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Abstract

We formulate two results on controllability properties of the 3D Navier–
Stokes (NS) system. They concern the approximate controllability and
exact controllability in finite-dimensional projections of the problem in
question. As a consequence, we obtain the existence of a strong solution
of the Cauchy problem for the 3D NS system with an arbitrary initial
function and a large class of right-hand sides. We also discuss some qual-
itative properties of admissible weak solutions for randomly forced NS
equations.
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1 Main results

Let D ⊂ R
3 be a bounded domain with C2-smooth boundary ∂D. Consider 3D

Navier–Stokes (NS) equations

u̇ + (u,∇)u − ν∆u + ∇p = f(t, x), div u = 0, x ∈ D, (1)

where u = (u1, u2, u3) and p are unknown velocity and pressure fields, ν > 0 is
the viscosity, and f(t, x) is an external force. We introduce the spaces

H =
{

u ∈ L2(D, R3) : div u = 0 in D, 〈u,n〉|∂D = 0},

V = H1
0 (D, R3) ∩ H, U = H2(D, R3) ∩ V,

where n stands for the outward unit normal to ∂D and 〈·, ·〉 denotes the scalar
product in R

3. It is well known (e.g., see [Tem79]) that H is a closed vector
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space in L2(D, R3), and we denote by Π the orthogonal projection in L2(D, R3)
onto H . Equations (1) are equivalent to the following evolution equation in H :

u̇ + νLu + B(u) = f. (2)

Here L = −Π∆, B(u) = B(u, u), B(u, v) = Π{(u,∇)v}, and we use the same
notation for the right-hand side of (1) and its projection to H . Equation (2) is
supplemented with the initial condition

u(0) = u0, (3)

where u0 ∈ V . Let us assume that the right-hand side of (2) is represented in
the form

f(t, x) = h(t, x) + η(t, x), (4)

where h ∈ L2
loc(R+, H) is a given function and η is a control taking on values

in a finite-dimensional subspace. To formulate the main results, we introduce
some notation.

Define the space XT = C(JT , V ) ∩ L2(JT , U), where JT = [0, T ]. For any
T > 0, h ∈ L2(JT , H), and u0 ∈ V , we denote by ΘT (h, u0) the set of functions
η ∈ L2(JT , H) for which problem (2) – (4) has a unique solution u ∈ XT . It
follows from the implicit function theorem that

DT := {(u0, η) ∈ V × L2(JT , H) : η ∈ ΘT (h, u0)} (5)

is an open subset of V × L2(JT , H), and the operator R taking (u0, η) ∈ DT

to the solution u ∈ XT of (2) – (4) is locally Lipschitz continuous. We denote
by Rt the restriction of R to the time t ∈ JT . Let E ⊂ U and F ⊂ H be finite-
dimensional subspaces, let PF : H → H be the orthogonal projection onto F ,
and let X ⊂ L2(JT , E) be a vector space, not necessarily closed. We denote
by BF (R) the closed ball in F of radius R centred at origin.

Definition 1. Equations (2), (4) with η ∈ X are said to be approximately

controllable in time T if for any u0, û ∈ V and any ε > 0 there is a control
η ∈ ΘT (h, u0) ∩ X such that

‖RT (u0, η) − û‖V < ε. (6)

Equations (2), (4) with η ∈ X are said to be F -controllable in time T if for any
u0 ∈ V and û ∈ F there is η ∈ ΘT (h, u0) ∩ X such that

PFRT (u0, η) = û. (7)

Equations (2), (4) with η ∈ X are said to be solidly F -controllable in time T if
for any u0 ∈ V and any R > 0 there is a constant δ > 0 and a compact set C
in a finite-dimensional subspace Y ⊂ X such that C ⊂ ΘT (h, u0), and for any
continuous mapping Φ : C → F satisfying the inequality

sup
η∈C

‖Φ(η) − PFRT (u0, η)‖F ≤ δ, (8)

we have Φ(C) ⊃ BF (R).

2



For any finite-dimensional subspace G ⊂ U , we denote by F(G) the largest
vector space G1 ⊂ U such that any element η1 ∈ G1 is representable in the form

η1 = η −

k
∑

j=1

λjB(ζj),

where η, ζ1, . . . , ζk ∈ G are some vectors and λ1, . . . , λk are non-negative con-
stants. Since B is a quadratic operator continuous from U to V , we see that
F(G) ⊂ U is a well-defined vector space of finite dimension. Also note that
F(G) ⊃ G.

