denote by F (N,G)⊂C∞
b the span of functions of the form

η +ξ ∂xξ̃ + ξ̃ ∂xξ , (9)

where η ,ξ ∈ G and ξ̃ ∈ N. It is easy to see that F (N,G) is a finite-dimensional
subspace. The following proposition is an infinite-dimensional analogue of the well-
known convexification principle for controlled ODE’s (e.g., see [1, Theorem 8.7]).

Proposition 2. Under the above hypotheses, Eq. (7) is G-controllable if and only if
Eq. (6) is F (N,G)-controllable.

Step 3: Saturation. Propositions 1 and 2 (and their proof) imply the following
result, which is a kind of “relaxation property” for the controlled Burgers equation.

Proposition 3. Let N,G⊂C∞
b be as in Step 2. Then Eq. (6) is G-controllable if and

only if it is F (N,G)-controllable. Moreover, the constant K0 of (5) corresponding
to Eq. (6) with G-valued control can be made arbitrarily close to that for Eq. (6)
with F (N,G)-valued control.

We now set N = {ccos(λ1x),csin(λ1x),ccos(λ2x),csin(λ2x),c ∈ R} and define
Ek = F (N,Ek−1) for k ≥ 1, where E0 = EΛ . It follows from Proposition 2 that
Eq. (6) is EΛ -controllable if and only if it is Ek-controllable for some integer k ≥ 1.
We shall show that the latter property is true for a sufficiently large k. To this end,
we first establish the following saturation property: there is a dense countable subset
Λ∞ ⊂ R+ such that

∞⋃
k=1

Ek contains the functions sin(λx) and cos(λx) with λ ∈Λ∞. (10)

Step 4: Large control space. Once (10) is proved, one can easily show that (6)
is Ek-controllable for a sufficiently large k. To this end, it suffices to join u0 and û
by a smooth curve, to use Eq. (6) to define the corresponding control η , and to
approximate it, in local topologies, by functions belonging to Ek. The fact that the
corresponding solutions are close follows from continuity of the resolving operator
for (6) in local norms (see Proposition 6). This will complete the proof of Theorem 1.

3 Cauchy problem

In this section, we discuss the existence and uniqueness of a solution for the Cauchy
problem for the generalised Burgers equation

∂tu−µ∂
2
x
(
u+g(t,x)

)
+B
(
u+g(t,x)

)
= f (t,x), x ∈ R, (11)
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where f and g are given functions and B(v) = v∂xv. We also establish some a priori
estimates for higher Sobolev norms and Lipschitz continuity of the resolving opera-
tor in local norms. The techniques of the maximum principle and of weighted energy
estimates enabling one to derive this type of results are well known, and sometimes
we confine ourselves to the formulation of a result and a sketch of its proof.

3.1 Existence, uniqueness, and regularity of a solution

Before studying the well-posedness of the Cauchy problem for Eq. (11), we recall
some results for the linear equation

∂tv−µ∂
2
x v+a(t,x)∂xv+b(t,x)v = c(t,x), x ∈ R, (12)

supplement with the initial condition

v(0,x) = v0(x), (13)

where v0 ∈ L∞(R). The following proposition establishes the existence, uniqueness,
and a priori estimates for a solution of problem (11), (12) in spaces with no decay
condition at infinity.

Proposition 4. Let T > 0 and let a, b, and f be some functions such that

a ∈ L2(JT ,L∞), b,c ∈ L1(JT ,L∞),

Then for any v0 ∈ L∞ problem (11), (12) has a unique solution v(t,x) such that

v ∈ L∞(JT ×R)∩C∗(JT ,L2
ul), ‖∂xv(·,x)‖L2(JT )

∈ L2
ul.

Moreover, this solution satisfies the inequalities

‖v‖L∞(Jt×R) ≤ exp
(
‖b‖L1(Jt ,L∞)

)(
‖v0‖L∞ +‖c‖L1(Jt ,L∞)

)
, (14)

‖v(t)‖L2
ul
+‖∂xv‖L2

ulL
2(Jt )
≤C eC(ā(t)+b̄(t))

(
‖v0‖L2

ul
+‖c‖L2

ulL
2(Jt )

)
, (15)

where 0≤ t ≤ T , C > 0 is an absolute constant, and

b̄(t) = ‖b‖2
L2(Jt ,L2

ul)
, ā(t) = ‖a‖2

L2(Jt ,L∞), ‖c‖L2
ulL

2(Jt )
= sup

y∈R
‖c‖L2(Jt×[y,y+1]).

