Controllability of three-dimensional Navier–Stokes equations and applications

Armen Shirikyan

Laboratoire de Mathématiques Université de Paris-Sud XI, Bâtiment 425 91405 Orsay Cedex, France E-mail: Armen.Shirikyan@math.u-psud.fr

Abstract

We formulate two results on controllability properties of the 3D Navier– Stokes (NS) system. They concern the approximate controllability and exact controllability in finite-dimensional projections of the problem in question. As a consequence, we obtain the existence of a strong solution of the Cauchy problem for the 3D NS system with an arbitrary initial function and a large class of right-hand sides. We also discuss some qualitative properties of admissible weak solutions for randomly forced NS equations.

AMS subject classifications: 35Q30, 60H15, 76D05, 93B05, 93C20

Keywords: Approximate controllability, exact controllability in projections, 3D Navier–Stokes system, Agrachev–Sarychev method, stationary solutions, irreducibility.

1 Main results

Let $D \subset \mathbb{R}^3$ be a bounded domain with C^2 -smooth boundary ∂D . Consider 3D Navier–Stokes (NS) equations

$$\dot{u} + (u, \nabla)u - \nu\Delta u + \nabla p = f(t, x), \quad \operatorname{div} u = 0, \quad x \in D,$$
(1)

where $u = (u_1, u_2, u_3)$ and p are unknown velocity and pressure fields, $\nu > 0$ is the viscosity, and f(t, x) is an external force. We introduce the spaces

$$H = \left\{ u \in L^2(D, \mathbb{R}^3) : \operatorname{div} u = 0 \text{ in } D, \langle u, \boldsymbol{n} \rangle |_{\partial D} = 0 \right\}$$
$$V = H^1_0(D, \mathbb{R}^3) \cap H, \quad U = H^2(D, \mathbb{R}^3) \cap V,$$

where n stands for the outward unit normal to ∂D and $\langle \cdot, \cdot \rangle$ denotes the scalar product in \mathbb{R}^3 . It is well known (e.g., see [Tem79]) that H is a closed vector

space in $L^2(D, \mathbb{R}^3)$, and we denote by Π the orthogonal projection in $L^2(D, \mathbb{R}^3)$ onto H. Equations (1) are equivalent to the following evolution equation in H:

$$\dot{u} + \nu L u + B(u) = f. \tag{2}$$

Here $L = -\Pi\Delta$, B(u) = B(u, u), $B(u, v) = \Pi\{(u, \nabla)v\}$, and we use the same notation for the right-hand side of (1) and its projection to H. Equation (2) is supplemented with the initial condition

$$u(0) = u_0, \tag{3}$$

where $u_0 \in V$. Let us assume that the right-hand side of (2) is represented in the form

$$f(t,x) = h(t,x) + \eta(t,x),$$
 (4)

where $h \in L^2_{loc}(\mathbb{R}_+, H)$ is a given function and η is a control taking on values in a finite-dimensional subspace. To formulate the main results, we introduce some notation.

Define the space $\mathcal{X}_T = C(J_T, V) \cap L^2(J_T, U)$, where $J_T = [0, T]$. For any $T > 0, h \in L^2(J_T, H)$, and $u_0 \in V$, we denote by $\Theta_T(h, u_0)$ the set of functions $\eta \in L^2(J_T, H)$ for which problem (2) – (4) has a unique solution $u \in \mathcal{X}_T$. It follows from the implicit function theorem that

$$\mathcal{D}_T := \{ (u_0, \eta) \in V \times L^2(J_T, H) : \eta \in \Theta_T(h, u_0) \}$$

$$(5)$$

is an open subset of $V \times L^2(J_T, H)$, and the operator \mathcal{R} taking $(u_0, \eta) \in \mathcal{D}_T$ to the solution $u \in \mathcal{X}_T$ of (2) - (4) is locally Lipschitz continuous. We denote by \mathcal{R}_t the restriction of \mathcal{R} to the time $t \in J_T$. Let $E \subset U$ and $F \subset H$ be finitedimensional subspaces, let $\mathsf{P}_F : H \to H$ be the orthogonal projection onto F, and let $X \subset L^2(J_T, E)$ be a vector space, not necessarily closed. We denote by $B_F(R)$ the closed ball in F of radius R centred at origin.

