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Abstract

We study a class of dissipative nonlinear PDE’s forced by a random
force ηω(t, x), with the space variable x varying in a bounded domain. The
class contains the 2D Navier–Stokes equations (under periodic or Dirich-
let boundary conditions), and the forces we consider are those common in
statistical hydrodynamics: they are random fields smooth in x and sta-
tionary, short-correlated in time t. In this paper, we confine ourselves to
“kick forces” of the form

η
ω(t, x) =

+∞
X

k=−∞

δ(t− kT )ηk(x),

where the ηk’s are smooth bounded identically distributed random fields.
The equation in question defines a Markov chain in an appropriately cho-
sen phase space (a subset of a function space) that contains the zero
function and is invariant for the (random) flow of the equation. Con-
cerning this Markov chain, we prove the following main result (see The-
orem 2.2): The Markov chain has a unique invariant measure. To prove
this theorem, we present a construction assigning, to any invariant mea-
sure, a Gibbs measure for a 1D system with compact phase space and
apply a version of Ruelle–Perron–Frobenius uniqueness theorem to the
corresponding Gibbs system. We also discuss ergodic properties of the
invariant measure and corresponding properties of the original randomly
forced PDE.
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0 Introduction

The paper deals with a class of randomly forced dissipative nonlinear PDE’s.
The class contains the 2D space-periodic Navier–Stokes equations and in the
Introduction we confine ourselves to this important example:

u̇− δ∆u + (u · ∇)u + ∇p = ηω(t, x), div u = 0, (0.1)

where x ∈ T
2 = R

2/2πZ
2, u = u(t, x) and p = p(t, x). We assume that

div ηω ≡ 0, 〈ηω〉 :=

∫

T2

ηωdx ≡ 0

and study solutions u(t, x) with zero mean value, i. e., 〈u〉 ≡ 0. In the usual
way [BV, CF, G, L], we exclude the pressure p from the equations, applying
to (0.1) the projection to the linear space formed by divergence-free vector fields.
Accordingly, we view (0.1) as a random dynamical system in a Sobolev phase
space Hs, s ≥ 0, where

Hs = {u ∈ Hs(T2; R2) : div u = 0 , 〈u〉 = 0}.
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Our concern is large-time asymptotic properties of this system.
It is traditional for statistical hydrodynamics to assume that the random

force ηω(t, x) in Equation (0.1) is smooth in x and is stationary short-correlated
in time t. In mathematical literature, it is common to replace physically correct
forces described above by random fields ηω(t, x) that are smooth in x, while as
a function of time t they are white noises, see [DZ, FlM, BKL, M, S1]. In this
work, we take another mathematical model for the physically correct forces η,
namely, a “kick force model” (see below). This model is sufficiently popular
and suits our techniques the best. We believe that our approach also applies to
equations with white noise forces in time1 and plan to address these equations
in a subsequent paper.

A kick force η corresponds to the situation when the system gets smooth
random kicks with some time period T and evolves freely between the kicks. It
means that the kth kick changes a solution u(kT, x) to u(kT+0, x) = u(kT, x)+
ηk(x), while between the kicks, u(t, x) satisfies Equation (0.1) with η = 0. This
model is described by Equation (0.1) in which the force η is a δ-function of
time t:

ηω(t, x) =
∑

k∈Z

δ(t− kT )ηk(x). (0.2)

Here the ηk’s are independent identically distributed smooth random fields. To
describe them, we expand ηk in the L2-normalised trigonometric basis {ej , j ∈
N} of the space Hs:

ηk(x) =
∞∑

j=1

bjξjkej(x). (0.3)

In (0.3), ξjk (j ∈ N, k ∈ Z) are independent random variables uniformly dis-
tributed on the interval [−1, 1] and the real constants bj satisfy the inequality

|bj | ≤ Crj
−r for all j, r ∈ N. (0.4)

(This assumption guarantees that the random fields are smooth.) The restric-
tions on distributions of ξjk’s and on the decay rate (0.4) can be weakened,
see (2.7).

Due to the kick nature of the force, a solution uω(t, x) is completely described
by its values uk(x) at the points t = kT , k ∈ Z:

uk(x) := uω(kT + 0, x), k ∈ Z.

Accordingly, from now on we treat (0.1) as a discrete-time random dynamical
system in Hs:

uk = S(uk−1) + ηk , (0.5)

where the map S : Hs → Hs is a time-one shift along trajectories of Equa-
tion (0.1) with η = 0.

1For a non-degenerate white noise force η, the set A in Theorems 0.1 and 0.2 below coincides
with the whole space Hs.
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Due to (0.3) and (0.4), the random fields ηk(x) are bounded in any Cl-norm,
uniformly with respect to k and almost all ω. It follows that the solution of (0.5)
with zero Cauchy data

u0(x) = 0 (0.6)

is also bounded in every Hl-norm:

‖uk‖Hl ≤ C′
l for k ≥ 0 and almost all ω. (0.7)

Denoting by Ak ⊂ Hs the support of distribution of the random variable uk ∈
Hs, we conclude from (0.7) that the union ∪k≥0Ak is a precompact subset of Hs.
Its closure A is a compact set invariant for the random dynamical system (0.5),
so the system defines a family of Markov chains in A. That is, given any Borel
measure λ on A, Equation (0.5) admits a unique solution (uk(x), k ≥ 0), which
is a Markov chain in A such that the distribution of u0 is λ (see [Re] and the
main text). The measure λ is said to be invariant for (0.5) if the distributions
of all random variables uk ∈ Hs coincide with λ. The main result of this work
is the following theorem:

Theorem 0.1. There exists a finite integer N ≥ 0 such that if bj 6= 0 for

1 ≤ j ≤ N , then the Markov chain defined by system (0.5) in A has a unique

invariant measure λ. This measure is concentrated on smooth vector fields, i. e.,

λ
(
Hs ∩ C∞(T2,R2)

)
= 1, and its support in Hs is equal to A.2

Existence of an invariant measure is an easy consequence of the usual Bogo-
lyubov–Krylov argument (see [DZ]), whereas its uniqueness is a deep result
(cf. [G, Section 6.1]).

The integer N depends on the viscosity δ > 0 and on the Hs-norm of the
force η. In particular, the Markov chain in A = Aδ has a unique invariant
measure for any δ > 0 if all coefficients bj are nonzero (and satisfy (0.4)).

The measure λ in Theorem 0.1 describes asymptotic behaviour in time for
solutions of (0.5). That is, it describes the long-time behaviour of 2D fluid
sloshed by random kicks.

Theorem 0.2. Let bj 6= 0 for 1 ≤ j ≤ N , where N is defined in Theorem 0.1,

and let (uk, k ≥ 0) be any Markov chain in A satisfying (0.5). Then the distri-

butions of random variables uk ∈ Hs weakly converge to λ.

In particular, the solution of (0.5), (0.6) converges to λ in distribution as
k → ∞.

Since the random variables uk are valued in the compact set A ⊂ Hs, for
any continuous function f on Hs we have the following convergence:

Ef(uk) →

∫

A

f(u) dλ(u) as k → ∞.

In particular, choosing s ≥ 2 and taking for f the function f(u(·)) =
ui(x)uj(y) with some 1 ≤ i, j ≤ 2 and x, y ∈ T

2, we see that the 2-point cor-
relation tensors Eui(x)uj(y) for a statistical solution of the 2D Navier–Stokes

2This means that A is the minimal closed subset of Hs which has full λ-measure .
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equations (0.1) = (0.5) with zero initial condition (0.6) converge to correspond-
ing correlation tensors for the measure λ.

The results of Theorems 0.1 and 0.2 were proved earlier for laminar flows
(when the Reynolds number ∼ |η|δ−1 is small), see [M], and for Equation (0.1)
forced by a random force η that is non-smooth in x, see [FlM]. The above-
mentioned works deal with the Navier–Stokes equations forced by a white noise
force of the form

η(t, x) =
d

dt

∞∑

j=1

bjβj(t)ej(x). (0.8)

Here {ej(x)} is the trigonometric basis, βj ’s are independent standard Brownian
motions, and bj ’s are real constants. The non-smoothness assumption imposed
in [FlM] reeds as

cj−1/2 ≤ bj ≤ Cj−3/8−ε for all j ≥ 1, (0.9)

where c, C, and ε are positive constants. Due to the lower bound in (0.9),
Equation (0.1) with right-hand side (0.8) defines, in a suitable low-smoothness
Sobolev space Hs, a Markov process that satisfies the strong Feller property.
This allows one to get the uniqueness of an invariant measure as a corollary of
a version of the Doob uniqueness theorem [DZ].

Another work related to Theorems 0.1 and 0.2 is the paper [S1] devoted to
the Burgers equation. In [S1], uniqueness of an invariant measure is established
without the smallness or non-smoothness assumption. However, the method
applied there substantially employs the Cole–Hopf transformation, which inte-
grates the Burgers equation. We also note that analysis of the resulting formulas
uses some techniques developed to study Gibbs measures.

For a space-smooth random force η, the family of Markov processes defined
by Equation (0.1) (or (0.5)) is not strongly Feller, see [DZ] and Remark 5.2.
Therefore Doob’s arguments do not apply to the problem (0.1)– (0.4). Our
proof is based on other ideas sketched in Section 2.2. Very loosely, to prove
the uniqueness we pass from Equation (0.5) to an equation for semi-trajectories
(uk, k ≤ j), j ∈ Z, and replace the latter by an equivalent system which is
a direct sum of a random dynamical system in a space of sequences (vk ∈
R
N , k ≤ 0) (N is the same as in Theorem 0.1) and of some trivial system.

The new dynamical system turns out to be of the same type as those arising
in studies of 1D Gibbs measures (see [Ru, S2, Bo]). To prove uniqueness of
a 1D Gibbs measure, Ruelle proposed a Perron–Frobenius type theorem (see
the same references). In Section 5, we use a version of his result to prove the
uniqueness of an invariant measure. It is quite possible that some statements
closely related to Ruelle’s type theorem applied in this paper were known earlier.
Still, since we failed to find an appropriate version in literature, a complete proof
of the result we need is given in Section 4.

Our approach for proving the uniqueness applies to a large class of dissipative
nonlinear systems described in Section 2.1 and do not use specifics of the Euler
nonlinearity (u · ∇)u.
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To complete the Introduction, we note that, in terms of the measures λ = λδ,
by the turbulence problem (for space-periodic 2D flow) is meant the problem of
understanding limiting behaviour of the measure λδ as δ → 0. (Theorems 0.1
and 0.2 apply to Equation (0.1) with any δ > 0 if in (0.3) all bj ’s are positive.) In
difference with what we said above regarding the equations with fixed δ > 0, it is
commonly believed that the limiting behaviour of the invariant measure depends
essentially on properties of the Euler nonlinearity, cf. [BKL, G]. Corresponding
results have no chance to be as general as the main results of this work (i. e.,
Theorems 2.2, 6.1, and 6.2 whose important particular cases are Theorems 0.1
and 0.2).

Acknowledgements. We thank I. Gyöngy, K. Khanin, A. Kupiainen,
Ya. Sinai, and A.-S. Sznitman for discussions. This research was supported
by the EPSRC grant M20624.

Notation

Let Z = Z∞ be the set of all integers and, for k ∈ Z, let Zk be the set of integers
that are no greater then k. For any set M , we denote by

M = MZ0 =
0∏

l=−∞

M, M = MZ =
+∞∏

l=−∞

M

the spaces of sequences m = (ml, l ∈ Z0) and n = (nl, l ∈ Z), respectively. For
any n ∈ M and k ∈ Z, we write nk = (nl, l ∈ Zk) and regard the sequence nk

as an element of M identifying it with a shifted sequence that belongs to M.
As a rule, the superscripts of elements belonging to M or M will signify the
“discrete time” while the subscripts will stand for the number of a component
(e. g., nk = (. . . , nk−1, n

k
0)).

A set of sequences {mk ∈ M, i < k < j}, −∞ ≤ i < j ≤ ∞, is said to be
compatible if there exists a sequence (ml, l < j) such that mk = (. . . ,mk−1,mk)
for i < k < j.

Let X be a Polish space, i. e., separable complete metric space. We shall use
the following notation.

[B]X is the closure in X of its subset B.
BX(x, r) is a ball in X of radius r centred at x ∈ X; we write BX(r) if X has
a selected point 0 and x = 0.
B(X) is the σ-algebra of Borel subsets of X.
P(X) is the set of probability measures on (X,B(X)).
C(X) is the space of real-valued continuous functions on X.
Cb(X) is the space of bounded functions f ∈ C(X). It is endowed with the
norm

‖f‖∞ := sup
x∈X

|f(x)|.
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L1(X, µ) is the space of Borel functions on X with finite norm

‖f‖µ :=

∫

X

∣∣f(x)
∣∣ dµ(x).

The integral of a function f(x) over the space X with respect to a measure µ
will sometimes be denoted by (µ, f):

(µ, f) =

∫

X

f(x) dµ(x) =

∫

X

f dµ.