If, in addition, we have a ∈ L∞(JT ×R), then u ∈ Lp(JT ,H1
ul) for any p ∈ [1, 4

3 ) and

‖v‖Lp(Jt ,H1
ul)
≤C1

(
‖v0‖L2

ul
+
∫ t

0
‖c(r)‖L2

ul
dr
)
, (16)

where C1 > 0 depends only on p, ‖a‖L∞ , and ‖b‖L2(JT ,L2
ul)

.
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Proof. Inequality (14) is nothing else but the maximum principle, while (15) can
easily be obtained on multiplying (12) by e−|x−y|v, integrating over x∈R, and taking
the supremum over y ∈R. Once these a priori estimates are established (by a formal
computation), the existence and uniqueness of a solution in the required functional
classes can be proved by usual arguments (e.g., see [13] for the more complicated
case of the Navier–Stokes equations), and we omit them. The only non-standard
point is inequality (16), and we now briefly outline its proof.

Let Kt(x) be the heat kernel on the real line:

Kt(x) =
1√

4πµt
exp
(
− x2

4µt

)
, x ∈ R, t > 0. (17)

The following estimates are easy to check:

‖Kt ∗g‖L2
ul
≤ ‖g‖L2

ul
, ‖∂x(Kt ∗g)‖L2

ul
≤C1t−

3
4 ‖g‖L2

ul
, t > 0. (18)

Here and henceforth, the constants Ci in various inequalities may depend on µ

and T . We now use the Duhamel formula to write a solution of (12), (13) in the
form

v(t,x) = (Kt ∗ v0)(x)+
∫ t

0
Kt−r ∗

(
c(r)−a∂xv(r)−bv(r)

)
dr.

It follows from (18) that

‖v(t)‖H1
ul
≤C1t−

3
4 ‖v0‖L2

ul
+C2

∫ t

0
(t− r)−

3
4
(
‖c‖L2

ul
+‖a‖L∞‖v‖H1

ul
+‖b‖L2

ul
‖v‖L∞

)
dr

≤C1t−
3
4 ‖v0‖L2

ul
+C2

∫ t

0
(t− r)−

3
4
(
‖c‖L2

ul
+
(
‖a‖L∞ +1

)
‖v‖H1

ul

)
dr

+C3

∫ t

0
(t− r)−

3
4 ‖b‖2

L2
ul
‖v‖L2

ul
dr ,

where we used the interpolation inequality ‖v‖2
L∞ ≤C‖v‖L2

ul
‖v‖H1

ul
. Taking the left-

and right-hand sides of this inequality to the pth power, integrating in time, and
using (15), after some simple transformations we obtain the following differential
inequality for the increasing function ϕ(t) =

∫ t
0 ‖v(r)‖

p
H1

ul
dr:

ϕ(t)≤C4Qp +C4

(∫ t

0
‖c(r)‖L2

ul
dr
)p

+C4
(
‖a‖p

L∞(Jt×R)+1
)∫ t

0
(t− r)−

3
4 ϕ(r)dr,

where Q stands for the expression in the brackets on the right-hand side of (16),
and C4 depends on ā(T ), b̄(T ), T , and µ . A Gronwall-type argument enables one to
derive (16).

Let us note that inequality (15) does not use the fact that b,c ∈ L1(JT ,L∞) and
remains valid for any coefficient b ∈ L2(JT ,L2

ul) and any right-hand side c for which
‖c‖L2

ulL
2(JT )

< ∞. This observation will be important in the proof of Theorem 2.
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We now turn to the Burgers equation (11), supplemented with the initial condi-
tion (2). The proof of the following result is carried out by standard arguments, and
we only sketch the main ideas.

Theorem 2. Let f ∈ L1(JT ,L∞) and g ∈ L∞(JT ×R)∩L2(JT ,W 1,∞)∩L1(JT ,W 2,∞)
for some T > 0 and let u0 ∈ L∞. Then problem (11), (2) has a unique solution u(t,x)
such that

u ∈ L∞(JT ×R)∩C∗(JT ,L2
ul)∩Lp(JT ,H1

ul), ‖∂xu(·,x)‖L2(JT )
∈ L2

ul, (19)

where p ∈ [1, 4
3 ) is arbitrary. Moreover, the mapping (u0, f ,g) 7→ u is uniformly

Lipschitz continuous (in appropriate spaces) on every ball.

Proof. To prove the existence, we first derive some a priori estimates for a solution,
assuming that it exists. Let us assume that the functions u0, f , and g belong to
the balls of radius R centred at zero in the corresponding spaces. If a function u
satisfies (11), then it is a solution of the linear equation (12) with

a = u+g, b = ∂xg, c = f +µ∂
2
x g−g∂xg.

It follows from (14) that
‖u‖L∞(JT×R) ≤C1(R). (20)

Inequalities (15) and (16) now imply that

‖u‖L∞(JT ,L2
ul)
+‖u‖Lp(JT ,H1

ul)
+‖u‖H1

ulL
2(JT )
≤C2(R). (21)

We have thus established some bounds for the norm of a solution in the spaces
entering (19). The local existence of a solution can now be proved by a fixed point
argument, whereas the absence of finite-time blowup follows from the above a priori
estimates.