We now define a sequence of subspaces Ek ⊂ U by the rule

E0 = E, Ek = F(Ek−1) for k ≥ 1, E∞ =

∞
⋃

k=1

Ek. (9)

The following theorem established in [Shi06a, Shi06b].

Theorem 2. Let E ⊂ U be a finite-dimensional subspace such that E∞ is

dense in H. Then the following assertions take place for any T > 0, ν > 0, and

h ∈ L2(JT , H).

(i) Equations (2), (4) with η ∈ C∞(JT , E) are approximately controllable in

time T .

(ii) Equations (2), (4) with η ∈ C∞(JT , E) are solidly F -controllable in time T
for any finite-dimensional subspace F ⊂ H.

In the general case, it is difficult to verify whether a subspace E ⊂ U satisfies
the conditions of Theorem 2. However, if D is a torus in R

3, then one can obtain
a sufficient condition under which E∞ is dense in H .

2 Case of a torus

In this subsection, we study controlled Navier–Stokes equations with periodic
boundary conditions. More precisely, let us fix a vector q = (q1, q2, q3) with
positive components and set T

3
q = R

3/2πZ
3
q, where

Z
3
q = {x = (x1, x2, x3) ∈ R

3 : xi/qi ∈ Z for i = 1, 2, 3}.

Consider the Navier–Stokes system on T
3
q . In other words, we consider Eqs. (1)

with D = R
3 and assume that all functions are periodic of period 2πqi with

respect to xi, i = 1, 2, 3. To simplify notation, we shall assume, without loss of
generality, that the mean values of u, h, and η with respect to x ∈ T

3
q are zero.

As in the case of a bounded domain with Dirichlet boundary condition, one can
reduce (1) to an evolution equation in an appropriate Hilbert space. Namely,
we set

H =

{

u ∈ L2(T3
q , R

3) : div u ≡ 0,

∫

T3
q

u(x) dx = 0

}
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and denote by Π : L2(T3
q , R

3) → H the orthogonal projection in L2(T3
q, R

3) onto
the closed subspace H . Define the spaces

V = H1(T3
q , R

3) ∩ H, U = H2(T3
q , R

3) ∩ H.

Projecting (1) to the space H , we obtain Eq. (2) in which L = −∆ is the Stokes
operator with the domain D(L) = U and B(u) = Π{(u,∇)u}. Theorem 2,
which was formulated for the Dirichlet boundary condition, remains valid in
this case as well. Our aim is to describe explicitly a finite-dimensional subspace
E ⊂ U for which the hypothesis of Theorem 2 is fulfilled.

To this end, we first construct an orthogonal basis in H formed of the eigen-
functions of L. For x, y ∈ R

3, let

〈x, y〉q =

3
∑

i=1

q−1
i xiyi, 〈x, y〉 =

3
∑

i=1

xiyi, |x| =

3
∑

i=1

|xi|.

We set Z
3
∗ = Z

3 \ {0} and R
3
∗ = R

3 \ {0}. For a ∈ R
3
∗, denote by a⊥ the

two-dimensional subspace in R
3 defined by the equation 〈x, a〉q = 0. Note

that a⊥ = (−a)⊥. For any m ∈ Z
3
∗, let us choose a vector ℓ(m) ∈ m⊥ so

that {ℓ(m), ℓ(−m)} is an orthonormal basis in m⊥ with respect to the scalar
product 〈·, ·〉. We now set

cm(x) = ℓ(m) cos〈m, x〉q , sm(x) = ℓ(m) sin〈m, x〉q for m ∈ Z
3
∗.

It is a matter of direct verification to show that cm and sm are eigenfunctions
of L and that {cm, sm, m ∈ Z

3
∗} is an orthogonal basis in H . For a finite family

of functions A, we denote by spanA the vector space spanned by A.

Theorem 3. For any vector q = (q1, q2, q3) with positive components there is

an integer d ≥ 4 such that if

E = span{cm, sm, |m| ≤ d},

then the vector space E∞ defined in (9) is dense in H.

Theorems 2 and 3 imply the following result on controllability of the NS
system by a force of finite dimension.

Corollary 4. Let E ⊂ U be the subspace defined in Theorem 3. Then for any

finite-dimensional subspace F ⊂ H and arbitrary constants T > 0 and ν > 0
the Navier–Stokes equations (2), (4) with η ∈ C∞(JT , E) are approximately

controllable and solidly F -controllable in time T .