D(ξ) is the distribution of a random variable ξ.

1 Preliminaries

1.1 Invariant measures for a class of Markov chains

Let V be a separable Fréchet space, let T : V → V be a continuous mapping,
and let {ηk, k ≥ 1} be a sequence of independent identically distributed (i.i.d.)
V -valued random variables defined on a probability space (Ω,F ,P). Consider a
family of homogeneous V -valued Markov chains (see [Re]) Θk = Θk(v), v ∈ V ,
defined by the formulas

Θ0 = v, (1.1)

Θk = T (Θk−1) + ηk, (1.2)

where k ≥ 1. Denote by P (k, v,Γ) the corresponding transition function:

P (k, v,Γ) = P{Θk(v) ∈ Γ}, v ∈ V, Γ ∈ B(V ). (1.3)

Note that if ν is the distribution of ηk, then

P (1, v,Γ) = P{T (v) + η1 ∈ Γ} = ν
(
Γ − T (v)

)
.

With the transition function (1.3) one associates the Markov operators

Pkf(v) =

∫

V

P (k, v, dz)f(z) : Cb(V ) → Cb(V ), (1.4)

P ∗
kµ(Γ) =

∫

V

P (k, v,Γ)dµ(v) : P(V ) → P(V ), (1.5)

where f ∈ Cb(V ) and µ ∈ P(V ). We shall write P and P ∗ instead of P1 and P ∗
1 ,

respectively.
The fact that the image under Pk of a continuous bounded function belongs

to Cb(V ) is known as the Feller property. It follows from continuity of T .
Indeed, if vn ∈ V converges to v, then

Pf(vn) =

∫

V

P (1, vn, dz)f(z) =

∫

V

f
(
z + T (vn)

)
dν(z)
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and therefore, by the dominated convergence theorem, Pf(vn) → Pf(v) as
n→ ∞.

We shall say that the transition function P (k, v,Γ) and the Markov opera-
tors Pk and P ∗

k correspond to Equation (1.2).

Definition 1.1. A random sequence {Θk, k > k0}, k0 ≥ −∞, is called a solution
of (1.2) if the following three conditions hold:

• {Θk} is a Markov chain;

• {Θk} satisfies (1.2) for k > k0 + 1;

• the process is future-independent, i. e., Θk is independent of ηl, l > k.

In particular, any Markov chain Θk(u), k ≥ 0, is a solution of (1.2).
Our goal is to study distributions of solutions for some equations of the

form (1.2) that correspond to stochastic PDE’s. Accordingly, our main interest
here is not with the random variables Θk themselves, but rather with their
distributions in V . For this reason, we do not distinguish equations of the
form (1.2) with different probability spaces (Ω,F ,P) as soon as they give rise to
the same transition function (1.3) (and hence to the same Markov operators (1.4)
and (1.5)).

Denote by D(ξ) the distribution of a random variable ξ and by suppµ the
support of a measure µ (i. e., the smallest closed set of full measure). For
Equation (1.2), the set of attainability Ak from zero by the time k is defined as

A0 = {0}, Ak = T (Ak−1) + suppD(ηk), k ≥ 1, (1.6)

and the set of attainability from zero (in infinite time) has the form

A :=

[
∞⋃

k=0

Ak

]

V

. (1.7)

Remark 1.2. The sets Ak and A can be interpreted in terms of the optimal
control theory if we view (1.1), (1.2) as a controllable system, where ηk is the
control chosen at the instance k. With this in mind, for given elements v and ηk,
k ≥ 1, we define the sequence (cf. (1.1), (1.2))

Θ0(v) = v, Θk(v; η1, . . . , ηk) = T
(
Θk−1(v; η1, . . . , ηk−1)

)
+ ηk, (1.8)

where k ≥ 1. Obviously, Ak and A are the sets of attainability from zero (by
finite or infinite time) for the system Θk(v; η1, . . . , ηk) in the usual sense of the
optimal control.

Let us denote by P(V,A) the set of Borel measures λ ∈ P(V ) such that
suppλ ⊂ A and fix an arbitrary λ0 ∈ P(V,A). Let Θk be a Markov chain
satisfying (1.2) for k ≥ 1 such that D(Θ0) = λ0. Note that (1.3) is a transition
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function for Θk. Consider the Krylov–Bogolyubov averages of distributions
of Θk:

λL =
1

L

L−1∑

k=0

D(Θk) =
1

L

L−1∑

k=0

P ∗
k λ0. (1.9)

We recall that λ ∈ P(V ) is called an invariant measure (for the family of Markov
chains or for Equation (1.2)) if P ∗µ = µ. The following assertion is a simple
consequence of the Prokhorov and Krylov–Bogolyubov theorems (for instance,
see [IW, Theorem I.2.6] and [DZ, Theorem 3.1.1]).

Proposition 1.3. Assume that the set A is compact in V . Then the sequence

{λL} is tight in P(V ) and, hence, has at least one limit point. Moreover, any

limit point of {λL} is an invariant measure for P ∗, and its support is contained

in A.

Remark 1.4. By construction, the set A is invariant for any Markov chain Θk

that satisfies (1.2) and whose initial distribution λ0 is supported by A, i. e.,
Θk ∈ A almost surely. (For instance, if Θk = Θk(v) is given by (1.1), (1.2)
with v ∈ A, then A is invariant for Θk.) Redefining such a process Θk on a
zero subset of Ω, we can assume that Θk ∈ A for all ω ∈ Ω and regard Θk as a
Markov chain with phase space A.

1.2 Stationary process corresponding to an invariant mea-
sure

Recall that we denote by ν ∈ P(X) the distribution of ηk.

Proposition 1.5. Assume that the set of attainability A is compact in V . Let

λ ∈ P(V,A) be an invariant measure for P ∗. Then there is a probability space

(Ω̃, F̃ , P̃), a sequence of i.i.d. V -valued random variables η̃k, k ∈ Z, on Ω̃, and

a stationary V -valued Markov chain z = (zk, k ∈ Z) such that

zk = T (zk−1) + η̃k for all ω ∈ Ω̃, k ∈ Z. (1.10)

Moreover, D(η̃k) = ν and D(zk) = λ for any k ∈ Z. Finally, the families

(zl, l ≤ k) and (η̃l, l ≥ k + 1) are independent for all k ∈ Z.

Proof. We apply standard arguments based on the Prokhorov and Skorokhod
theorems (for instance, see [IW, Theorems I.2.6 and I.2.7]).

Define the space V = V Z endowed with the Tikhonov topology3 and denote
by {ξk, ζk, k ∈ Z} an arbitrary family of independent V -valued random variables
such that D(ξk) = λ and D(ζk) = ν. Consider a sequence of V -valued Markov
chains xl = (xlk, k ∈ Z) defined as

xlk =





0 for k ≤ −l− 1,
ξl for k = −l,
T (xlk−1) + ζk for k ≥ −l+ 1.

(1.11)

3This means that a sequence xj = (xj

l
, l ≤ 0) converges to x = (xl, l ≤ 0) if and only if

x
j

l
→ xl as j → ∞ for all l ≤ 0.

9



We claim that the sequence D(xl) is tight in P(V). Indeed, by construction,
D(xlk) = δ0 for k ≤ −l− 1, where δ0 is the Dirac measure concentrated at zero,
and D(xlk) = λ for k ≥ −l. Since the supports of D(xlk) are compact sets in V
and an infinite product of compact sets is compact in the Tikhonov topology,
we conclude that the measures λl = D(xl), l ≥ 1, form a tight family in P(V).

By the Prokhorov theorem, there is a sequence of integers lj → +∞ and a
measure λ ∈ P(V) such that λlj → λ in the weak topology of P(V). In view of

the Skorokhod embedding theorem, there is a probability space (Ω̃, F̃ , P̃) and
V-valued random variables zj = (zjk, k ∈ Z) and z = (zk, k ∈ Z) such that

D(zj) = D(xlj ) = λlj , D(z) = λ, (1.12)

zj → z as j → ∞ P̃-almost surely. (1.13)

We claim that z is the required Markov chain.
Indeed, the fact that D(zk) = λ follows from the construction. Let us define

the random variables

η̃k = zk − T (zk−1), η̃lk = zlk − T (zlk−1).

The first of this relations implies (1.10), and the second shows that D(η̃lk) =
D(ηk) = ν for k ≥ 1− l. Moreover, it follows from (1.13) and the continuity of T

that, P̃-almost surely, η̃lk → η̃k as l → ∞ for any k ∈ Z. Therefore, D(η̃k) = ν
and

(zlk, η̃
l
k, k ∈ Z) → (zk, η̃k, k ∈ Z) P̃-almost surely as l → ∞,

whence we conclude that the corresponding distributions also converge. This
implies the required assertions concerning the independence, which completes
the proof of the proposition.

Since the underlying probability space is of no importance for the applica-
tions we deal with, in what follows, we shall drop the tildes and replace (1.10)
by the original equation (1.2).

1.3 Gibbs system

In this section, we specify a class of Markov chains (1.1), (1.2) we are the most
interested in.

Let X be a finite-dimensional Euclidean space with Lebesgue measure dα,
α ∈ X , and let Y be a separable Fréchet space with a Borel measure4 dℓY (ψ),
ψ ∈ Y . Let us denote

X = XZ0 , Y = Y Z0 .

We shall assume that X and Y are endowed with the Tikhonov topology. Let
(ϕk, k ≥ 1) and (ψk, k ≥ 1) be two independent sequences of i.i.d. random
variables with values in X and Y , respectively, such that, for any k ≥ 0,

D(ϕk) = D(α) dα, D(ψk) = dℓY (ψ),

4In all applications the measure ℓY will have a bounded support.
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whereD(α) is an integrable function on X . Let T0 : X×Y → X be a continuous
mapping and let

T : X × Y → X × Y, T :

(
v

w

)
7→

(
T0(v,w)

0

)
.

Consider a family of Markov chains

Υ k = Υ k(U) =

(
θk(U )

ζk(U)

)
=

(
θk

ζk

)
, U =

(
v

w

)
∈ X× Y,

with phase space X× Y, defined by the formulas5 (cf. (1.1), (1.2))

Υ 0 = U , (1.14)

Υ k =
(
Υ k−1, T

(
Υ k−1

)
+ ηk

)
, (1.15)

where ηk =
(
ϕk

ψk

)
and (1.15) holds for any k ≥ 1. Note that if (1.15) is viewed

as an equation and a Markov chain (Υ k, k ∈ Z) is any its solution, then the
sequences Υ k are compatible (see Notation) since for any integers k and l ≥ 1
we have

Υ k+l =
(
Υ k, Υ k+l1−l , . . . , Υ

k+l
0

)
. (1.16)

For l = 1, relation (1.16) results from (1.15); the general case follows by induc-
tion.

As in Remark 1.2, with the family of Markov chains (1.14), (1.15) we asso-
ciate the controllable system

Υ k(U ;σ1, . . . , σk) =

(
θk(U ;σ1, . . . , σk)

ζk(U ;σ1, . . . , σk)

)
, σk =

(
αk
βk

)
∈ X × Y, k ≥ 0,

given by the formulas

Υ 0(U ) = U , (1.17)

Υ k(U ;σ1, . . . , σk) =
(
Υ k−1, T (Υ k−1) + σk

)
, (1.18)

where Υ k−1 = Υ k−1(U ;σ1, . . . , σk−1).
Let us calculate the transition function P(k,U ,Γ) for the family (1.14),

(1.15). We begin with the case k = 1. For any set I ⊂ R, we shall use capital
Gothic letters with subscript I (for instance, BI) to denote elements of the
σ-algebra B

(
(X × Y )I∩Z0

)
. Note that, for any vector T ′ ∈ X × Y of the form

T ′ =
(
T ′
0

0

)
and any k, we have

D(T ′ + ηk) = D(α− T ′
0) dα dℓY .

5In accordance with our agreement, we identify the right-hand side in (1.15), which is an
element of (X × Y )Z1 , with the corresponding element in X × Y.
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Therefore, if a Borel set Γ ∈ B(X×Y) has the form Γ = B(−∞,−1]×B{0}, then

P(1,U ,Γ) = δU (B(−∞,−1])

∫

B{0}

D
(
α− T0(U )

)
dα dℓ(ψ). (1.19)

We now turn to the case k ≥ 2. Let Υ k0 (U) be the zeroth component of
the sequence Υ k(U), i. e., Υ k0 (U ) = T

(
Υ k−1(U)

)
+ ηk. By induction, the joint

distribution of the random variables Υ 1
0 (U), . . . , Υ k0 (U ) in the direct product

(X × Y ){1,...,k} =
∏k
l=1X × Y has the form

DUk =
k∏

l=1

[
D

(
αl − T0(U ;σ1, . . . , σl−1)

)
dℓ(σl)

]
, (1.20)

where dℓ = dα dℓY and σl =
(
αl

βl

)
. Accordingly, for any set of the form

Γ = B(−∞,−k] × B(−k,0] (1.21)

we have (cf. (1.19))

P(k,U ,Γ) = δU (B(−∞,−k])D
U
k

(
B(−k,0]

)
. (1.22)

Now let
{
Υ k = (Υ kl , l ∈ Z0)

}
be a stationary Markov chain that is a solution

of Equation (1.15) for k ∈ Z (see Definition 1.1). In this case, the sequence
{Υl = Υ l0, l ∈ Z} formed of the zeroth components of Υ k is a stationary process
in X × Y . Since {Υ k, k ≥ 0} is a compatible family, for any n ∈ Z we have

Υ n = (. . . , Υn−1, Υn).