Let us prove a Lipschitz property for the resolving operator, which will imply, in
particular, the uniqueness of a solution. Assume that ui, i = 1,2, are two solutions
corresponding to some data (u0i, fi,gi) that belong to balls of radius R centred at
zero in the corresponding spaces. Setting v = u1 − u2, f = f1 − f2, g = g1 − g2,
and v0 = u01−u02, we see that v satisfies (12), (13) with

a = u1 +g1, b = ∂x(u2 +g2), c = f +µ∂
2
x g− (u1 +g1)∂xg−g∂x(u2 +g2).

Multiplying Eq. (12) by e−|x−y|v, integrating in x ∈R, and using (20) and (21), after
some transformations we obtain

∂t‖v‖2
y +µ‖∂xv‖2

y ≤C3(R)‖v‖2
y +2‖c‖y‖v‖y, (22)

where we set
‖w‖2

y =
∫
R

w2(x)e−|x−y|dx.

Application of a Gronwall-type argument implies that
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‖v(t)‖2
y +

∫ t

0
‖∂xv‖2

y ds≤C4(R)
(
‖v0‖y +

∫ t

0
‖c(s)‖y ds

)2
. (23)

Taking the square root and the supremum in y ∈ R, we derive

‖v‖L∞(Jt ,L2
ul)
+‖∂xv‖L2

ulL
2(Jt )
≤C5(R)

(
‖v0‖L2

ul
+ sup

y∈R

∫ t

0
‖c(s)‖y ds

)
. (24)

Now note that

‖c‖y ≤ ‖ f‖y +µ‖∂ 2
x g‖y +‖u1 +g1‖L∞‖∂xg‖y +‖g‖L∞‖∂xu2 +∂xg2‖y, (25)

whence it follows that∫ t

0
‖c‖y ds≤ ‖ f‖L2

ulL
2(Jt )

+C6(R)
(
‖∂ 2

x g‖L1(Jt ,L∞)+‖∂xg‖L2(Jt ,L∞)+‖g‖L2(Jt ,L∞)

)
.

Substituting this inequality in (24), we obtain

‖v‖L∞(Jt ,L2
ul)
+‖∂xv‖L2

ulL
2(Jt )
≤C8(R)

(
‖v0‖L2

ul
+‖ f‖L2

ulL
2(Jt )

+ |||g|||t
)
, (26)

where we set
|||g|||t = ‖g‖L1(Jt ,W 2,∞)+‖g‖L2(Jt ,W 1,∞).

Inequality (26) establishes the required Lipschitz property of the resolving operator.

Remark 1. An argument similar to that used in the proof of Theorem 2 enables one to
estimate the H1

ul-norm of the difference between two solutions. Namely, let ui(t,x),
i = 1,2, be two solutions of (11), (2) corresponding to some data

(u0i, fi,gi) ∈ H1
ul×L2(JT ,L∞)×L∞(JT ,W 2,∞), i = 1,2,

whose norm does not exceed R. Then the difference v= u1−u2 satisfies the inequal-
ity

‖v‖L∞(JT ,H1
ul)
≤C(R)

(
‖v0‖H1

ul
+‖ f‖L2(JT ,L2

ul)
+‖g‖L4(JT ,W 2,∞)

)
, (27)

where we retained the notation used in the proof of (26).

Finally, the following proposition establishes a higher regularity of solutions
for (11) with g≡ 0, provided that the right-hand side is sufficiently regular.

Proposition 5. Under the hypotheses of Theorem 2, assume that f ∈ L2(JT ,Hs
ul)

for an integer s ≥ 1 and g ≡ 0. Then the solution u(t,x) constructed in Theorem 2
belongs to C([τ,T ],Hs

ul) for any τ > 0 and satisfies the inequality

sup
t∈JT

(
tk‖∂ k

x u(t)‖2
L2

ul

)
+sup

y∈R

∫ T

0
tk‖∂ k+1

x u(t)‖2
L2(Iy)

dt ≤Qk
(
‖u0‖L∞ +‖ f‖L2(JT ,Hk

ul∩L∞)

)
,

(28)
where 0 ≤ k ≤ s, Iy = [y,y+ 1], and Qk is an increasing function. Furthermore, if
u0 ∈C∞

b , then the solution belongs to C(JT ,Hs
ul), and inequality (28) is valid without
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the factor of tk/2 on the left-hand side and ‖u0‖L2
ul

replaced by ‖u0‖Hk
ul

on the right-
hand side.

Proof. We confine ourselves to the derivation of the a priori estimate (28) for
u0 ∈ L2

ul. Once it is proved, the regularity of a solution can be obtained by stan-
dard arguments. Furthermore, the case when u0 ∈ Hs

ul can be treated by a similar,
but simpler technique, and we omit it.

