
Controllability of nonlinear PDE’s:

Agrachev–Sarychev approach

Armen Shirikyan
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Université de Cergy–Pontoise, Site de Saint-Martin

2 avenue Adolphe Chauvin
95302 Cergy–Pontoise Cedex, France

E-mail: Armen.Shirikyan@u-cergy.fr

Abstract

This short note is devoted to a discussion of a general approach to
controllability of PDE’s introduced by Agrachev and Sarychev in 2005.
We use the example of a 1D Burgers equation to illustrate the main ideas.
It is proved that the problem in question is controllable in an appropriate
sense by a two-dimensional external force. This result is not new and was
proved earlier in the papers [AS05, AS07] in a more complicated situation
of 2D Navier–Stokes equations.
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1 Introduction

In the paper [AS05], Agrachev and Sarychev introduced a new approach for in-
vestigating the controllability of nonlinear PDE’s. They studied the 2D Navier–
Stokes equations on a torus controlled by a finite-dimensional external force
and proved the properties of approximate controllability and exact controlla-
bility in observed projections. These results were later extended to the Euler
and Navier–Stokes systems on various 2D and 3D manifolds; see [AS06, Rod06,
Shi06, Rod07, AS07, Shi07].

The aim of this paper is to illustrate the Agrachev–Sarychev approach on
the simple example of the 1D viscous Burgers equation. We thus consider the
problem

∂tu− ν∂2
xu + u∂xu = h(t, x) + η(t, x), (1.1)

u(0, t) = u(π, t) = 0, (1.2)
u(0, x) = u0(x), (1.3)

where x ∈ (0, π), t > 0, ν > 0 is a parameter, h and u0 are given functions,
and η is a control with range in a finite-dimensional space. We wish to study
controllability properties of problem (1.1), (1.2).

To introduce the necessary concepts and formulate the main result, let us
fix a constant T > 0, a function h ∈ L2(QT ), where QT = (0, T )× (0, π), and a
finite-dimensional space E ⊂ L2(0, π). To simplify the notation, we shall write

H = L2(0, π), H1
0 = H1

0 (0, π), XT = C(0, T ; H) ∩ L2(0, T ; H1
0 );

see Notation for more details. Let us denote by R : H × L2(0, T ;E) → XT the
operator that takes a pair (u0, η) to the solution u ∈ XT of (1.1) – (1.3) and by
Rt : H×L2(0, T ; E) → H its restriction at time t ∈ [0, T ]. It is well known that
the operators R and Rt are uniformly Lipschitz continuous on bounded subsets
of their domain of definition; see [Lio69, Tay97].

Definition 1.1. We shall say that problem (1.1), (1.2) is controllable at time T
by an E-valued control if for any constant ε > 0, any functions u0, û ∈ H, and
any finite-dimensional subspace F ⊂ H there is a control η ∈ C∞(0, T ; E) such
that

‖RT (u0, η)− û‖ < ε, (1.4)
PFRT (u0, η) = PF û, (1.5)

where ‖ · ‖ denotes the L2 norm, and PF : H → H stands for the orthogonal
projection in H onto F .

We shall prove the following result :

Main Theorem. Let E be the vector space spanned by the function sin x
and sin(2x). Then for any ν > 0 and T > 0 problem (1.1), (1.2) is controllable
at time T by an E-valued control.
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The rest of the paper is organised as follows. In Section 2, we show that
the controllability in the sense of Definition 1.1 is a consequence of the so-called
uniform approximate controllability . We then outline the proof of the latter
property. In Section 3, we give the details of the proof.

In conclusion, let us emphasise once again that this paper contains no new
results, and the Main Theorem stated above can be regarded as a simple par-
ticular case of more general results established in [AS05, AS07].

Notation

Let J ⊂ R be an open finite interval and let X be a Banach space. We use the
following functional spaces.
C(J ;X) denotes the space of continuous functions f : J̄ → X, where J̄ is the
closure of J . This space is endowed with the norm supt∈J ‖f(t)‖X .
L2(J ; X) stands for the space of Bochner-measurable functions f : J → X such
that

‖f‖L2(J;X) =
(∫

J

‖f(t)‖2Xdt

)1/2

< ∞.

In the case X = R, we write simply L2(J) and ‖f‖.
Hk = Hk(J) is the Sobolev space of order k on the interval J .
H1

0 = H1
0 (J) denotes the space of scalar functions that belong to the Sobolev

class H1 and vanish at the endpoints of J .