The conditional distribution of the k-vector (Υn+1, . . . , Υn+k) under the condi-
tion Υ n = U ∈ X× Y equals DUk (see (1.20)). Setting

Hk(U ;σ1, . . . , σk) := log
k∏

l=1

D
(
αl − T0(U ;σ1, . . . , σl−1)

)
≥ −∞,

we obtain

D(Υn+1, . . . , Υn+k|Υ
n = U) = eHk(U ;σn+1,...,σn+k)

n+k∏

j=n+1

dℓ(σj). (1.23)

Clearly, the Hamiltonian Hk is stationary: it does not depend on n, but only on
the vector (σn+1, . . . , σn+k) and the “past” U ∈ X × Y. This means that the
random sequence {Υn} has a Gibbs distribution with the Hamiltonians {Hk}
(for instance, see [S2, Bo]). Thus, any stationary Markov chain Υm, m ∈ Z, that
satisfies the above-mentioned conditions (in particular, (1.15) holds) defines a
Gibbs measure for which the conditional distributions have the form (1.23). We
conclude that the uniqueness of stationary solution for (1.15) follows from that of

12



the Gibbs measure with conditional distributions (1.23). There are many results
that guarantee uniqueness of a Gibbs measure for 1D systems (for instance,
see [Do, Bo]). However, they do not apply to Gibbs systems associated with the
Markov chains we are interested in because the corresponding Hamiltonians are
equal to −∞ on large parts of the phase space (X × Y ){1,...,k} =

∏k
j=1X × Y

(cf. assumption (2.4) in [Do]).

Remark 1.6. The results of this section remain true if the spaces V and X×Y
are replaced by their closed subsets. In this case, we have to assume in addition
that these subsets are invariant for the Markov chains introduced above.

2 Invariant measures for nonlinear dissipative
semi-groups

2.1 Statement of the main results

Let H be a separable Hilbert space with norm ‖ · ‖ and let S : H → H be a
(nonlinear) operator such that S(0) = 0 and the following conditions (A) – (C)
hold:

(A) For any R > r > 0 there are positive constants C = C(R) and a =
a(R, r) < 1 and an integer n0 = n0(R, r) ≥ 1 such that

‖S(u1) − S(u2)‖ ≤ C(R)‖u1 − u2‖ for all u1, u2 ∈ BH(R), (2.1)

‖Sn(u)‖ ≤ max{a‖u‖, r} for u ∈ BH(R), n ≥ n0. (2.2)

For any compact set K ⊂ H , define a sequence of sets Ak(K) ⊂ H by the
rule

A0(K) = {0}, Ak(K) = S
(
Ak−1(K)

)
+K, k ≥ 1, (2.3)

and denote

A(K) =

[
∞⋃

k=0

Ak(K)

]

H

. (2.4)

(B) The set A(K) is bounded in H for any compact set K ⊂ H .

Let {ej} be an orthonormal basis in H . For a given integer N ≥ 1, de-
note by PN and QN the orthogonal projections onto the closed subspaces HN

and6 H⊥
N generated by the sets of vectors {e1, . . . , eN} and {eN+1, eN+2, . . . },

respectively.

(C) For any R > 0 there is a decreasing sequence γN (R) > 0 tending to zero

as N → ∞ such that

∥∥QN
(
S(u1)−S(u2)

)∥∥ ≤ γN (R)‖u1−u2‖ for all u1, u2 ∈ BH(R). (2.5)

6We denote by E⊥ the orthogonal complement to a subspace E.
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Let ηk, k ≥ 1, be a sequence of independent H-valued random variables of
the form

ηk =

∞∑

j=1

bjξjkej , (2.6)

where bj ≥ 0 are some constants such that

b :=

( ∞∑

j=1

b2j

)1/2

<∞, (2.7)

and {ξjk} is a family of independent real-valued random variables satisfying the
following condition:

(D) For any j, the random variables ξjk, k ≥ 1, have the same distribution πj
such that πj(dr) = pj(r) dr, where the densities pj(r) are Lipschitz con-

tinuous and, moreover, pj(0) > 0 and supp pj ⊂ [−1, 1].

Remark 2.1. We note straightaway that the densities pj(r) are allowed to be
piecewise Lipschitz functions. In this case, all the results and their proofs remain
the same, but some of the calculations become more cumbersome.

Define a family of Markov chains Θk = Θk(u), u ∈ H , by the rule (cf. (1.1),
(1.2))

Θ0 = u, (2.8)

Θk = S(Θk−1) + ηk, (2.9)

where k ≥ 1, and denote by P (k, u,Γ) the corresponding transition function
(see (1.3)). Recall that Markov operators associated with P (k, u,Γ) have the
form (1.4) and (1.5).

Denote by ν the distribution of the i.i.d. random variables ηk and by A
the set of attainability from zero for Equation (2.9) (see (1.7)). We recall that
P(H,A) denotes the set of Borel measures on H whose support is contained
in A. According to Remark 1.4, any Markov chain Θk that satisfies (2.9) and
whose initial distribution is supported by A can be regarded as an A-valued
Markov chain.

The theorem below is the main result of this paper.

Theorem 2.2. Assume that conditions (A) – (D) hold. There is an integer

N = N(b) ≥ 1 such that if

bj > 0 for j = 1, . . . , N, (2.10)

then P ∗ has a unique invariant measure λ ∈ P(H,A).

Remark 2.3. We shall apply Theorem 2.2 to stochastic PDE’s of the form

∂tu+ Lu+B(u) =

∞∑

k=1

δ(t− k)ηk, (2.11)
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where L is the generator of a parabolic semi-group, B(u) is a nonlinear term,
and ηk are i.i.d. random variables (see (2.6)). Denote by St the solving semi-
group for Equation (2.11) with zero right-hand side. To apply Theorem 2.2, we
set S = S1 and check that conditions (A) – (C) are satisfied for S. Let us clarify
informally what they mean.

Inequality (2.1) is nothing else but the condition of uniform Lipschitz conti-
nuity of S on any ball BH(R). Inequality (2.2) expresses the property of dissi-
pativity of the semi-group St. Condition (B) means that the solution of (2.11)
starting from zero is bounded in the phase space uniformly with respect to time
and realisations of the random right-hand side. As a rule, this property holds for
dissipative equations. Finally, in condition (C), {ej} is the complete set of eigen-
vectors of L, and inequality (2.5) follows from the fact that the corresponding
eigenvalues tend to +∞.

Ergodic properties of the invariant measure λ ∈ P(H,A) constructed in
Theorem 2.2 are discussed in Section 6. The proof of Theorem 2.2, which is
based on the constructions of Sections 3 and 4, is given in Section 5. Here we
present the main steps of the proof.

2.2 Scheme of the proof of Theorem 2.2

2.2.1 Existence of an invariant measure and the corresponding sta-
tionary Markov chain

To prove the existence of an invariant measure λ ∈ P(H,A), note that supp ν
is a compact set (because it is a closed subset of the Hilbert cube defined by
the sequence bj) and therefore, by condition (B), the set of attainability A =
A(supp ν) is bounded in H . It is easy to see that

A = S(A) + supp ν. (2.12)

Now note that, in view of condition (C) and inequality (2.1) with u2 = 0, there
is a finite ε-net for the image under S of any bounded set in H . Hence, S(A) is
compact, and it follows from (2.12) that A is also compact in H . Proposition 1.3
now implies the required assertion.

It remains to check that the invariant measure is unique. The corresponding
proof occupies Sections 3 – 5. Here we sketch it and develop some notations
needed in the sequel.

Let λ ∈ P(H,A) be an invariant measure for P ∗. By Proposition 1.5 (see also
the remark after its proof), there is a stationary Markov chain (uk, k ∈ Z) and
a family of independent random variables ηk such that D(uk) = λ, D(ηk) = ν,
and

uk = S(uk−1) + ηk, k ∈ Z. (2.13)

Introduce the linear space H = HZ0 endowed with the Tikhonov topology and
consider a family of Markov chains Θk = Θk(u) in H defined as

Θ0 = u, (2.14)

Θk = S
(
Θk−1

)
+ ηk0 , (2.15)
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where k ≥ 0, u ∈ H, ηk0 = (. . . , 0, 0, ηk) and

S(v) =
(
v, S(v0)

)
=

(
. . . , v−2, v−1, v0, S(v0)

)
, v = (vl, l ≤ 0) ∈ H. (2.16)

It is clear that the sequences7 uk := (ul, l ∈ Zk) ∈ H form a stationary com-
patible Markov chain satisfying Equation (2.15). (By compatibility we mean
that almost all trajectories of the random process {uk, k ∈ Z} form compatible
family of sequences.) Let us denote by P(k,u,Γ), Pk and P∗

k the transition
function and Markov semi-groups corresponding to (2.15) and by A the set
of attainability from zero. What has been said implies that {uk} defines an
invariant measure λ ∈ P(H,A) for the semi-group P∗

k. Since uniqueness of
an invariant measure for P∗

k implies a similar property for the original semi-
group P ∗

k , it suffices to show that the invariant distribution for P∗
k is unique.

However, this cannot be done directly because the noise ηk0 is effective only for
the first N Fourier modes, whereas its projection to the (infinite-dimensional)
subspace H⊥

N of codimension N may vanish. To overcome this difficulty and

to prove that the distribution of a stationary solution {Θk, k ∈ Z} of (2.15)
is uniquely defined, we perform an isomorphic transformation of {Θk} that
replaces a component of Θk of codimension N (namely, its projection to the
space H⊥

N ) by a random sequence (namely, by an appropriate component of the
noise) whose “large-time behaviour” is known. The corresponding arguments
are based on a Lyapunov–Schmidt type reduction.

2.2.2 Lyapunov–Schmidt type reduction

For any integer N ≥ 1, we introduce the spaces HN = (HN )Z0 and H⊥
N =

(H⊥
N )Z0 (where HN = PNH and H⊥

N = QNH) endowed with the Tikhonov
topology. For the stationary sequences (ul, l ∈ Z) and (ηl, l ∈ Z) defined above
and for any integer k, we set

vk = (vl, l ∈ Zk), vl = PNul; ṽk = (ṽl, l ∈ Zk), ṽl = QNul, (2.17)

and

ϕk0 = (. . . , 0, 0, ϕk), ψk = (. . . , ψk−1, ψk), ψk0 = (. . . , 0, 0, ψk), (2.18)

where ϕk = PNηk and ψk = QNηk. Let us denote by PN and QN the projections

PN = · · · × PN × PN : H → HN , (ul, l ≤ 0) 7→ (PNul, l ≤ 0),

QN = · · · × QN × QN : H → H⊥
N , (ul, l ≤ 0) 7→ (QNul, l ≤ 0).

Since the Markov chain {uk, k ∈ Z} satisfies Equation (2.15), applying PN
and QN to (2.15), we get the following system of two vector equations:

vj = PNS(vj−1, ṽj−1) +ϕj0, (2.19)

ṽj = QNS(vj−1, ṽ
j−1) +ψj0. (2.20)

7The sequence uk = (ul, l ∈ Zk), k ∈ Z, is regarded as an element of H = HZ0 .
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(We used the fact that PNS(uj−1) does not depend on ṽl with l ≤ j − 2
and similarly with QNS(uj−1).) The random sequences {vj} and {ṽj} are
stationary and compatible since so is {uj}.