Definition 1. Equations (2), (4) with $\eta \in X$ are said to be *approximately* controllable in time T if for any $u_0, \hat{u} \in V$ and any $\varepsilon > 0$ there is a control $\eta \in \Theta_T(h, u_0) \cap X$ such that

$$\|\mathcal{R}_T(u_0,\eta) - \hat{u}\|_V < \varepsilon.$$
(6)

Equations (2), (4) with $\eta \in X$ are said to be *F*-controllable in time *T* if for any $u_0 \in V$ and $\hat{u} \in F$ there is $\eta \in \Theta_T(h, u_0) \cap X$ such that

$$\mathsf{P}_F \mathcal{R}_T(u_0, \eta) = \hat{u}.\tag{7}$$

Equations (2), (4) with $\eta \in X$ are said to be solidly *F*-controllable in time *T* if for any $u_0 \in V$ and any R > 0 there is a constant $\delta > 0$ and a compact set Cin a finite-dimensional subspace $Y \subset X$ such that $C \subset \Theta_T(h, u_0)$, and for any continuous mapping $\Phi : C \to F$ satisfying the inequality

$$\sup_{\eta \in \mathcal{C}} \| \Phi(\eta) - \mathsf{P}_F \mathcal{R}_T(u_0, \eta) \|_F \le \delta, \tag{8}$$

we have $\Phi(\mathcal{C}) \supset B_F(R)$.

For any finite-dimensional subspace $G \subset U$, we denote by $\mathcal{F}(G)$ the largest vector space $G_1 \subset U$ such that any element $\eta_1 \in G_1$ is representable in the form

$$\eta_1 = \eta - \sum_{j=1}^k \lambda_j B(\zeta^j),$$

where $\eta, \zeta^1, \ldots, \zeta^k \in G$ are some vectors and $\lambda_1, \ldots, \lambda_k$ are non-negative constants. Since *B* is a quadratic operator continuous from *U* to *V*, we see that $\mathcal{F}(G) \subset U$ is a well-defined vector space of finite dimension. Also note that $\mathcal{F}(G) \supset G$.

We now define a sequence of subspaces $E_k \subset U$ by the rule

$$E_0 = E, \quad E_k = \mathcal{F}(E_{k-1}) \quad \text{for } k \ge 1, \quad E_\infty = \bigcup_{k=1}^\infty E_k. \tag{9}$$

The following theorem established in [Shi06a, Shi06b].

Theorem 2. Let $E \subset U$ be a finite-dimensional subspace such that E_{∞} is dense in H. Then the following assertions take place for any T > 0, $\nu > 0$, and $h \in L^2(J_T, H)$.

- (i) Equations (2), (4) with $\eta \in C^{\infty}(J_T, E)$ are approximately controllable in time T.
- (ii) Equations (2), (4) with $\eta \in C^{\infty}(J_T, E)$ are solidly *F*-controllable in time *T* for any finite-dimensional subspace $F \subset H$.

In the general case, it is difficult to verify whether a subspace $E \subset U$ satisfies the conditions of Theorem 2. However, if D is a torus in \mathbb{R}^3 , then one can obtain a sufficient condition under which E_{∞} is dense in H.

2 Case of a torus

In this subsection, we study controlled Navier–Stokes equations with periodic boundary conditions. More precisely, let us fix a vector $q = (q_1, q_2, q_3)$ with positive components and set $\mathbb{T}_q^3 = \mathbb{R}^3/2\pi\mathbb{Z}_q^3$, where

$$\mathbb{Z}_q^3 = \{ x = (x_1, x_2, x_3) \in \mathbb{R}^3 : x_i/q_i \in \mathbb{Z} \text{ for } i = 1, 2, 3 \}.$$

Consider the Navier–Stokes system on \mathbb{T}_q^3 . In other words, we consider Eqs. (1) with $D = \mathbb{R}^3$ and assume that all functions are periodic of period $2\pi q_i$ with respect to x_i , i = 1, 2, 3. To simplify notation, we shall assume, without loss of generality, that the mean values of u, h, and η with respect to $x \in \mathbb{T}_q^3$ are zero. As in the case of a bounded domain with Dirichlet boundary condition, one can reduce (1) to an evolution equation in an appropriate Hilbert space. Namely, we set

$$H = \left\{ u \in L^2(\mathbb{T}^3_q, \mathbb{R}^3) : \operatorname{div} u \equiv 0, \int_{\mathbb{T}^3_q} u(x) \, dx = 0 \right\}$$

and denote by $\Pi: L^2(\mathbb{T}^3_q, \mathbb{R}^3) \to H$ the orthogonal projection in $L^2(\mathbb{T}^3_q, \mathbb{R}^3)$ onto the closed subspace H. Define the spaces

$$V = H^1(\mathbb{T}^3_q, \mathbb{R}^3) \cap H, \quad U = H^2(\mathbb{T}^3_q, \mathbb{R}^3) \cap H.$$

Projecting (1) to the space H, we obtain Eq. (2) in which $L = -\Delta$ is the Stokes operator with the domain D(L) = U and $B(u) = \Pi\{(u, \nabla)u\}$. Theorem 2, which was formulated for the Dirichlet boundary condition, remains valid in this case as well. Our aim is to describe explicitly a finite-dimensional subspace $E \subset U$ for which the hypothesis of Theorem 2 is fulfilled.