The proof of (28) is by induction on k. For k = 0, inequality (28) is a consequence
of (21). We now assume that l ∈ [1,s] and that (28) is established for all k ≤ l− 1.
Let us set

ϕy(t) = t l
∫
R

e−〈x−y〉|∂ l
xu|2dx = t l‖∂ l

xu‖2
y , y ∈ R,

where 〈z〉=
√

1+ z2. In view of (11), the derivative of ϕy can be written as

∂tϕy(t) = l t l−1‖∂ l
xu‖2

y +2t l
∫
R

e−〈x−y〉
∂

l
xu∂

l
x(∂

2
x u−u∂xu+ f )dx. (29)

Integrating by parts and using (20) and the Cauchy–Schwarz inequality, we derive∫
R

e−〈x−y〉
∂

l
xu∂

l+2
x udx≤−‖∂ l+1

x u‖2
y +‖∂ l+1

x u‖y ‖∂ l
xu‖y,∫

R
e−〈x−y〉

∂
l
xu∂

l
x f dx≤ ‖∂ l

x f‖y ‖∂ l
xu‖y∫

R
e−〈x−y〉

∂
l
xu∂

l
x(u∂xu)dx≤ 1

2

∫
R

e−〈x−y〉
∂

l
xu∂

l+1
x u2 dx

≤ 1
2
(
‖∂ l+1

x u‖y +‖∂ l
xu‖y

)
‖∂ l

xu2‖y.

Substituting these inequalities into (29) and integrating in time, we obtain

ϕy(t)+
∫ t

0
t l‖∂ l+1

x u‖2
y dt ≤

∫ t

0

(
sl−1‖∂ l

xu‖2
y +4ϕy(s)+ sl‖∂ l

xu2‖2
y + sl‖∂ l

x f‖2
y
)

ds.

Taking the supremum over y ∈ R and using the induction hypothesis, we derive

ψ(t)≤ Ql−1 +C1

∫ t

0
ψ(s)ds+ sup

y∈R

∫ t

0
sl‖∂ l

xu2‖2
yds+C1

∫ T

0
‖ f‖2

H l
ul

ds, (30)

where Ql−1 is the function entering (28) with k = l−1, and

ψ(t) = t l‖∂ l
xu(t)‖2

L2
ul
+ sup

y∈R

∫ t

0
t l‖∂ l+1

x u‖2
L2(Iy)

dt.

Now note that∫ t

0
sl‖∂ l

xu2‖2
y ds≤C2‖u‖2

L∞ ∑
k∈Z

e−|k−y|
∫ t

0
sl‖u‖2

H l(Ik)
ds.
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Substituting this into (30) and using again the induction hypothesis and inequal-
ity (20), we obtain

ψ(t)≤C3

∫ t

0
ψ(s)ds+Q

(
‖u0‖L∞ +‖ f‖L2(JT ,H l

ul∩L∞)

)
,

where Q is an increasing function. Application of the Gronwall inequality completes
the proof.

3.2 Uniform continuity of the resolving operator in local norms

Theorem 2 established, in particular, the Lipschitz continuity of the resolving op-
erator for (11). The following proposition, which plays a crucial role in the next
section, prove the uniform continuity of the resolving operator in local norms.

Proposition 6. Under the hypotheses of Theorem 2, for any positive numbers T ,
R, r, and δ there are ρ and C such that, if triples (u0i, fi,gi), i = 1,2, satisfy the
inclusions

u0i ∈ L∞, fi ∈ L1(JT ,L∞), gi ∈ L∞(JT ×R)∩L2(JT ,W 1,∞)∩L1(JT ,W 2,∞),

and corresponding norms are bounded by R, then

sup
t∈JT

‖u1(t)−u2(t)‖L2([−r,r]) ≤ δ

+C
(
‖u01−u02‖L2(Iρ )+‖ f1− f2‖L1(JT ,L2(Iρ ))+‖g1−g2‖L2(JT ,H2(Iρ ))

)
, (31)

where Iρ = [−ρ,ρ], and ui(t) denotes the solution of (21) issued from u0i.

Proof. We shall use the notation introduced in the proof of Theorem 2. It follows
from inequality (23) with y = 0 that

e−r/2‖v(t)‖L2(Ir) ≤C1(R)
(
‖e−|·|/2v0‖L2 +

∫ T

0
‖e−|·|/2c(t, ·)‖L2 dt

)
. (32)

Now note that

‖e−|x|/2v0‖2
L2 =

∫
R
|v0|2e−|x|dx≤ ‖v0‖2

L2(Iρ )
+4e−ρ‖v0‖2

L2
ul
. (33)

By a similar argument, we check that (cf. (25))

‖e−|·|/2c(t, ·)‖L2 ≤ ‖ f‖L2(Iρ )+µ‖∂ 2
x g‖L2(Iρ )+C2(R)‖∂xg‖L2(Iρ )+C3(R)e−ρ/2

+
(
‖g‖L∞(Iρ )+ e−ρ/4‖g‖L∞

)
‖e−|·|/4(∂xu2 +∂xg2)‖L2(R).