We now assume that vr = (. . . , vr−1, vr) and ψr = (. . . , ψr−1, ψr) are
bounded deterministic8 sequences in HN and H⊥

N , respectively. It turns out
that there exists a unique bounded sequence (. . . , ṽr−1, ṽr) in H⊥

N such that
ṽj = (ṽl, l ≤ j) satisfies Equation (2.20) for j ≤ r with vj = (vl, l ≤ j) and
ψj = (. . . , 0, ψj). Denote by

W0 : HN × H⊥
N → H⊥

N (2.21)

the operator defined by the relation

ṽr = W0

(
vr,ψr). (2.22)

The operator W0 does not depend on r because Equation (2.19) is invariant
with respect to shifts. A crucial property of W0 is that it forgets the past
exponentially fast:

∥∥∥∥
∂W0

∂vr−j

∥∥∥∥ +

∥∥∥∥
∂W0

∂ψr−j

∥∥∥∥ ≤ C e−κj for any j ≥ 0, (2.23)

where C and κ are positive constants.
We now return to the random equations (2.19) and (2.20). What has been

said in the foregoing paragraph implies that we can solve Equation (2.20) with
j ≤ k for every k ∈ Z and express the random sequence ṽk in terms of vk

and ψk using the operator W0. Substituting the result into (2.19), we conclude
that the random sequence {vk, k ∈ Z} satisfies the equation

vk =
(
vk−1, T0(v

k−1,ψk−1)
)

+ϕk0 , (2.24)

where T0 is an operator from HN × H⊥
N to HN given by the formula

T0(v,ψ) = PNS
(
v0 + W0(v,ψ)

)
. (2.25)

Consider now the family of Markov chains

Υ k = Υ k(U ) =

(
θk

ζk

)
, U =

(
v

w

)
∈ HN × H⊥

N ,

with phase space HN ×H⊥
N , defined by (1.14) and (1.15), where the operator T0

is given in (2.25). Let us denote by P(k,U ,Γ), Pk, and P∗
k the corresponding

transition function and Markov semi-groups and by A the set of attainability
from zero (see (1.7)). We shall regard Υ k(U) as Markov chains in A (see Re-
mark 1.4). Assume that we can prove existence and uniqueness of an invariant

8In this paragraph, vr and ψr stand for deterministic sequences that are not related to
the random sequences defined in (2.17) and (2.18).
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measure µ ∈ P(A) for P∗
k. By construction, the (HN × H⊥

N )-valued random
sequence

Ξk =

(
vk

ψk

)
(2.26)

(with vk and ψk defined in (2.17) and (2.18), respectively) satisfies (1.15) for
every k ∈ Z. Moreover, it can be shown that Ξk is a stationary Markov chain
and that its distribution Λ = D(Ξk) is supported by A (see Section 3.2), so that
Λ ∈ P(A) coincides with the unique invariant measure µ for P∗

k. It remains to

note that uk = vk+W0(v
k,ψk) and therefore D(zk) = λ is also uniquely defined.

Thus, the problem of uniqueness of invariant distribution for the original
Markov operator P ∗

k is reduced to a similar question for P∗
k.

2.2.3 Uniqueness of invariant measure for P∗
k

The proof of the uniqueness is based on a version of the Ruelle–Perron–Frobenius
(RPF) theorem presented in Section 4. Without going into details, let us ex-
plain the main idea. We deal with a family of Markov chains Υ k(U) in A.
Using this fact and the dissipativity of the operator S (see (2.2)), it can be
shown that Υ k(U) is irreducible (i.e., P(k,U ,O) > 0 for any U ∈ A, an arbi-
trary open set O ⊂ A, and sufficiently large k). If the transition function were
strong Feller, we could apply the Doob theorem (for instance, see [DZ, Theo-
rem 4.2.1]) to prove uniqueness of invariant measure. However, the strong Feller
property is not satisfied in the case under study (see [DZ, Sections 7.1 and 7.2]
for necessary and sufficient conditions for the validity of the strong Feller prop-
erty for infinite-dimensional systems), and to establish the uniqueness, we use
a version of the RPF-theorem. Namely, we show that if the Markov family is
“uniformly” irreducible and the operator Pk possesses a very weak smoothing
property, then the invariant measure is unique. Note that the proof of this fact
substantially uses the exponential decay (2.23).

3 Lyapunov–Schmidt type reduction

3.1 Statement of the result

As in Section 2, we denote by H a separable Hilbert space with norm ‖ · ‖
and by S a nonlinear continuous operator in H . It is assumed that S satisfies
conditions (B) and (C).

We recall that the spaces HN = (HN )Z0 and H⊥
N = (H⊥

N )Z0 are endowed
with the Tikhonov topology. For any R > 0, define the bounded subsets

BN (R) = BHN
(R)Z0 =

{
v = (vl, l ≤ 0) ∈ HN : ‖vl‖ ≤ R

}
,

B⊥
N (R) = BH⊥

N
(R)Z0 =

{
w = (wl, l ≤ 0) ∈ H⊥

N : ‖wl‖ ≤ R
}
.

For κ ≥ 0 and u ∈ H, we write

‖u‖∞ = sup
l≤0

‖ul‖, M(κ)u = (eκlul, l ≤ 0).
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It is easy to see that the Tikhonov topology on BN (R) and B⊥
N (R) coincides

with the topology defined by the metric

dκ(u,v) =
∥∥M(κ)(u − v)

∥∥
∞

= sup
l≤0

eκl‖ul − vl‖, (3.1)

where κ is an arbitrary positive number.
Consider the equation

uk = S(uk−1) + ηk, k ≤ 0, (3.2)

where uk, ηk ∈ H . Application of QN to (3.2) results in

ṽk = QNS(vk−1 + ṽk−1) + ψk, k ≤ 0, (3.3)

where vk = PNuk, ṽk = QNuk, and ψk = QNηk. Let us abbreviate

BHN
(R) ×BH⊥

N
(b) = BR,b, BN (R) × B⊥

N (b) = BR,b. (3.4)

Theorem 3.1. Assume that condition (C) holds. Let R > 0, b > 0, and γ,
0 < γ < 1, be some constants and let an integer N ≥ 1 be so large that γN (ρ) ≤
γ, where γN is the sequence in condition (C) and

ρ := (R2 + r2)1/2, r :=
Rγ + b

1 − γ
. (3.5)

Then for any v ∈ BN (R) and ψ ∈ B⊥
N (b) Equation (3.3) has a unique solution

ṽ ∈ B⊥
N (r). Moreover, for any κ, 0 ≤ κ < − lnγ, the operator

W : BR,b → B⊥
N (r), (v,ψ) 7→ ṽ, (3.6)

satisfies the inequality

∥∥∥M(κ)
(
W(v1,ψ1) −W(v2,ψ2)

)∥∥∥
∞

≤

≤ (1 − eκγ)−1
(
eκγ

∥∥M(κ)(v1 − v2)
∥∥
∞

+
∥∥M(κ)(ψ1 −ψ2)

∥∥
∞

)
, (3.7)

where vi ∈ BN (R), ψi ∈ B⊥
N (b), i = 1, 2. In particular, the operator W is

continuous if the spaces entering (3.6) are endowed with the Tikhonov topology.

It follows from (3.3) that the operator W(v,ψ) is independent of the last
component of v.

Theorem 3.1 is a variant of the well-known result (originally due to [FP])
according to which the asymptotical dynamics of a nonlinear dissipative PDE is
determined by the first N Fourier modes, where N is sufficiently large. Similar
results are established by many authors for various purposes (for instance, to
study attractors, inertial and integral manifolds, etc.). The proof of Theorem 3.1
is given in Appendix (see Section 8).
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We now derive a simple corollary of Theorem 3.1. Let us write W = (Wl, l ≤
0), so that W0(v,ψ) is the zeroth (i. e., the last) component of W . Till the end
of this subsection, we shall abbreviate (vl, ψl), l ≤ 0, to hl. Denote by LiplW0,
l ≤ 0, the Lipschitz constant of W0 with respect to hl that is uniform in all
other arguments. In other words, LiplW0 is the supremum over all

(. . . , hl−1, hl+1, . . . , h0) ∈
(
BR,b

)Z0\{l}

of the Lipschitz constants of the functions

BR,b ∋ h 7→ W0(. . . , hl−1, h, hl+1, . . . , h0).

It follows from (3.7) that

LiplW0 ≤
(
1 − eκγ

)−1
eκl. (3.8)

This estimate shows that dependence of the function W0 on hl = (vl, ψl) decays
with l exponentially.

For later use, we make another obvious but helpful observation: if v1 =
(v, v1), ψ

1 = (ψ, ψ1), and ṽ = W(v,ψ), then

W(v1,ψ1) =
(
ṽ,QNS(v0 + ṽ0) + ψ1

)
. (3.9)

Indeed, the right-hand side of (3.9) defines a sequence ṽ′ = (ṽ′k, k ≤ 1) that
satisfies Equation (3.2) for k ≤ 1 since ṽ satisfies it for k ≤ 0.

3.2 Markov chain in the space HN = HN × H⊥
N

We wish to define a family of Markov chains in HN by the formulas

Υ 0 = U , U =

(
v

w

)
∈ HN , (3.10)

Υ k =

(
Υ k−1, T

(
Υ k−1

)
+

(
ϕk
ψk

))
, T

(
v

ψ

)
=

(
T0(v,ψ)

0

)
, (3.11)

where Υ k = Υ k(U),

T0(v,ψ) = PNS
(
v0 + W0(v,ψ)

)
, (3.12)

and v0 is the last component of v. However, the domain of definition of T0

is only a part of the space HN , and therefore we have to choose carefully the
corresponding phase space. To this end, find a constant R > 0 such that the
set of attainability A = A(supp ν) for the original equation (2.9) is contained
in BH(R) (see (2.4) and condition (B)). Let an integer N ≥ 1 be so large that
the conditions of Theorem 3.1 are satisfied. Denote by

W = (Wl, l ∈ Z0) : BR,b → B⊥
N(r) (3.13)
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the operator constructed in Theorem 3.1. Obviously, we can define the kth
element Υ k(U) if Υ k−1(U) ∈ BR,b. We claim that if U = 0, where 0 is the

element all of whose components are zero, then Υ k(U) ∈ BR,b for all k ≥ 1.
Indeed, assume that the required inclusion is proved for k ≤ n − 1. Since
‖ψk‖ ≤ ‖ηk‖ ≤ b by (2.6), (2.7) and condition (D), we have ζk(U) ∈ B⊥

N (b)

for any k ≥ 0. Let θk(U) =
(
θkl (U), l ∈ Z0

)
be the first component of Υ k(U ).

Since, by the induction hypothesis,
(
θnl (U), l ≤ −1

)
=

(
θn−1
l , l ≤ 0

)
= θn−1(U ) ∈ BN (R),

it suffices to show that θn0 (U ) ∈ BHN
(R). However, it follows from the definition

of θk(U) that θn0 (U) ∈ PNAn, where An is the set of attainability from zero by
time n for Equation (2.9). It now remains to note that, according to the choice
of R, we have An ⊂ A ⊂ BH(R) and hence PNAn ⊂ BHN

(R).
Thus, if U = 0, we can define Υ k(U) for any integer k ≥ 1. Denote by A

the set of attainability from zero for Equation (3.11). Obvious argument based
on the continuity of the operators entering the definition of Υ k(U) shows that
formula (3.11), in which T0 has the form (3.12), makes sense for any integer
k ≥ 1 and an arbitrary initial state U ∈ A. We have thus obtained a family of
Markov chains Υ k(U) with phase space A which satisfy Equation (3.11).

An important observation is that Equation (3.11) with phase space A is
equivalent to (2.15) with phase space A in the sense that the sets of solutions
for these two equations are in one-to-one correspondence. This result is stated
below as Theorem 3.2.

Let Φ : BR,b → H be a mapping that sends U =
(
Ul =

(
vl

wl

)
, l ≤ 0

)
to

Φ(U ) = u =
(
ul =

(
vl

ṽl

)
∈ HN ×H⊥

N , l ≤ 0
)
,

where
ṽ = W(U), (3.14)

and let Ψ : H → HN be a mapping that sends u =
((
vl

ṽl

)
, l ≤ 0

)
∈ H to

Ψ(u) = U =
((
vl

wl

)
, l ≤ 0

)
, where

wl = ṽl − QNS(vl−1 + ṽl), l ≤ 0. (3.15)

It follows from Theorem 3.1 that Φ is uniformly Lipschitz continuous. Moreover,
inequality (2.1) implies that the restriction of Ψ to the set BH(R) = BH(R)Z0

is also uniformly Lipschitz continuous for any R > 0.

Theorem 3.2. The operator Φ defines a Lipschitz homeomorphism A → A
whose inverse is Ψ . Moreover, a Markov chain

(
Υ k ∈ A, k > k0 ≥ −∞

)
is

a solution of (3.11) if and only if the chain
(
uk = Ψ(Υ k) ∈ A, k > k0

)
is a

solution of (2.15).

Proof. We first show that Ψ maps A to A. Denote by Ak and Ak the sets of
attainability from zero by the time k for Equations (3.11) and (2.15), respec-
tively (see (1.6)). If U ∈ Aj for some j ≥ 1, then there exists a trajectory
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(Υ k, 0 ≤ k ≤ j) of (3.11), viewed as a controllable system, that is equal to
zero for k = 0 and to U for k = j (cf. Remark 1.2). It follows from the def-
inition of W that the operator Φ sends Υ k to a trajectory of the controllable
system (2.15) and that this trajectory is equal to zero for k = 0 and to Φ(U )
for k = j. Hence, Φ(U ) ∈ Ak. By continuity, Φ maps A to A.

If U ∈ A and Φ(U) = u =
(
v

ṽ

)
, then ṽ satisfies (3.3). Hence, (3.15) holds,

and U = Ψ(u). Repeating the arguments applied above to Φ, we find that Ψ
maps Aj to Aj and, hence, A to A.