The proofs of the above results are based on a development of a general
approach introduced by Agrachev and Sarychev in the case of 2D Navier–Stokes
equations (see [AS05, AS06]).
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3 Applications

Our first application concerns the Cauchy problem for (2). Let G ⊂ H be a
closed vector space. For any u0 ∈ V , T > 0, and ν > 0, let ΞT,ν(G, u0) be the
set of functions f ∈ L2(JT , G) for which problem (2), (3) has a unique solution
u ∈ XT . If E ⊂ G is a closed subspace, then we denote by G⊖E the orthogonal
complement of E in G and by Q(T, G, E) the orthogonal projection in L2(JT , G)
onto the subspace L2(JT , G⊖E). The following result is established in [Shi06a].

Theorem 5. Let E ⊂ U be a finite-dimensional subspace such that E∞ is dense

in H and let G ⊂ H be a closed subspace containing E. Then ΞT,ν(G, u0) is a

non-empty open subset of L2(JT , G) such that

Q(T, G, E)ΞT,ν(G, u0) = L2(JT , G ⊖ E) for any T > 0, ν > 0, u0 ∈ V .

Our second application concerns the case in which Navier–Stokes equations
are perturbed by a random force. Namely, suppose that

f(t, x) = h(x) + η(t, x), (10)

where h ∈ H is a deterministic function and η is an H-valued random process
satisfying the following condition.

(C) There is an orthonormal basis {fk} in V and a sequence of standard inde-
pendent Brownian motions {βj(t), t ≥ 0} defined on a filtered probability
space (Ω,F ,Ft, P) such that

η(t) =
∂

∂t
ζ(t), ζ(t) =

∞
∑

j,k=1

bjkβj(t)fk,

where {bjk} is a family of real constants satisfying the condition

B :=

∞
∑

j,k=1

b2
jk < ∞.

Let us recall the concepts of an admissible weak solution and of a stationary
measure for (2), (10). Define an Ornstein–Uhlenbeck process by the formula

z(t) =

∫ t

0

e−ν(t−s)Ldζ(t).

It is well known that if Condition (C) is fulfilled, then z is a Gaussian process
whose almost every trajectory belongs to the space C(R+, V )∩L2

loc(R+, U) and
satisfies the Stokes equation

u̇ + νLu = η(t).
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Definition 6. An H-valued random process u(t) is called an admissible weak

solution for (2), (10) if it is representable in the form

u(t) = v(t) + z(t),

where v(t) is an H-valued Ft-adapted random process whose almost every tra-
jectory belongs to the space L2

loc(R+, V )∩L∞
loc(R+, H) and satisfies the equation

v̇ + νLv + B(v + z) = h

in the sense of distributions and the energy inequality

1

2
‖v(t)‖2 + ν

∫ t

0

‖v(s)‖2
V ds +

∫ t

0

(B(v + z, z), v) ds

≤
1

2
‖v(0)‖2 +

∫ t

0

(h, v) ds, t ≥ 0,

where (·, ·) denotes the scalar product in H .

Definition 7. An admissible weak solution u(t) for (2), (10) is said to be
stationary if its distribution does not depend on t:

D(u(t)) = µ for all t ≥ 0.

In this case, µ is called a stationary measure for (2), (10).

Existence of admissible weak stationary solutions for 3D Navier–Stokes equa-
tions was established in [VF88, FG95]. Moreover, the construction of these
works implies that

∫

H

‖v‖2
V µ(dv) < ∞. (11)

Let us denote by Q the vector space of functions v ∈ V that are representable
in the form

v =

∞
∑

j,k=1

bjkujfk,

where {uj} is a sequence of real numbers such that
∑

j u2
j < ∞. Recall that

the vector space E∞ is defined in (9). For a finite-dimensional space F , denote
by ℓF the Lebesgue measure on F . The following theorem established in [Shi06c]
provides some qualitative properties of stationary measures for (2), (10) (see
also [AKSS06]).

Theorem 8. Let η be a stationary process satisfying Condition (C), let E ⊂ U
be a finite-dimensional vector space for which E∞ is dense in H, and let µ be

a stationary measure for (2), (10) such that (11) holds. Suppose that Q ⊃ E.

Then the following assertions take place.

(i) The support of µ coincides with H.

(ii) Let F ⊂ H be a finite-dimensional subspace and let µF be the projection

of µ to F . Then there is a function ρF ∈ C(F ) such that µF ≥ ρF ℓF and

ρF (x) > 0 for ℓF -almost every x ∈ F .
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