Integrating in time and using (21), we obtain
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0
‖e−|·|/2c(t, ·)‖L2 dt ≤C4(R)

{∫ T

0
‖ f‖L2(Iρ )dt +

(∫ T

0
‖g‖2

H2(Iρ )
dt
)1/2

+ e−ρ/4
}
.

(34)
Substituting (33) and (34) into (32) and taking ρ > 0 sufficiently large, we arrive at
the required inequality (31).

4 Proof of Theorem 1

4.1 Extension: proof of Proposition 1

We only need to prove that if Eq. (7) is G-controllable, then so is (6), since the
converse implication is obvious. Let η̃ , ζ̃ ∈C∞(JT ,G) be such that the solution ũ of
problem (7), (2) satisfies (5) with s = 0. In view of (26), replacing K0 by a slightly
larger constant, we can assume that ζ̃ (0) = ζ̃ (T ) = 0. Let us set u = ũ+ ζ̃ . Then u
is a solution of (6), (2) with the control η = η̃ +∂t ζ̃ , which takes values in G. More-
over, u(T ) = ũ(T ) and, hence, u satisfies (5). This completes the proof of Proposi-
tion 1, showing in addition that the constants K0 entering (5) and corresponding to
Eqs. (6) and (7) can be chosen arbitrarily close to each other.

4.2 Convexification: proof of Proposition 2

We begin with a number of simple observations. Setting G1 = F (N,G), we first
note that, by Proposition 1, the G-controllability of (7) implies the G-controllability
and, hence, the G1-controllability of (6). Therefore, it suffices to prove that if (7) is
G-controllable, then (6) is G1-controllable. To establish this property, it suffices to
prove that, for any η1 ∈C∞(JT ,G1) and any δ > 0 there are η ,ζ ∈ L∞(JT ,G) such
that the solution u(t,x) of (7), (2) satisfies the inequality

‖u(T )−u1(T )‖H1
ul
< δ , (35)

where u1 stands for the solution of (6), (2) with η = η1. Indeed, if this property is
established, then we take two sequences {ηn},{ζ n}⊂C∞(JT ,G) such that (cf. (27))

‖ηn−η‖L2(JT ,G)+‖ζ
n−ζ‖L4(JT ,G)→ 0 as n→ ∞

and denote by un(t,x) the solution of (7), (2) with η = ηn and ζ = ζ n. It follows
from (27) that

γn := ‖un(T )−u(T )‖H1
ul
→ 0 as n→ ∞. (36)

Combining (35) and (36) and using the the continuous embedding H1
ul ⊂ L∞, we

derive
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‖un(T )‖L∞ ≤ ‖u1(T )‖L∞ +‖u(T )−u1(T )‖L∞ +‖un(T )−u(T )‖L∞

≤ K0 +C1(δ + γn),

‖un(T )− û‖L2(Ir) ≤ ‖u
n(T )−u(T )‖L2(Ir)+‖u(T )−u1(T )‖L2(Ir)+‖u1(T )− û‖L2(Ir)

≤C2(γn +δ )+‖u1(T )− û‖L2(Ir),

where Ir = [−r,r]. Choosing δ > 0 sufficiently small and n sufficiently large, we
conclude that un satisfies inequalities (5), with a constant K0 arbitrarily close to that
for u1. Finally, a similar approximation argument shows that, when proving (35), we
can assume η1(t) to be piecewise constant, with finitely many intervals of constancy.
The construction of controls η ,ζ ∈ L∞(JT ,G) for which (35) holds is carried out in
several steps.

Step 1: An auxiliary lemma. We shall need the following lemma, which estab-
lishes a relationship between G- and F (N,G)-valued controls.

Lemma 1. For any η1 ∈F (N,G) and any ν > 0 there is an integer k≥ 1, numbers
α j > 0, and vectors η ,ζ j ∈ G, j = 1, . . . ,k, such that

k

∑
j=1

α j = 1, (37)

∥∥∥η1−B(u)−
(

η−
k

∑
j=1

α j
(
B(u+ζ

j)−µ∂
2
x ζ

j))∥∥∥
H1

ul

≤ ν for any u ∈ H1
ul. (38)

Proof. It suffices to find functions η , ζ̃ j ∈ G, j = 1, . . . ,m, such that∥∥∥η1−η +
k

∑
j=1

B(ζ̃ j)
∥∥∥

H1
ul

≤ δ . (39)

Indeed, if such vectors are constructed, then we can set k = 2m,

α j = α j+m =
1

2m
, ζ

j =−ζ
j+m =

√
m ζ̃

j for j = 1, . . . ,m,

and relations (37) and (38) are easily checked.
To construct η , ζ̃ j ∈ G satisfying (39), note that if η1 ∈F (N,G), then there are

functions η̃ j,ξ j ∈ G and ξ̃ j ∈ N such that

η1 =
k

∑
j=1

(
η̃ j−ξ j∂xξ̃ j− ξ̃ j∂xξ j

)
. (40)

Now note that, for any ε > 0,

ξ j∂xξ̃ j + ξ̃ j∂xξ j = B(εξ j + ε
−1

ξ̃ j)− ε
2B(ξ j)− ε

−2B(ξ̃ j).