If u =
(
v

ṽ

)
∈ A and Ψ(u) = U =

(
v

w

)
∈ A, then w is defined by (3.15).

Therefore ṽ satisfies (3.3), and we have u = Φ(U ). Hence, Φ : A → A is a
homeomorphism and Ψ = Φ−1.

Due to (3.9) and the definition of T (see (3.11)), the following diagram is
commutative for any ω ∈ Ω:

Υ k−1 Φ
−−−−→ uk−1

y
y

Υ k
Φ

−−−−→ uk

Here the left- and right-hand vertical arrows stand for the transformations in
Equations (3.11) and (2.15), respectively. Since Φ is a homeomorphism, it de-
fines a one-to-one correspondence between solutions of these two equations.

Corollary 3.3. A Markov chain
(
Υ k, k ∈ Z

)
is a stationary solution of (3.11)

in A if and only if
(
uk = Φ(Υ k) ∈ A, k ∈ Z

)
is a stationary solution of (2.15).

Corollary 3.4. Equation (3.11) has a unique invariant measure supported by A

if and only if (2.15) possesses a unique invariant measure supported by A.

The second corollary follows from the first since Φ and Ψ transform identi-
cally distributed solutions of one equation to identically distributed solutions of
the other.

By Theorem 3.2, the operator Φ transforms the family of Markov chains
(3.10), (3.11) to the family (2.14), (2.15), where u = Φ(U ). Therefore the
corresponding transition functions satisfy the relation

P(k,U ,Γ) = P
(
k, Φ(U ), Φ(Γ)

)
, U ∈ A, Γ ∈ B(A). (3.16)

It follows that (
Pkf

)
◦ Φ = Pk(f ◦ Φ), f ∈ Cb(A). (3.17)

4 A version of the RPF-theorem

In this section, we prove a version of the RPF-theorem (with reservations con-
cerning its novelty discussed in the Introduction). It provides a sufficient con-
dition for the uniqueness of invariant measure for a Markov semi-group whose
transition function is uniformly irreducible and possesses a smoothing property.
This result will be used in Section 5 to prove Theorem 2.2.
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4.1 Statement of the result

Let A be a Polish space. A subset R ⊂ Cb(A) is called a determining family

for P(A) if for arbitrary measures µ1, µ2 ∈ P(A) the condition
∫

A

f(u) dµ1(u) =

∫

A

f(u) dµ2(u) for any f ∈ R

implies that µ1 = µ2.
Let P(k,u,Γ), u ∈ A, Γ ∈ B(A), be a Feller transition function defined for

nonnegative integers9 k. Denote by

Pk : Cb(A) → Cb(A), P∗
k : P(A) → P(A), k ≥ 0,

the Markov semi-groups associated with P(k,u,Γ).
For any function f(u), denote by f+ and f− its positive and negative parts,

respectively:

f+ =
1

2

(
f + |f |

)
, f− =

1

2

(
|f | − f

)
.

We shall assume that the condition below is fulfilled.

(H) There is a determining family R for P(A) such that for any f ∈ R the

function f − c belongs to R for all c ∈ R, and there is a constant A =
Af > 1 and an integer k0 = k0(f) ≥ 0 such that the following property

holds: if

sup
u∈A

f+
k (u) ≥ α for all k ≥ 0, (4.1)

sup
u∈A

f−
k (u) ≥ α for all k ≥ 0, (4.2)

where f+
k =

(
Pkf

)+
, f−

k =
(
Pkf

)−
, and α = α(f) > 0 is a constant not

depending on k, then for any k ≥ k0 there is l = l(k) > 0 such that

sup
u∈A

(
Plf

+
k

)
(u) ≤ Af inf

u∈A

(
Plf

+
k

)
(u), (4.3)

sup
u∈A

(
Plf

−
k

)
(u) ≤ Af inf

u∈A

(
Plf

−
k

)
(u). (4.4)

Sufficient conditions guaranteeing the validity of (H) are given in Section 4.3;
see conditions (H1) and (H2) there. The following theorem is the main result of
this section.

Theorem 4.1. Assume that condition (H) holds. Then the assertions below

take place.

(i) Let µ ∈ P(A) be an invariant measure of P∗
k. Then, for any f ∈ R,

Pkf → (µ, f) as t→ ∞ in L1(A, µ). (4.5)

(ii) The operator P∗
k has at most one invariant measure µ ∈ P(A).

9Theorem 4.1 established below remains true for continuous time. The statement of the
corresponding result and its proof are literally the same as in the discrete case.
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4.2 Proof of Theorem 4.1

Proof of (i). Step 1. Let µ ∈ P(A) be an invariant measure and let f ∈ R.
Without loss of generality, we can assume that

(µ, f) =

∫

A

f(u) dµ(u) = 0. (4.6)

The general case can be reduced to the former by the change f 7→ f − (µ, f).
Thus, we must prove that

‖Pkf‖µ =

∫

A

∣∣Pkf
∣∣ dµ → 0 as k → ∞. (4.7)

Note that P∗
l µ = µ for any l ≥ 0, and therefore

‖Pk+lf‖µ =

∫

A

∣∣Pl(Pkf)
∣∣ dµ ≤

∫

A

Pl

∣∣(Pkf)
∣∣ dµ

=

∫

A

∣∣(Pkf)
∣∣ d(P∗

l µ) =

∫

A

∣∣(Pkf)
∣∣ dµ

= ‖Pkf‖µ.

This means that ‖Pkf‖µ is a non-increasing sequence. Hence, the conver-
gence (4.7) will be established if we show that for any ε > 0 there is k = kε > 0
such that

‖Pkε
f‖µ ≤ ε. (4.8)

Step 2. We first assume that

sup
u∈A

f+
ks

(u) → 0 as s→ ∞,

where {ks} is a sequence of integers tending to +∞. In this case
∫

A

(
Pks

f
)+

(u) dµ(u) =

∫

A

f+
ks

(u) dµ(u) → 0 as s→ ∞. (4.9)

Moreover, it follows from (4.6) that

(µ, f) = (P∗
kµ, f) = (µ, fk) = 0, k ≥ 0,

where fk = Pkf , and therefore

(µ, f+
k ) = (µ, f−

k ) for any k ≥ 0. (4.10)

Combining this with (4.9), we derive

(µ, f+
ks

) = (µ, f−
ks

) → 0 as s→ ∞,

whence we conclude that (4.8) holds. A similar argument shows that if

sup
u∈A

f−
ks

(u) → 0 as s→ ∞
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for a sequence {ks}, then (4.8) is fulfilled.
Step 3. Thus, we can assume that (4.1) and (4.2) hold with a constant α > 0.

By condition (H), for any k ≥ k0 there is l ≥ 0 such that (4.3) and (4.4) are
satisfied. We claim that there is a sequence of integers {ks, s ≥ 1} such that

‖Pks
f‖µ ≤ asf‖f‖µ, s ≥ 0, (4.11)

where af = 1 −A−1
f < 1.

The proof is by induction on s. Inequality (4.11) is obvious for s = 0.
Assuming that (4.11) is established for s ≤ r, we now prove it for s = r+1. Set
kr+1 = kr + lr, where lr ≥ 0 is the integer entering inequalities (4.3) and (4.4)
with k = kr. Note that, by (4.3) and (4.4), we have10

∫

A

f±
kr
dµ =

∫

A

Plrf
±
kr
dµ ≤ sup

u∈A

(
Plrf

±
kr

)
(u) ≤ Af inf

u∈A

(
Plrf

±
kr

)
(u)

whence
Plrf

±
kr

(u) −A−1
f ‖f±

kr
‖µ ≥ 0 for u ∈ A.

It follows that
∫

A

∣∣Plrf
±
kr

−A−1
f ‖f±

kr
‖µ

∣∣ dµ =

∫

A

(
Plrf

±
kr

−A−1
f ‖f±

kr
‖µ

)
dµ = af‖f

±
kr
‖µ.

We now estimate the expression ‖Pkr+1
f‖µ = ‖Plrfkr

‖µ. In view of (4.10), we
have

‖f+
k ‖µ = ‖f−

k ‖µ for any k ≥ 0, (4.12)

and therefore
∫

A

∣∣Plrfkr

∣∣dµ =

∫

A

∣∣Plr(f
+
kr

− f−
kr

)
∣∣dµ

≤

∫

A

∣∣Plrf
+
kr

−A−1
f ‖f+

kr
‖µ

∣∣ dµ+

∫

A

∣∣Plrf
−
kr

−A−1
f ‖f−

kr
‖µ

∣∣ dµ

≤ af
(
‖f+
kr
‖µ + ‖f−

kr
‖µ

)
= af‖fkr

‖µ.

Using the induction hypothesis, we derive

∫

A

∣∣Pkr+1
f
∣∣dµ ≤ af‖Pkr

f‖µ ≤ ar+1
f ‖f‖µ,

which completes the proof of (4.11).
Inequality (4.8) is an obvious consequence of (4.11).

Proof of (ii). We first prove that any two invariant measures supported
by A are singular. To this end, we apply a well-known argument (for instance,

10Here and henceforth a formula involving the symbol ± is a brief writing for the two
formulas corresponding to the upper and lower signs.
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see [DZ, Proposition 3.2.5]). Let µ1, µ2 ∈ P(A) be two different invariant mea-
sures. Since R is a determining family for P(A), there is f ∈ R such that

(µ1, f) 6= (µ2, f). (4.13)

By (i),
Pkf → (µi, f) as k → ∞ in L1(A, µi), i = 1, 2.

Therefore, there is a sequence of integers {ks} tending to +∞ such that

Pks
f → (µi, f) as s→ ∞ µi-almost everywhere, i = 1, 2. (4.14)

Denote by Ci, i = 1, 2, the set of points u ∈ A for which (4.14) takes place. We
have µ1(C1) = µ2(C2) = 1 and, in view of (4.13), C1 ∩ C2 = ∅. This means
that µ1 and µ2 are singular.

We now assume that µ1, µ2 ∈ P(A) are two different invariant measures
for P∗

k. As is proved, they are singular. Consider the measure µ = (µ1 +µ2)/2.
It is clear that µ ∈ P(A) is an invariant measure and that µ and µ1 are not
singular. The contradiction obtained completes the proof of Theorem 4.1.

4.3 Sufficient conditions for application of Theorem 4.1

Assume that P(k,u,Γ), u ∈ A, Γ ∈ B(A), is a transition function satisfying the
following conditions.

(H1) There is a determining family R0 for P(A) such that if f ∈ R0, then

the sequence Pkf , k ≥ k0, is uniformly equicontinuous, where k0 is a

nonnegative integer depending on f .

(H2) For every r > 0 there are ε > 0 and l ≥ 1 such that

P(l,u, BA(a, r)) ≥ ε for any u,a ∈ A. (4.15)

Condition (H1) can be called a “uniform Feller property”. We impose it
instead of the strong Feller property, which is common in arguments proving
uniqueness of an invariant measure (see [DZ]), but which is not satisfied for
the infinite-dimensional system we deal with (see Remark 5.2). Condition (H2)
is a slow-down version of the usual assumption that the measures P(l,u, ·)
are absolutely continuous with respect to a reference measure on A and the
corresponding densities are positive uniformly in u ∈ A and l ≫ 1. It can also
be regarded as a condition of “uniform irreducibility” for the family of Markov
chains in question.

Let R be the set of functions f ∈ Cb(A) for which there is a constant c ∈ R

such that f − c ∈ R0.

Theorem 4.2. Let conditions (H1) and (H2) be satisfied. Then (H) is fulfilled

for R, and therefore assertions (i) and (ii) of Theorem 4.1 hold. Moreover,

suppµ = A. Finally, if A is a compact space, then the convergence in (4.5)
takes place in the space Cb(A).
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Proof. Let f(u) ∈ R be an arbitrary function satisfying (4.1), where f±
k =

(Pkf)± and α is a positive constant. We must prove that (4.3) and (4.4) hold.
We confine ourselves to the case of index +.

In view of condition (H1), there is r > 0 and for any k ≥ k0 there is uk ∈ A

such that

inf
v∈BA(uk,r)

f+
k (v) ≥ sup

v∈A

f+
k (v) −

α

2
≥
α

2
for k ≥ k0. (4.16)

Let ε > 0 and l ≥ 1 be the constants entering condition (H2). In view of (4.15)
and (4.16), we have

(
Plf

+
k

)
(u) =

∫

A

P(l,u, dv)f+
k (v) ≥

∫

BA(uk,r)

P(l,u, dv)f+
k (v)

≥ P
(
l,u, BA(uk, r)

)
inf

v∈BA(uk,r)
f+
k (v) ≥

αε

2
. (4.17)

On the other hand,
(
Plf

+
k

)
(u) ≤ sup

u∈A

f+
k (u) ≤ sup

u∈A

∣∣fk(u)
∣∣ ≤ sup

u∈A

∣∣f(u)
∣∣. (4.18)

Combining (4.17) and (4.18), we arrive at (4.3) with

Af = 2(αε)−1 sup
u∈A

∣∣f(u)
∣∣.