To this end, we first construct an orthogonal basis in H formed of the eigenfunctions of L. For $x, y \in \mathbb{R}^3$, let

$$\langle x, y \rangle_q = \sum_{i=1}^3 q_i^{-1} x_i y_i, \quad \langle x, y \rangle = \sum_{i=1}^3 x_i y_i, \quad |x| = \sum_{i=1}^3 |x_i|.$$

We set $\mathbb{Z}^3_* = \mathbb{Z}^3 \setminus \{0\}$ and $\mathbb{R}^3_* = \mathbb{R}^3 \setminus \{0\}$. For $a \in \mathbb{R}^3_*$, denote by a^{\perp} the two-dimensional subspace in \mathbb{R}^3 defined by the equation $\langle x, a \rangle_q = 0$. Note that $a^{\perp} = (-a)^{\perp}$. For any $m \in \mathbb{Z}^3_*$, let us choose a vector $\ell(m) \in m^{\perp}$ so that $\{\ell(m), \ell(-m)\}$ is an orthonormal basis in m^{\perp} with respect to the scalar product $\langle \cdot, \cdot \rangle$. We now set

$$c_m(x) = \ell(m) \cos\langle m, x \rangle_q, \quad s_m(x) = \ell(m) \sin\langle m, x \rangle_q \quad \text{for } m \in \mathbb{Z}^3_*.$$

It is a matter of direct verification to show that c_m and s_m are eigenfunctions of L and that $\{c_m, s_m, m \in \mathbb{Z}^3_*\}$ is an orthogonal basis in H. For a finite family of functions \mathcal{A} , we denote by span \mathcal{A} the vector space spanned by \mathcal{A} .

Theorem 3. For any vector $q = (q_1, q_2, q_3)$ with positive components there is an integer $d \ge 4$ such that if

$$E = \operatorname{span}\{c_m, s_m, |m| \le d\},\$$

then the vector space E_{∞} defined in (9) is dense in H.

Theorems 2 and 3 imply the following result on controllability of the NS system by a force of finite dimension.

Corollary 4. Let $E \subset U$ be the subspace defined in Theorem 3. Then for any finite-dimensional subspace $F \subset H$ and arbitrary constants T > 0 and $\nu > 0$ the Navier–Stokes equations (2), (4) with $\eta \in C^{\infty}(J_T, E)$ are approximately controllable and solidly F-controllable in time T.

The proofs of the above results are based on a development of a general approach introduced by Agrachev and Sarychev in the case of 2D Navier–Stokes equations (see [AS05, AS06]).

3 Applications

Our first application concerns the Cauchy problem for (2). Let $G \subset H$ be a closed vector space. For any $u_0 \in V$, T > 0, and $\nu > 0$, let $\Xi_{T,\nu}(G, u_0)$ be the set of functions $f \in L^2(J_T, G)$ for which problem (2), (3) has a unique solution $u \in \mathcal{X}_T$. If $E \subset G$ is a closed subspace, then we denote by $G \ominus E$ the orthogonal complement of E in G and by Q(T, G, E) the orthogonal projection in $L^2(J_T, G)$ onto the subspace $L^2(J_T, G \ominus E)$. The following result is established in [Shi06a].

Theorem 5. Let $E \subset U$ be a finite-dimensional subspace such that E_{∞} is dense in H and let $G \subset H$ be a closed subspace containing E. Then $\Xi_{T,\nu}(G, u_0)$ is a non-empty open subset of $L^2(J_T, G)$ such that

$$Q(T,G,E) \equiv_{T,\nu} (G,u_0) = L^2(J_T,G \ominus E) \text{ for any } T > 0, \nu > 0, u_0 \in V.$$

Our second application concerns the case in which Navier–Stokes equations are perturbed by a random force. Namely, suppose that

$$f(t,x) = h(x) + \eta(t,x),$$
 (10)

where $h \in H$ is a deterministic function and η is an *H*-valued random process satisfying the following condition.