Combining this with (40), we obtain
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η1−
k

∑
j=1

(
η̃ j + ε

−2B(ξ̃ j)
)
+

k

∑
j=1

B(εξ j + ε
−1

ξ̃ j) = ε
2

k

∑
j=1

B(ξ j).

Choosing ε > 0 sufficiently small and setting

η =
k

∑
j=1

(
η̃ j + ε

−2B(ξ̃ j)
)
, ζ̃

j = εξ j + ε
−1

ξ̃ j,

we arrive at the required inequality (39).

Step 2: Comparison with an auxiliary equation. Let η1 ∈ L∞(JT ,G1) be a piece-
wise constant function and let u1 be the solution of problem (6), (2) with η = η1. To
simplify notation, we assume that there are only two intervals of constancy for η1(t)
and write

η1(t,x) = IJ1(t)η
1
1 (x)+ IJ2(t)η

2
1 (x),

where η1
1 ,η

2
1 ∈ G1 are some vectors and J1 = [0,a] and J2 = [a,T ] with a ∈ (0,T ).

We fix a small ν > 0 and, for i = 1,2, choose numbers α i
j > 0, j = 1, . . . ,ki, and

vectors η i,ζ ji ∈ G such that (37), (38) hold. Let us consider the following equation
on JT :

∂tu−µ∂
2
x u+

ki

∑
j=1

α
i
j
(
B(u+ζ

ji(x))−µ∂
2
x ζ

ji(x)
)
= h(t,x)+η

i(x), t ∈ Ji. (41)

This is a Burgers-type equation, and using the same arguments as in the proof of
Theorem 2, it can be proved that problem (41), (2) has a unique solution ũ(t,x)
satisfying (19). Moreover, in view of the regularity of the data and an analogue of
Proposition 5 for Eq. (41), we have

ũ ∈C(JT ,Hk
ul) for any k ≥ 0. (42)

On the other hand, we can rewrite (41) in the form

∂tu−µ∂
2
x u+u∂xu = h(t,x)+η

i
1(x)− ci

ν(t,x), t ∈ Ji, (43)

where ci
δ
(t,x) is defined for t ∈ Ji by the function under sign of norm on the left-

hand side of (38) in which η1 = η i
1, η = η i, α j =α i

j, ζ j = ζ ji, and u= ũ(t,x). Since
the resolving operator for (43) is Lipschitz continuous on bounded subsets, there is
a constant C > 0 depending only on the L∞ norms of η i

1 such that (see Remark 1)

‖u1(T )− ũ(T )‖H1
ul
≤C

(
‖c1

ν‖L2(J1,L∞)+‖c
2
δ
‖L2(J2,L∞)

)
≤C
√

2T ν . (44)

On the other hand, let us define η ∈ L∞(JT ,G) by η(t) = η i for t ∈ Ji. We shall
show in the next steps that there is a sequence {ζm} ⊂ L∞(JT ,G) such that

‖um(T )− ũ(T )‖H1
ul
→ 0 as m→ ∞, (45)
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where um(t,x) denotes the solution of problem (7), (2) in which ζ = ζm. Com-
bining inequalities (44) and (45) with ν � 1 and m� 1, we obtain the required
estimate (35) for u = um.

Step 3: Fast oscillating controls. Following a classical idea in the control theory,
we define functions ζm ∈ L∞(JT ,G) by the relation

ζm(t) =

{
ζ (1)(mt/a) for t ∈ J1,

ζ (2)(m(t−a)/(T −a)) for t ∈ J2,

where ζ (i)(t) is a 1-periodic G-valued function such that

ζ
(i)(t) = ζ

ji for 0≤ t− (α i
1 + · · ·+α i

j−1)< α i
j, j = 1, . . . ,ki.

Let us rewrite (41) in the form

∂tu−µ∂
2
x (u+ζm(t,x))+B(u+ζm(t,x)) = h(t,x)+η(t,x)+ fm(t,x),

where we set fm = fm1 + fm2,

fm1(t) =−µ∂
2
x ζm +µ

ki

∑
j=1

α
i
j∂

2
x ζ

ji, (46)

fm2(t) = B(ũ+ζm)−
ki

∑
j=1

α
i
jB(ũ+ζ

ji) (47)

for t ∈ Ji. We now define an operator K : L2(JT ,L∞)→ L∞(JT ×R)∩C∗(JT ,L2
ul)

by the relation

(K f )(t,x) =
∫ t

0
Kt−s ∗ f (s)ds,

where the kernel Kt was introduced in (17). Setting vm = ũ−K fm, we see that the
function vm(t,x) satisfies the equation

∂tv−µ∂
2
x (v+ζm)+B(v+ζm +K fm) = h+η . (48)

Suppose we have shown that

‖K fm(T )‖H1
ul
+‖K fm‖L4(JT ,W 2,∞)→ 0 as m→ ∞. (49)

Then, by (27), we have

‖um(T )− ũ(T )‖H1
ul
≤ ‖um(T )− vm(T )‖H1

ul
+‖K fm(T )‖H1

ul
→ 0 as m→ ∞.