Inequality (4.4) can be proved in a similar way.
We now assume that µ is an invariant measure for P∗

k and show that suppµ =
A. To this end, it suffices to check that

µ
(
BA(a, r)

)
> 0 for any a ∈ A and r > 0. (4.19)

In view of the invariance of µ and inequality (4.15), we have

µ
(
BA(a, r)

)
=

∫

A

P
(
l,u, BA(a, r)

)
dµ(u) ≥ ε,

which implies (4.19).
Finally, let A be a compact space. We wish to show that

Pkf(u) → (µ, f) as k → ∞ uniformly in u ∈ A.

By condition (H1) and the Arzelà–Ascoli theorem, there is a sequence of integers
kj → ∞ such that Pkj

f(u) converges uniformly to a function g(u). In view
of assertion (i) of Theorem 2.2, the function g must coincide with (µ, f) on the
support of µ. Since suppµ = A, we have g ≡ (µ, f), and the whole sequence Pkf
converges to (µ, f). The proof of Theorem 4.2 is complete.

Remark 4.3. If R is dense in Cb(A), then the sequence Pkf uniformly converges
to (µ, f) for any f ∈ Cb(A). Indeed, let a function fε ∈ R be such that
‖f − fε‖∞ < ε. We have

∥∥Pkf − (ν, f)
∥∥
∞

≤
∥∥Pk(f − fε)

∥∥
∞

+
∥∥Pkfε − (ν, fε)

∥∥
∞

+
∣∣(µ, f − fε)

∣∣,
which implies the required assertion.
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5 Proof of Theorem 2.2

5.1 Reduction to Theorem 4.1

Step 1. We recall that the original family of Markov chains Θk = Θk(u) with
phase space A is defined as

Θ0 = u, (5.1)

Θk = S(Θk−1) + ηk, (5.2)

where k ≥ 1. As was shown in Section 2.2.1, there is an invariant measure
λ ∈ P(A) for the semi-group P ∗

k associated with (5.1), (5.2). Hence, we must
establish the uniqueness.

We fix an arbitrary R > 0 such that A ⊂ BH(R), choose any constant γ,
0 < γ < 1, and denote by N the smallest integer satisfying the condition
(cf. (3.5))

γN (ρ) ≤ γ, ρ =
(
R2 + r2

)1/2
, r =

Rγ + b

1 − γ
, (5.3)

where γN is the sequence in condition (C). We claim that if condition (2.10)
holds with the above choice of N , then the invariant measure is unique.

Step 2. By Proposition 1.5, an invariant measure λ ∈ P(H,A) for the
family (5.1), (5.2) defines a stationary solution (zk, k ∈ Z) of (5.2), which gives
rise to a stationary solution and, hence, to an invariant measure λ ∈ P(H)
for (2.15). We claim that suppλ ⊂ A. Indeed, it suffices to show that if
u ∈ suppλ, then for any ε > 0 and an arbitrary integer L ≥ 0 there is u′ ∈ A
such that

‖ul − u′l‖ ≤ ε for − L ≤ l ≤ 0. (5.4)

Fix arbitrary u ∈ suppλ, L ≥ 0, and ε > 0. It follows from the definition of
the support of a measure that the event

zl ∈ BH(ul, ε/2), −L ≤ l ≤ 0,

has a positive probability. Since suppD(zl) ⊂ A and zk satisfies Equation (5.2)
for all ω ∈ Ω and k ∈ Z, there are realisations

z̃l ∈ A ∩BH(ul, ε/2), η̃l ∈ supp ν, −L ≤ l ≤ 0, (5.5)

of the random variables zl and ηl such that

z̃l = S(z̃l−1) + η̃l, 1 − L ≤ l ≤ 0. (5.6)

Furthermore, since z̃−L ∈ A, for any δ > 0 there is an integer j ≥ 0 and
u′−L ∈ Aj such that ‖z̃−L − u′−L‖ ≤ δ. We now set

u′l = S(u′l−1) + η̃l, 1 − L ≤ l ≤ 0. (5.7)

It follows from (5.6), (5.7) and continuity of S (see (2.1)) that

‖u′l − z̃l‖ ≤ c(δ) for − L ≤ l ≤ 0, (5.8)
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where c(δ) > 0 goes to zero with δ. Comparing (5.5) and (5.8), we obtain the
inequalities

‖ul − u′l‖ ≤
ε

2
+ c(δ), −L ≤ l ≤ 0,

which imply (5.4) for sufficiently small δ > 0.
It now remains to prove that the (L+ 1)-tuple (u′−L, . . . , u

′
0) coincides with

the last L + 1 components of an element u′ ∈ A, i. e., there are u′l ∈ H ,
l ≤ −1−L, such that (u′l, l ∈ Z0) ∈ A. However, this assertion follows from the
inclusion u′−L ∈ Aj and definition of Aj .

Thus, suppλ ⊂ A, so that λ ∈ P(H,A). Clearly, different original invariant
measures correspond to different invariant measures for (2.14), (2.15) since λ
is the projections of λ. Hence, it remains to check that the family of Markov
chains Θk(u) has a unique invariant measure λ.

Step 3. Since (5.3) holds, Theorems 3.1 and 3.2 apply. Therefore, due to
Corollary 3.4, it suffices to show that Equation (3.11) has a unique invariant
measure µ supported by A. Then the measure λ is its image under the map Φ
and is unique.

Step 4. By Theorem 4.1, to prove the uniqueness of an invariant measure µ ∈
P(A) for (3.11), it is sufficient to check that the transition function P(k,U ,Γ)
satisfies conditions (H1) and (H2).

5.2 Checking condition (H1)

Recall that the space A is endowed with the metric dκ (see (3.1)) and that the
topology defined on A by dκ coincides with the Tikhonov topology for any κ > 0.

Proposition 5.1. Assume that conditions (A) – (D) hold. Then the transition

function P(k,U ,Γ) satisfies condition (H1).

Proof. For a metric space X and an integer k ≥ 1, we denote by Xk the direct
product of k copies of X and endow it with the natural direct product metric.

Let R be the set of functions f(U) ∈ Cb(A) for which there is an integer
m ≥ 0 and a continuous function

F (v−m, w−m, . . . , v0, w0) ∈ Cb

(
(HN ×H⊥

N )m+1
)

(5.9)

such that

f(U) = F (v−m, . . . , w0) for U =

(
v

w

)
=

(
(vl, l ≤ 0)

(wl, l ≤ 0)

)
∈ A. (5.10)

Thus, R is the set of continuous functions on A that depend on finitely many
“coordinates.” Clearly, R is invariant with respect to addition of a constant
function and, moreover, it is a determining family for P(A) because the Borel σ-
algebra on A is generated by the σ-algebras Bm(A), m ≥ 0, where, by definition,
Bm(A) consists of the sets of the form

{
U ∈ A : (v−m, w−m, . . . , v0, w0) ∈ Γ

}
, Γ ∈ B

(
(HN ×H⊥

N )m+1
)
.
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We now prove that, for any f ∈ R, the family {Pkf, k ≥ 0} is uniformly
equicontinuous. Since Pkf ∈ Cb(A) for any k ≥ 0 and A is a compact space
(in the Tikhonov topology), each of the functions Pkf is uniformly continuous.
Therefore it suffices to show that the family {Pkf, k ≥ m + 1} is uniformly
equicontinuous, where m is the integer in (5.9).

Denote by νN and ν⊥N the distributions of the random variables ϕk = PNηk
and ψk = QNηk, respectively. It follows from condition (D) that νN ∈ P(HN )
is absolutely continuous with respect to the Lebesgue measure on HN = R

N

and that the corresponding density has the form

D(α) =

N∏

j=1

b−1
j pj(b

−1
j αj), α = (α1, . . . , αN ) ∈ R

N ,

where pj(r) is the density of πj (see condition (D)) and bj > 0 are the con-
stants in (2.4). Note that D(α) is Lipschitz continuous. It follows from (1.20)
and (1.22) that if f(U) is given by (5.10), then

Pkf(U) =

∫

Bk
R,b

Dk(U , σ1, . . . , σk)F (σk−m, . . . , σk) dℓ(σ1) · · · dℓ(σk), (5.11)

where BkR,b := (BR,b)
k, BR,b := BHN

(R)×BH⊥
N

(b), dℓ(σ) is the measure dα dν⊥N
on BR,b, and

Dk(U ;σ1, . . . , σk) =

k∏

l=1

D
(
αl − T0(U , σ1, . . . , σl−1)

)
. (5.12)

Now note that the operator T0 is defined on BR,b and therefore formula (5.12)
makes sense for any U ∈ BR,b and σj ∈ BR,b, 1 ≤ σj ≤ k.

We claim that Pkf is a Lipschitz continuous function for any k ≥ m+1 and
that the corresponding Lipschitz constants are uniformly bounded. Indeed, for
any Lipschitz continuous function G(U) defined for U ∈ BR,b, denote by LipG
and LiprG, r ≤ 0, its Lipschitz constants in U and hr =

(
vr

wr

)
, respectively.

(See the final paragraph of Section 3.1 for more detailed definition of LiprG.)
It follows from (5.12) that, for any integer r ≤ 0,

LiprDk(U ;σ1, . . . , σk) ≤ L

k∑

j=1

Dkj(U ;σ1, . . . , σk) Lipr T0(U , σ1, . . . , σj),

where L is the Lipschitz constant for D(α) and

Dkj(U ;σ1, . . . , σk) =

k∏

j 6=l=1

D
(
αl − T0(U , σ1, . . . , σl−1)

)
.

Taking into account (2.1), (3.8), and (3.12), we conclude that

Lipr T0(U , σ1, . . . , σj) ≤ C1e
κ(r−j),
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where C1 > 0 is a constant not depending on k, r, and U . Since dℓ = dα dν⊥N
and D(α) dα and dν⊥N are probability measures, we have

∫

Bk
R,b

Dkj(U ;σ1, . . . , σk) dℓ(σ1) · · · dℓ(σk) ≤ C2.

Therefore,
∫

Bk
R,b

LiprDk(U ;σ1, . . . , σk) dℓ(σ1) · · · dℓ(σk) ≤ C3L e
κr, r ≤ 0. (5.13)

Using (5.11) and (5.13), we obtain

Lipr Pkf ≤

∫

Bk
R,b

Lipr
(
Dk(U , σ1, . . . , σk)

)
F (σk−m, . . . , σk) dℓ(σ1) · · · dℓ(σk)

≤ C3L‖F‖∞e
κr ≤ C4e

κr.

Hence,

LipPkf ≤

0∑

r=−∞

Lipr Pkf ≤ C4

0∑

r=−∞

eκr = C4(1 − e−κ).

Thus, the functions Pkf , k ≥ m+ 1, are uniformly Lipschitz, and (H1) follows.

Remark 5.2. Let us show that P(k,U ,Γ) is a continuous functions of U ∈ A

if the Borel set Γ ⊂ A depends on the last k coordinates, i. e., there is Γ̃ ∈
B

(
(HN ×H⊥

N )k
)

such that

Γ =
{
V = (Vl, l ≤ 0) ∈ A : (V1−k, . . . , V0) ∈ Γ̃

}
.

Indeed, according to (5.11), we have

P(k,U ,Γ) =

∫

eΓ

Dk(U , σ1, . . . , σk) dℓ(σ1) · · · dℓ(σk),

and the required assertion follows from the continuity of the integrand as a
function of U and the dominated convergence theorem.

It is not difficult to see, however, that the transition function P(k,U ,Γ)
does not possess the strong Feller property. More exactly, assume that a Borel
set Γ ⊂ A has the form

Γ =
{
V = (Vl, l ≤ 0) ∈ A : (Vl, l ≤ −k) ∈ Γ̃

}
,

where Γ̃ ∈ B
(
(HN ×H⊥

N )Z−k
)
. In this case

P(k,U ,Γ) = P
{
Υ k(U) ∈ Γ

}
= P

{(
U , Υ k1−k(U), . . . , Υ k0 (U)

)
∈ Γ

}
= χeΓ(U),

where χeΓ is the characteristic function of the set Γ̃. Hence, the function
P(k,U ,Γ) is not continuous unless Γ = ∅ or Γ = A.
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5.3 Checking condition (H2)

Recall that the space A is endowed with metric dκ , κ > 0 (see (3.1)).

Proposition 5.3. Assume that conditions (A) – (D) hold. Then for any r > 0
there is an integer l > 0 and a constant ε > 0 such that

P
(
l,U , BA(a, r)

)
≥ ε for any U ,a ∈ A. (5.14)

Proof. We first outline the main ideas. Since Φ : A → A is a uniformly Lipschitz
homeomorphism, it follows from (3.16) that Proposition 5.3 will be proved if
we establish a similar assertion for P(k,u,Γ): for any r > 0 there is an integer
l > 0 and a constant ε > 0 such that

P
(
l,u, BA(a, r)

)
≥ ε for any u,a ∈ A. (5.15)

The proof of (5.14) is based on the two observations below.