(C) There is an orthonormal basis $\{f_k\}$ in V and a sequence of standard independent Brownian motions $\{\beta_j(t), t \ge 0\}$ defined on a filtered probability space $(\Omega, \mathcal{F}, \mathcal{F}_t, \mathbb{P})$ such that

$$\eta(t) = \frac{\partial}{\partial t}\zeta(t), \quad \zeta(t) = \sum_{j,k=1}^{\infty} b_{jk}\beta_j(t)f_k,$$

where $\{b_{jk}\}$ is a family of real constants satisfying the condition

$$B := \sum_{j,k=1}^{\infty} b_{jk}^2 < \infty.$$

Let us recall the concepts of an admissible weak solution and of a stationary measure for (2), (10). Define an Ornstein–Uhlenbeck process by the formula

$$z(t) = \int_0^t e^{-\nu(t-s)L} d\zeta(t).$$

It is well known that if Condition (C) is fulfilled, then z is a Gaussian process whose almost every trajectory belongs to the space $C(\mathbb{R}_+, V) \cap L^2_{\text{loc}}(\mathbb{R}_+, U)$ and satisfies the Stokes equation

$$\dot{u} + \nu L u = \eta(t).$$

Definition 6. An *H*-valued random process u(t) is called an *admissible weak* solution for (2), (10) if it is representable in the form

$$u(t) = v(t) + z(t),$$

where v(t) is an *H*-valued \mathcal{F}_t -adapted random process whose almost every trajectory belongs to the space $L^2_{\text{loc}}(\mathbb{R}_+, V) \cap L^{\infty}_{\text{loc}}(\mathbb{R}_+, H)$ and satisfies the equation

$$\dot{v} + \nu L v + B(v+z) = h$$

in the sense of distributions and the energy inequality

$$\begin{aligned} \frac{1}{2} \|v(t)\|^2 + \nu \int_0^t \|v(s)\|_V^2 ds &+ \int_0^t (B(v+z,z),v) \, ds \\ &\leq \frac{1}{2} \|v(0)\|^2 + \int_0^t (h,v) \, ds, \quad t \ge 0, \end{aligned}$$

where (\cdot, \cdot) denotes the scalar product in *H*.

Definition 7. An admissible weak solution u(t) for (2), (10) is said to be *stationary* if its distribution does not depend on t:

$$\mathcal{D}(u(t)) = \mu \quad \text{for all } t \ge 0$$

In this case, μ is called a *stationary measure* for (2), (10).

Existence of admissible weak stationary solutions for 3D Navier–Stokes equations was established in [VF88, FG95]. Moreover, the construction of these works implies that

$$\int_{H} \|v\|_{V}^{2} \mu(dv) < \infty.$$
(11)

Let us denote by Q the vector space of functions $v \in V$ that are representable in the form

$$v = \sum_{j,k=1}^{\infty} b_{jk} u_j f_k$$

where $\{u_j\}$ is a sequence of real numbers such that $\sum_j u_j^2 < \infty$. Recall that the vector space E_{∞} is defined in (9). For a finite-dimensional space F, denote by ℓ_F the Lebesgue measure on F. The following theorem established in [Shi06c] provides some qualitative properties of stationary measures for (2), (10) (see also [AKSS06]).

Theorem 8. Let η be a stationary process satisfying Condition (C), let $E \subset U$ be a finite-dimensional vector space for which E_{∞} is dense in H, and let μ be a stationary measure for (2), (10) such that (11) holds. Suppose that $Q \supset E$. Then the following assertions take place.

- (i) The support of μ coincides with H.
- (ii) Let $F \subset H$ be a finite-dimensional subspace and let μ_F be the projection of μ to F. Then there is a function $\rho_F \in C(F)$ such that $\mu_F \geq \rho_F \ell_F$ and $\rho_F(x) > 0$ for ℓ_F -almost every $x \in F$.

References

- [AKSS06] A. Agrachev, S. Kuksin, A. Sarychev, and A. Shirikyan, On finitedimensional projections of distributions for solutions of randomly forced PDE's, Preprint (2006).
- [AS05] A. A. Agrachev and A. V. Sarychev, Navier-Stokes equations: controllability by means of low modes forcing, J. Math. Fluid Mech. 7 (2005), 108–152.
- [AS06] _____, Controllability of 2D Euler and Navier–Stokes equations by degenerate forcing, Commun. Math. Phys. (2006), to appear.
- [FG95] F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Related Fields 102 (1995), no. 3, 367–391.
- [Shi06a] A. Shirikyan, Approximate controllability of three-dimensional Navier-Stokes equations, Commun. Math. Phys. (2006), to appear.
- [Shi06b] _____, Exact controllability in projections for three-dimensional Navier-Stokes equations, Ann. Inst. H. Poincaré Anal. Non Linéaire (2006), to appear.
- [Shi06c] _____, Qualitative properties of stationary measures for threedimensional Navier–Stokes equations, in preparation (2006).
- [Tem79] R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam, 1979.
- [VF88] M. I. Vishik and A. V. Fursikov, Mathematical Problems in Statistical Hydromechanics, Kluwer, Dordrecht, 1988.