Thus, it remains to prove (49).

Step 4: Proof of (49). We first note that { fm} is a bounded sequence in L∞(JT ,Hk
ul)

for any k ≥ 0. Integrating by parts, it follows that
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K fm = Fm +µ K (∂ 2
x Fm), (50)

where we set
Fm(t) =

∫ t

0
fm(s)ds.

In view of Proposition 4, the operator K is continuous from L1(JT ,Hk
ul) to C(JT ,Hk

ul)
for any integer k ≥ 0. Therefore (49) will follow if we show that

‖Fm‖C(JT ,Hk
ul)
→ 0 as m→ ∞.

This convergence is a straightforward consequence of relations (46) and (47); e.g.,
see [16, Section 3.3]. The proof of Proposition 2 is complete.

4.3 Saturation

We wish to prove (10). To this end, we shall need the following lemma describing
explicitly some subspaces that are certainly included in Ek. Without loss of general-
ity, we assume that λ1 > λ2.

Lemma 2. Let us set Λk = {n1λ1 + n2λ2 ≥ 0 : n1,n2 ∈ Z, |n1|+ |n2| ≤ k}. Then
EΛk ⊂ Ek for any integer k ≥ 1.

Proof. The proof is by induction on k. We confine ourselves to carrying out the
induction step, since the base of induction can be checked by a similar argument.

Let us fix any integer k≥ 2 and assume that EΛk ⊂ Ek. We need to show that that
the functions sin(λx) and cos(λx) belong to Ek+1 for λ = n1λ1 +n2λ2 ∈Λk+1. We
shall only consider the case when the coefficients n1 and n2 are non-negative, since
the other situations can be treated by similar arguments. Assume first n1 ≥ 2 and
n1 +n2 ≤ k+1. Then λ ′ = λ −λ1 and λ ′′ = λ −2λ1 belong to Λk, and we have

sin(λx) = λ ′′
λ

sin(λ ′′x)+ 2
λ

(
sin(λ1x)∂x sin(λ ′x)+ sin(λ ′x)∂x sin(λ1x)

)
, (51)

cos(λx) =− λ

λ ′′ cos(λ ′′x)+ 2
λ ′′
(
cos(λ1x)∂x sin(λ ′x)+ sin(λ ′x)∂x cos(λ1x)

)
, (52)

whence we conclude that the functions on the left-hand side of these relations belong
to Ek+1. If λ = λ1 + kλ2 ∈ Λk+1, then setting λ ′ = λ −λ2 and λ ′′ = λ − 2λ2, we
see that relations (51) and (52) with λ1 replaced by λ2 remain valid, and we can
conclude again that sin(λx),cos(λx) ∈ Ek+1. Finally, the same proof applies also in
the case λ = (k+1)λ2 ∈Λk+1.

Lemma 2 shows that the union of Ek (which is a vector space) contains the
trigonometric functions whose frequencies belong to the set Λ∞ := ∪kΛk. It is
straightforward to check that Λ∞ is dense in R+.
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4.4 Large control space

Let us prove that (6) is EΛk -controllable (and, hence, Ek-controllable) for a suffi-
ciently large k. Indeed, let us set

u(t,x) = T−1(tû(x)+(T − t)u0(x)
)
, (t,x) ∈ JT ×R. (53)

This is an infinity smooth function in (t,x) all of whose derivatives are bounded. We
now define

η(t,x) = ∂tu−µ∂
2
x u+u∂xu−h

and note that η ∈ L2(JT ,Hs
ul) for any s≥ 0 and that the solution of problem (6), (2)

is given by (53) and coincides with û for t = T . We have thus a control that steers a
solution starting from u0 to û. To prove the required property, we approximate η , in
local topologies, by an EΛk -valued function and use the continuity of the resolving
operator to show that the corresponding solutions are close.

More precisely, let χ ∈C∞(R) be such that 0 ≤ χ ≤ 1, supR |χ ′| ≤ 2, χ(x) = 0
for |x| ≥ 2, and χ(x) = 1 for |x| ≤ 1. Then the sequence ηn(t,x) = χ(x/n)η(t,x)
possesses the following properties:

ηn(t,x) = 0 for |x| ≥ 2n and any n≥ 1, (54)
‖ηn‖L2(JT ,H1

ul)
≤ 3‖η‖L2(JT ,H1

ul)
for all n≥ 1, (55)

‖ηn−η‖L2(JT×Iρ )→ 0 as n→ ∞ for any ρ > 0, (56)

where Iρ = [−ρ,ρ]. Given a frequency ω > 0 and an integer N ≥ 1, we denote by
Pω,N : L2(Iπ/ω)→ L∞(R) a linear projection that takes a function g to its truncated
Fourier series

(Pω,Ng)(x) = ∑
| j|≤N

g jeωi jx, g j =
ω

2π

∫
Iπ/ω

g(y)e−ωi jydy.