• With positive probability, the random variable Θk(u) belongs to an arbi-
trarily small ball centred at 0 if k is sufficiently large. More exactly, for
any δ > 0 there is ε1 > 0 and an integer L1 > 0 such that

P
(
L1,u, BA(δ)

)
≥ ε1 for any u ∈ A. (5.16)

• With positive probability, the random variable Θk(u) belongs to an ar-
bitrarily small ball centred at a ∈ A if the initial point u is sufficiently
close to zero. More exactly, for any r > 0 there are ε2 > 0 and δ > 0 and
an integer L2 > 0 such that

P
(
L2,u, BA(a, r)

)
≥ ε2 for any u ∈ BA(δ) and a ∈ A. (5.17)

The proof of the first assertion is based on the dissipativity of the operator S
(see inequality (2.2)) and the fact that the random variables ηk take small
values with positive probability, while the second assertion follows from the
definition of the set of attainability and the “continuous dependence” of the
Markov chain Θk(u) on the initial point. If (5.16) and (5.17) are proved, then
the required inequality (5.15) with l = L1 + L2 and ε = ε1ε2 is easily implied
by the Chapman–Kolmogorov equation. Indeed,

P
(
L1 + L2,u, BA(a, r)

)
=

∫

A

P
(
L1,u, dv

)
P

(
L2,v, BA(a, r)

)

≥

∫

BA(δ)

P
(
L1,u, dv

)
P

(
L2,v, BA(a, r)

)

≥ P
(
L1,u, BA(δ)

)
inf

v∈BA(δ)
P

(
L2,v, BA(a, r)

)

≥ ε1ε2. (5.18)

Let us now turn to the accurate proof.
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Step 1. We first check (5.16). To this end, we note that, with probability 1,
we have

Θk(u) =
(
u,Θ1(u), . . . ,Θk(u)

)
, (5.19)

where u ∈ H and u = u0 is the zeroth component of u. In view of the definition
of the Tikhonov topology, inequality (5.17) will be proved once we show that
for any δ1 > 0 and any integer l ≥ 0 there is ε1 > 0 and an integer L1 ≥ l such
that

P
{∥∥Θj(u)

∥∥ ≤ 2δ1 for L1 − l ≤ j ≤ L1

}
≥ ε1, (5.20)

where u is an arbitrary element of A. Note that Sk(u) ∈ A ⊂ BH(R) for any
k ≥ 0 if R > 0 is sufficiently large. By condition (B), for given r = δ1 and R > 0,
there are n0 ≥ 1 and a, 0 < a < 1, such that (2.2) holds. Denote by K ≥ 1
the smallest integer for which akR < r. Iterating K times inequality (2.2), we
obtain

‖Sk(u)‖ ≤ r = δ1 for k ≥ Kn0. (5.21)

We claim that (5.20) holds for L1 = Kn0 + l. Indeed, define a controllable
system Θk(u; ξ1, . . . , ξk) by the formulas (cf. (1.8), (5.1), (5.2))

Θ0(u) = u, Θk(u; ξ1, . . . , ξk) = T
(
Θk−1(u; ξ1, . . . , ξk−1)

)
+ ξk,

where ξj ∈ supp ν. It follows from (5.21) and the continuity of S that if

‖ξk‖ ≤ δ2 for 1 ≤ k ≤ L1, (5.22)

where δ2 > 0 is sufficiently small, then

∥∥Θj(u; ξ1, . . . , ξk)
∥∥ ≤ 2r = 2δ1 for L1 − l ≤ j ≤ L1. (5.23)

Let

Ωk =
{
ω ∈ Ω : ‖ηk‖ ≤ δ2

}
, ΩL1 =

L1⋂

k=1

Ωk. (5.24)

Condition (D) implies that P(Ωk) ≥ p0 for any k and, therefore, in view of the
independence, P(ΩL1) ≥ pL1

0 = ε1. (See Lemma 5.4 below for a stronger result.)
Now note that Θk(u) = Θk(u; η1, . . . , ηk). By virtue of (5.22) – (5.24), the event
in braces in (5.20) contains ΩL1 , and hence its probability is no less that ε1.

Step 2. We now prove inequality (5.17). To this end, we need two auxiliary
assertions.

Lemma 5.4. For any ρ > 0 and any integer M ≥ 1 there is p0 = p0(ρ,M) > 0
such that

P
{
‖ηj − xj‖ < ρ, 1 ≤ j ≤M

}
≥ p0 (5.25)

uniformly in x1, . . . , xM ∈ supp ν.
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Proof. Denote by h(x), x = (x1, . . . , xM ) ∈ HM =
∏M
j=1, the right-hand side

of (5.25). It follows from the Fatou lemma that h(x) is a lower semi-continuous
function of x, i. e.,

lim inf
x→x0

h(x) ≥ h(x0) for any x0 ∈ HM .

Since h(x) is positive on the compact setK =
∏M
j=1 supp ν, it attains its positive

minimum on K. Hence, (5.25) holds with a positive p0.

Denote by Ak the set of attainability from zero by the time k for Equa-
tion (3.11) (see (1.6)).

Lemma 5.5. For any r > 0 there is an integer k ≥ 0 such that A is contained

in the r-neighbourhood of Ak, i. e., for any a ∈ A there exists ak ∈ Ak such

that ak ∈ BA(r,a).

Proof. Since A is the closure of
⋃∞
j=0 Aj , for any r > 0 we have

A ⊂

∞⋃

j=0

Oj,

where Oj is the open r-neighbourhood of Aj in H. Thus, we have an open
covering of the compact set A. Therefore there exists a finite subcovering. It
remains to note that the sets Oj form an increasing sequence, and hence A ⊂ Ok

for some k ≥ 1.

We now fix arbitrary r > 0 and a ∈ A. By Lemma 5.5, there is an integer
k ≥ 0 not depending on a and an element ak ∈ Ak such that dκ(a,ak) ≤ r/2.
Since BA(ak, r/2) ⊂ BA(a, r), we can assume from the very beginning that
a ∈ Ak. We claim that (5.17) holds with L2 = k.

Indeed, we must check that

P
{
Θk(u) ∈ BA(a, r)

}
≥ ε2 (5.26)

if a ∈ Ak and u ∈ BA(δ) for a sufficiently small δ > 0. Define a controllable
system Θk(u; ξ1, . . . , ξk) by formulas (cf. (1.8), (2.14), (2.15))

Θ0(u) = u, Θk(u; ξ1, . . . , ξk) = S
(
Θk−1(u; ξ1, . . . , ξk−1)

)
+ ξk0 ,

where u ∈ A, ξj ∈ supp ν, ξk0 = (. . . , 0, 0, ξk) and S is given by (2.16). Since
a ∈ Ak, there are ξ0j ∈ supp ν, j = 1, . . . , k, such that

Θk(0; ξ01 , . . . , ξ
0
k) = a.

It follows from continuity of S that

Θk(u; ξ1, . . . , ξk) ∈ BA(a, r)
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if
dκ(u,0) < δ, ‖ξj − ξ0j ‖ < δ, j = 1, . . . , k,

where δ is sufficiently small. Therefore,

P
{
Θk(u) ∈ BA(a, r)

}
≥ P

{
‖ηj − ξ0j ‖ < δ, j = 1, . . . , k

}
. (5.27)

It remains to note that, in view of Lemma 5.4, the right-hand side of (5.27) is
bounded from below by a constant not depending on ξ0j ∈ supp ν, j = 1, . . . , k.
The proof of Proposition 5.3 is complete.

6 Ergodic properties of the invariant measure

6.1 Support of the invariant measure

Theorem 6.1. Let the conditions of Theorem 2.2 hold and let λ ∈ P(H,A) be

the invariant measure for P ∗
k . Then suppλ = A.

Proof. Let λ ∈ P(H,A) and µ ∈ P(A) be the invariant measures for the semi-
groups P∗

k and P∗
k, respectively (see Subsections 2.2.2 and 3.2). By Theorem 4.2,

we have suppµ = A. According to Step 3 in Section 5.1, we have

suppλ = Φ(suppµ) = Φ(A) = A.

Now note that the projection

π0 : H → H, u = (ul, l ∈ Z0) 7→ u0,

maps the measure λ to λ. Therefore,

π0(suppλ) = π0(A) = suppλ.

Thus, the theorem will be proved once we show that π0(A) = A, i. e., for any
u ∈ A there is u ∈ A such that π0(u) = u. This assertion is obvious if u ∈ Ak
and can easily be proved with the help of approximation of a given element
u ∈ A by a sequence uk ∈ Ak.

6.2 Convergence to the invariant measure and mixing

Theorem 6.2. Let the conditions of Theorem 2.2 hold and let f ∈ C(H).
Then

Pkf(u) → (λ, f) as k → ∞ (6.1)

for any u ∈ A. Moreover, the convergence is uniform in u ∈ A.

Proof. First note that the measure P (k, u, ·) is supported by the set of attain-
ability A for any k ≥ 0 and u ∈ A, and therefore we can redefine the function f
outside A without changing Pkf(u) for u ∈ A. Since f is uniformly bounded on
the compact set A, we can assume that f ∈ Cb(H).
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Given f ∈ Cb(H), we define a function f ∈ Cb(H) by the formula

f (u) = f(u0), u ∈ H,

where u0 is the zeroth component of u. Let λ ∈ P(H,A) be an invariant measure
for P ∗

k and let λ ∈ P(H,A) be the corresponding invariant measure for P∗
k (see

Step 2 in Section 5.1). Since the projection u = (. . . , u−1, u0) 7→ u0 sends the
measure λ to λ, we have

(λ, f) = (λ,f).

As was shown in the proof of Theorem 6.1, for any u ∈ A there is u ∈ A such
that u0 = u. Under this choice of u ∈ A, we have

Pkf (u) = Pkf(u).

Therefore, it suffices to prove convergence (6.1) with Pk, f , and u replaced
by Pk, f , and u, respectively.

The map Ψ defined in Theorem 3.2 transforms the measure λ to the measure
µ = Ψ∗λ, which is invariant for the family of Markov chains (3.10), (3.11).
Using (3.17), we see that it remains to check that

Pkg(U) → (µ, g) as k → ∞ uniformly in u ∈ A,

where g(U) = f
(
Φ(U)

)
. Since Theorem 4.2 applies to the Markov semi-

group Pk corresponding to (3.10), (3.11), the last convergence follows from (4.5).

Theorem 6.2 has two important corollaries.

Corollary 6.3. Let the conditions of Theorem 2.2 hold. Then the invariant

measure λ ∈ P(H,A) is mixing, i. e.,

∫

H

Pkf(u)g(u) dλ(u) →

∫

H

f(u) dλ(u)

∫

H

g(u) dλ(u) as k → ∞

for any two functions f, g ∈ C(H). In particular, the measure λ is ergodic in A.

Corollary 6.4. Let the conditions of Theorem 2.2 hold and let Θk be an ar-

bitrary Markov chain in H that satisfies (2.9) for k ≥ 1 and whose initial

distribution λ0 is supported by A. Then the distribution of Θk weakly converges

to λ, i. e.,

(P ∗
k λ0, f) → (λ, f) as k → ∞ for any f ∈ Cb(H).

7 Application to stochastic dissipative PDE’s

7.1 Navier-Stokes equations in a bounded domain

Let D ⊂ R
2 be a bounded domain with boundary ∂D ∈ C2. Denote by V

the space of vector functions u = (u1, u2), uj ∈ C∞
0 (D), such that div u = 0,
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by H and V the closure of V in11 L2(D) and H1(D), respectively, and by Π the
orthogonal projection in L2(D) onto H .

On the domain D, let us consider the system of Navier–Stokes (NS) equa-
tions (0.1) with random right-hand side. We write it as a functional equation
in H (for instance, see [CF, Chapter 8] or [BV, Section 1.6]):

∂tu+ δLu+B(u, u) = η(t). (7.1)

Here δ > 0 is a parameter, L is the closure in H of the operator L0 = −Π∆
with domain V , B(u, u) = Π(u,∇)u, and η(t) is a random process of the form

η(t) =

+∞∑

k=−∞

δ(t− kT )ηk(x), (7.2)

where T > 0, ηk(x) are H-valued i.i.d. random variables, and δ(·) is the Dirac
measure concentrated at zero. In what follows, to simplify the notation, we shall
assume that T = 1. Let us define what is meant by a solution of Equation (7.1).

Let ‖ · ‖ and ‖ · ‖1 be the norms in the spaces H and V , respectively. For an
open interval I ⊂ R, denote by L2(I, V ) the space of Borel functions f(t) : I →
V such that

‖f‖L2(I,V ) :=

(∫

I

‖f(t)‖2
1dt

)1/2

<∞

and by C(I,H) the space of functions on I with range in H that are extendible
to a continuous function f(t) : Ī → H , where Ī is the closure of I.

Definition 7.1. Letm and n be some integers such thatm+1 < n. A stochastic
process u(t) = u(t, x) defined on the interval [m,n), is called a solution of

Equation (7.1) if the following two properties hold with probability 1:

• For any k = m+1, . . . , n, the restriction of u(t) to Ik := (k−1, k) belongs
to the space L2(Ik, V )∩C(Ik, H) and satisfies the homogeneous equation

∂tu+ δLu+B(u, u) = 0. (7.3)

• For k = m+ 1, . . . , n− 1,

u(k + 0, x) − u(k − 0, x) = ηk(x). (7.4)

• The function u(t) is continuous from the right at the points t = m +
1, . . . , n− 1.

The following proposition is a trivial consequence of Definition 7.1.

Proposition 7.2. Let a stochastic process u(t, x) be a solution of (7.1) on an

interval [m,n). Then, with probability 1, u(t, x) satisfies Equation (7.1) in the

sense of distributions.

11We use the same notation for spaces of scalar and vector functions.
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Consider now the Cauchy problem for Equation (7.1):

u(0, x) = u0(x), (7.5)

where u0(x) is an H-valued random variable. A stochastic process u(t, x) is
called a solution of the problem (7.1), (7.5) if it is a solution of Equation (7.1)
and relation (7.5) holds with probability 1.

It follows from Definition 7.1 and the classical result on the correctness of the
initial-boundary value problem for the 2D Navier–Stokes system (for instance,
see [L, CF, BV]) that the problem (7.1), (7.5) has a unique solution u(t, x)
defined for all t ≥ 0. This solution can be constructed in the following way.

Let St be the solving semi-group for the Cauchy problem (7.3), (7.5). Thus,
St(u0) = v(t), where v(t) = v(t, x) is the solution of (7.3), (7.5). Define a
random process u(t) as

u(k) = S
(
u(k − 1)

)
+ ηk(x), k = 1, 2, . . . , (7.6)

u(k + t) = St
(
u(k)

)
, 0 ≤ t < 1, k = 0, 1, 2, . . . , (7.7)

where S = S1. It is easy to see that u(t) is the required solution.
Consider now the sequence uk = u(k) ∈ H , k ≥ 0. Since the random

variables u0, η1, η2, . . . are independent, we conclude that {uk} is a Markov
chain. Hence, we can define a family of Markov chains by the formulas (cf. (2.8),
(2.9))

Θ0(v) = v, Θk(v) = S(Θk−1(v)) + ηk, k ≥ 1, (7.8)

where v ∈ H . Denote by Pk(v,Γ), Pk and P ∗
k the corresponding transition

function and the Markov operators (see (1.3) – (1.5)) and by A the set of
attainability from zero for (7.8) (see (1.7)).

Assume that ηk(x), k ∈ Z, have the form (2.6), i. e.,

ηk =

∞∑

j=1

bjξjkej(x), (7.9)

where bj ≥ 0 are some constants satisfying (2.7), {ξjk} is a family of independent
random variables for which condition (D) holds, and {ej = ej(x)} is the com-
plete set of L2-normalized eigenvectors of the operator L with the corresponding
eigenvalues {αj}.

Theorem 7.3. Under the above conditions, the Markov semi-group P ∗
k has a

unique invariant measure λ ∈ P(H,A) if (2.10) holds with a sufficiently large

N ≥ 1. This measure is concentrated on the domain of definition D(L) of the

operator L if 12

∞∑

j=1

α2
jb

2
j <∞. (7.10)

12Clearly, condition (7.10) implies that ηk ∈ D(L) with probability 1.
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Furthermore, the measure λ is mixing, and for any initial distribution λ0 ∈
P(H,A) the sequence P ∗

k λ0 weakly converges to λ. In particular, if u(t, x) is

the solution of (7.1) starting from any point in A (e. g., from zero ), then the

measures D
(
u(k, ·)

)
tends to λ as k → ∞, k ∈ Z.

Proof. In view of Theorems 2.2, 6.1, 6.2 and Corollaries 6.3, 6.4, to prove the
existence, uniqueness, and ergodic properties of an invariant measure, it suffices
to check that conditions (A) – (C) are satisfied for the operator S = S1.

The uniform Lipschitz property of S on any ball BH(R) is well known (for
instance, see [CF, Chapter 10], [BV, Theorem 1.6.1], or [G, Section 3.2]). It is
also a classical result that

∥∥S(u)
∥∥ ≤ a‖u‖ for any u ∈ H, (7.11)

where a = e−δα1 . Inequality (7.11) immediately implies (2.2) (with n0 = 1)
and condition (B). Finally, to check (C), we note that (for instance, see [BV,
Theorem 1.6.2])

∥∥S(u1) − S(u2)
∥∥

1
≤ C(R)‖u1 − u2‖ for any u1, u2 ∈ BH(R). (7.12)

We also have

‖QNv‖
2 =

∞∑

j=N+1

|vj |
2 ≤ α−1

N+1

∞∑

j=N+1

αj |vj |
2 ≤ α−1

N+1‖v‖
2
1, (7.13)

where vj = (v, ej) are the Fourier components of v. The required inequality (2.5)
with γN (R) = C(R)α−1

N+1 follows from (7.12) and (7.13).
We now show that the invariant measure λ ∈ P(H,A) is concentrated

on D(L) if (7.10) holds. It is well known that S(H) ⊂ D(L) and that D(L) is
a Borel subset in H . Hence,

P
(
1, u,D(L)

)
= P

{
S(u) + η1 ∈ D(L)

}
= 1 for any u ∈ H.

It follows that

λ
(
D(L)

)
=

∫

H

P
(
1, u,D(L)

)
dλ(u) = 1,

which completes the proof of Theorem 7.3.

7.2 Navier-Stokes equations on a torus

We now assume that x ∈ T
2, where T

2 is a two-dimensional torus, and that

∫

T2

u(t, x) dx = 0,

∫

T2

η(t, x) dx = 0. (7.14)

Let Hs be the space of divergence-free vector fields on T
2 that belong to the

Sobolev space Hs(T,R2) and whose mean value is zero. We fix an arbitrary
integer s ≥ 0 and denote by {ej} the complete set of L2-normalised eigenvectors
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of the operator L. As before, St stands for the solving semi-group corresponding
to the non-forced NS equations. It is well known that St is a continuous operator
in Hs for any integer s ≥ 0. Applying standard arguments (see [BV, CF, FT, L]),
it is not difficult to show that the operator S = S1 satisfies conditions (A) – (C).
Besides, ∥∥S(u)

∥∥
s+k

≤ Ck
(
‖u‖s

)
for any k ≥ 0. (7.15)

We assume that the forcing η(t) has the form (7.9) and is smooth, i. e., the
coefficients bj ≥ 0 satisfy the inequality

|bj | ≤ Cmj
−m for any j,m ≥ 1, (7.16)

where Cm > 0 does not depend on j. If condition (D) is satisfied, then Theo-
rems 2.2, 6.1, and 6.2 apply to the space-periodic 2D NS equations in the space
H = Hs provided that

bj > 0 for j = 1, . . . , N = N(δ, s). (7.17)

By Theorem 2.2, there is a unique invariant measure λ supported by the set of
attainability from zero in the space Hs. It follows from (7.15) and (7.16) that
the measure λ is concentrated on infinitely smooth functions.

Let u(t, x) be a solution of (7.1), (7.2) (with x ∈ T
2) such that

u(0, x) = 0.

The sequence of distributions of the random variables u(k) ∈ Hs weakly con-
verges to λ. Hence,

Ef
(
u(k)

)
→

∫

Hs

f(u) dλ(u) as k → ∞

for any nonlinear continuous functional f on Hs.

7.3 A nonlinear Schrödinger equation on a torus

Consider the Schrödinger equation

u̇ = (∆ − 1)u+ i|u|2u+ η(t), x ∈ T
n, (7.18)

where u = u(t, x) is an unknown complex-valued function, T
n is an n-dimen-

sional torus, and η(t) is a random process of the form (7.2) with T = 1. We
regard (7.18) as a system of two equations for the real and imaginary parts
of u(t, x).

Assume that the random variables ηk in (7.2) have the form (7.9), where
bj ≥ 0 are some constants, ξjk are independent random variables satisfying
condition (D), and {ej} is the complete set of eigenvectors (which are pairs of
real-valued functions) of the operator 1−∆ on the torus T

n with corresponding
eigenvalues {αj}. It can be proved that if the inequality

∞∑

j=1

αsjb
2
j <∞
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holds with some integer s > n/2, then the Cauchy problem for Equation (7.18)
is well-posed in the Sobolev space Hs = Hs(Tn,R2). More precisely, for any
random variable u0(x) with values in Hs the problem (7.18), (7.5) has a unique
solution u(t, x) ∈ Hs, t ≥ 0, given by formulas (7.6), (7.7), where S = S1 and
St is the solving semi-group for the homogeneous equation.

We now define a family of Markov chains Θk(v), v ∈ Hs, by formulas (7.8).
Let P (k, v,Γ), Pk, and P ∗

k be the transition function and the Markov semi-
groups associated with the family Θk(v) and let A = As ⊂ Hs be the corre-
sponding set of attainability from zero. The proof of the following assertion is
similar to that of Theorem 7.3.

Theorem 7.4. Under the above conditions, the Markov semi-group P ∗
k has a

unique invariant measure λ ∈ P(Hs, A) if (2.10) holds with a sufficiently large

N ≥ 1. The measure λ is mixing, and for any initial distribution λ0 ∈ P(Hs, A)
the sequence P ∗

k λ0 weakly converges to λ. In particular, if u(t, x) is the solution

of (7.18) starting from any point in A (e. g., from zero ), then the measures

D
(
u(k, ·)

)
tends to λ as k → ∞, k ∈ Z.

8 Appendix: proof of Theorem 3.1

The solvability of Equation (3.3) will be proved by the contraction mapping
principle. For given v ∈ BN (R) and ψ ∈ B⊥

N(b), consider an operator K that
is defined on B⊥

N (r), where r is the constant in (3.5), and maps ṽ = (ṽl, l ≤ 0)
to ṽ′ = (ṽ′l, l ≤ 0), where

ṽ′l = QNS(vl−1 + ṽl−1) + ψl, l ≤ 0.

It is clear that an element ṽ ∈ B⊥
N (r) is a solution of (3.3) if and only if it

is a fixed point of K. We claim that for sufficiently large N the operator K
maps the set B⊥

N (r) into itself and is a contraction if B⊥
N (r) is endowed with

the norm ‖ · ‖∞.
Indeed, in view of inequality (2.5) with u2 = 0, for any ṽ ∈ B⊥

N (r), we have
∥∥K(ṽ)

∥∥
∞

≤ sup
l≤0

∥∥QNS(vl−1 + ṽl−1)
∥∥ + sup

l≤0
‖ψl‖

≤ γN (ρ) sup
l≤0

‖vl−1 + ṽl−1‖ + b ≤ γN (ρ)(R + r) + b. (8.1)

Choose an integer N such that γN (ρ) ≤ γ. By (3.5) and (8.1),
∥∥K(ṽ)

∥∥
∞

≤ γ(R+ r) + b ≤ r,

which means that K maps the space B⊥
N (r) into itself.

To prove that K is a contraction, we take arbitrary ṽi = (ṽil , l ≤ 0) ∈ B⊥
N (r),

i = 1, 2, and note that, in view of (2.5),

∥∥K(ṽ1) −K(ṽ2)
∥∥
∞

≤ sup
l≤0

∥∥∥QN
(
S(vl−1 + ṽ1

l−1) − S(vl−1 + ṽ2
l−1)

)∥∥∥

≤ γN (ρ)‖ṽ1 − ṽ2‖∞.
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It follows that if γN (ρ) ≤ γ < 1, then K is a contraction and hence has a unique
fixed point in B⊥

N (r).
We now prove (3.7). To this end, choose arbitrary vi ∈ BN (R) and ψi ∈

B⊥
N (b), i = 1, 2, and set ṽi = W(vi,ψi). In view of (3.3) and (2.5), we have

∥∥∥M(κ)
(
W(v1,ψ1) −W(v2,ψ2)

)∥∥∥
∞

≤ sup
l≤0

eκl
(∥∥QN

(
S(v1

l−1 + ṽ1
l−1) − S(v2

l−1 + ṽ2
l−1)

)∥∥+‖ψ1
l − ψ2

l ‖
)

≤ eκγ sup
l≤−1

eκl
(
‖v1
l − v2

l ‖ + ‖ṽ1
l − ṽ2

l ‖
)

+ sup
l≤0

eκl‖ψ1
l − ψ2

l ‖

≤ eκγ
(∥∥M(κ)(v1 − v2)

∥∥
∞

+
∥∥M(κ)(ṽ1 − ṽ2)

∥∥
∞

)
+

∥∥M(κ)(ψ1 −ψ2)
∥∥
∞
,

whence we derive (3.7). The proof of the theorem is complete.
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