The function Pω,Ng is 2π/ω-periodic, and it follows from (54) and (55) that

‖Pω,Nηn‖L1(JT ,L∞) ≤C1‖Pω,Nηn‖L2(JT ,H1
ul)
≤C2 for all N,n≥ 1, (57)

‖Pω,Nηn−ηn‖L2(JT×Iρ )→ 0 as N→ ∞ for any n≥ 1. (58)

Note that if ω ∈ Λ∞, then for any N ≥ 1 there is k ≥ 1 such that the image of Pω,N
is contained in EΛk .

Let us denote by un,N(t,x) the solution of problem (6), (2) with η = Pω,Nηn. In
view of inequality (31) with δ = ε/2 and R = max{‖u0‖L∞ ,‖η‖L1(JT ,L∞),C2}, we
have

‖un,N(T )− û‖L2(Ir) = ‖un,N(T )−u(T )‖L2(Ir) ≤
ε

2 +C‖Pω,Nηn−η‖L1(JT ,L2(Iρ ))

≤ ε

2 +C
√

T
(
‖Pω,Nηn−ηn‖L1(JT ,L2(Iρ ))+‖ηn−η‖L1(JT ,L2(Iρ ))

)
. (59)
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We now choose n ≥ 1 such that C
√

T ‖ηn−η‖L1(JT ,L2(Iρ )) <
ε

4 ; see (56). We next
find ω ∈ Λ∞ so that π

ω
> max(2n,ρ) (this is possible since Λ∞ is dense in R+)

and choose N ≥ 1 such that C
√

T‖Pω,Nηn−ηn‖L1(JT ,L2(Iρ )) <
ε

4 . Substituting these
estimates into (59), we obtain

‖un,N(T )− û‖L2(Ir) < ε,

which is the second inequality in (5) with s = 0. It remains to note that, in view
of (20), (55), and (57), the first inequality in (5) is also satisfied.

4.5 Reduction to the case s = 0

We now prove that if inequalities (5) hold for s = 0 and arbitrary T , r, and ε , then
they remain valid for any s≥ 1. Indeed, we fix an integer s≥ 1, positive numbers r
and ε , and function u0, û ∈C∞

b . Let us define η by zero on the half-line [T,+∞) and
denote by û(t) the solution of (1), (3) issued from û at t = T . Using interpolation,
regularity of solutions (Proposition 5), and continuity of the resolving operator in
local norms (Proposition 6), we can write

‖u(T + τ)− û(τ)‖2
Hs(Ir) ≤C1‖u(T + τ)− û(τ)‖L2(Ir)‖u(T + τ)− û(τ)‖H2s(Ir)

≤C2τ
−2s(

δ +C‖u(T )− û‖L2(Iρ )
)

Q2s
(
‖u(T )‖L2

ul
+K

)
, (60)

where Ci are some constants depending on R and s, the quantities C and Q2s are those
entering (31) and (28), respectively, and K = ‖û‖L2

ul
+‖h‖L1(JT ,Hk

ul)
. Furthermore, in

view of Proposition 5, we have

‖û(τ)− û‖Hs
ul
→ 0 as τ → 0+.

Let τ > 0 be so small that the left-hand side of this relation is smaller than ε2/6. We
next choose δ > 0 such that

C2τ
−2sQ2s(K0 +K)δ < ε

2/6,

where K0 is defined in (5) (and is independent of r and ε). Finally, we construct
η ∈C∞(JT ,EΛ ) for which inequalities (5) hold with r = ρ and ε = δ/C. Comparing
the above estimates with (60), we obtain

‖u(T + τ)− û‖Hs
ul(Ir)

:= sup
I⊂Ir
‖u(T + τ)− û‖Hs(I) < ε,

where the supremum is taken oven all intervals I ⊂ Ir of length ≤ 1. Furthermore,
in view of (28), we have

‖u(T + τ)‖Hs
ul
≤ τ

−sQs
(
K0 +‖h‖L1(JT ,Hs

ul)

)
=: Ks.
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We have thus established inequalities (5) with T and ‖ · ‖Hs(Ir) replaced by T + τ

and ‖ · ‖Hs
ul(Ir)

, respectively. Since T is arbitrary and the positive numbers τ and ε

can be chosen arbitrarily small, we conclude that inequalities (5) are true for any
integer s≥ 0 and any numbers T,r,ε > 0. This completes the proof of Theorem 1.
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