2 Proof of the Main Theorem

2.1 Reduction to uniform approximate controllability

Let us fix a constant T > 0, a function h ∈ L2(QT ), and a finite-dimensional
subspace E ⊂ H = L2(0, π). Recall that we denote byRt : H×L2(0, T ; E) → H
the resolving operator for problem (1.1) – (1.3).

Definition 2.1. Let us fix a constant ε > 0, a function u0 ∈ H, and a compact
set K ⊂ H. Problem (1.1), (1.2) is said to be (ε, u0,K)-controllable at time T
by an E-valued control if there is a continuous mapping Ψ : K → L2(0, T ; E)
such that

sup
u∈K

‖RT (u0, Ψ(u))− u‖ < ε. (2.1)

In what follows, the time T and the control space E are fixed, and we shall
simply say that problem (1.1), (1.2) is (ε, u0,K)-controllable.

Definition 2.2. Problem (1.1), (1.2) is said to be uniformly approximately
controllable if it is (ε, u0,K)-controllable for any ε > 0, u0 ∈ H, and K b H.

The Main Theorem stated in the Introduction will be deduced from the
following result.
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Theorem 2.3. Let E be the vector span of the functions sinx and sin(2x). Then
for any ν > 0 and h ∈ L2(QT ) problem (1.1), (1.2) is uniformly approximately
controllable by an E-valued control.

The proof of this result is sketched in Subsection 2.2, and the details are
given in Section 3. We now prove the Main Theorem.

Proof of the Main Theorem. Let us fix a constant ε > 0, functions u0, û ∈ H,
and a finite-dimensional space F ⊂ H. Without loss of generality, we can
assume that û ∈ F ; otherwise, we can replace F by the larger space spanned
by F and û.

Let us denote by BF (R) the ball in F of radius R centred at origin and define
K = BF (‖û‖ + ε). Since K is a compact subset of H, in view of Theorem 2.3,
we can construct a continuous mapping Ψ : K → L2(0, T ; E) satisfying inequal-
ity (2.1). Furthermore, since K ⊂ H is compact and C∞(0, T ;E) is dense in
L2(0, T ; E), we can assume that the range of Ψ is contained in C∞(0, T ; E);
otherwise, we can replace the function Ψ by its convolution with a mollifying
kernel. Let us consider the mapping

Φ : K → F, Φ(u) = PFRT (u0, Ψ(u)).

It follows from (2.1) that Φ is a continuous mapping satisfying the inequality

sup
u∈K

‖Φ(u)− u‖ < ε.

The Brouwer theorem (e.g., see [Tay97]) implies that the image of Φ contains
the ball BF (‖û‖). In particular, there is ū ∈ K such that Φ(ū) = û. Setting
η = Ψ(ū), we see that

PFRT (u0, η) = û. (2.2)

Furthermore, it follows from (2.1) and (2.2) that

‖RT (u0, η)− û‖ = ‖RT (u0, η)− PFRT (u0, η)‖ ≤ ‖RT (u0, Ψ(ū))− ū‖ < ε,

where we used the facts that ū ∈ F and that PF is an orthogonal projection.
This completes the proof of the Main Theorem.

2.2 Scheme of the proof of Theorem 2.3

Let us fix a constant ε > 0, a function u0 ∈ H, and a compact set K b H. We
need to show that problem (1.1), (1.2) is (ε, u0,K)-controllable by an E-valued
control.

Step 1: Extension principle. Let G ⊂ H2 ∩ H1
0 be an arbitrary finite-di-

mensional subspace. Along with (1.1), consider the equation

∂tu− ν∂2
x(u + ζ(t, x)) + (u + ζ(t, x))∂x(u + ζ(t, x)) = h(t, x) + η(t, x), (2.3)
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where η and ζ are G-valued control functions. We shall say that problem (2.3),
(1.2) is (ε, u0,K)-controllable by G-valued controls (η, ζ) if there is a continuous
mapping Ψ̂ : K → L2(0, T ;G×G) such that

sup
u∈K

‖R̂T (u0, Ψ̂(u))− u‖ < ε, (2.4)

where R̂t : H × L2(0, T ;G × G) → H stands for the operator that takes the
triple (u0, η, ζ) to the solution u(t, ·) of problem (2.3), (1.2), (1.3).

Even though Eq. (2.3) is “more controlled” than Eq. (1.1), it turns out
that the property of uniform approximate controllability is equivalent for them.
Namely, we have the following result.

Proposition 2.4. Problem (1.1), (1.2) is (ε, u0,K)-controllable if and only if
so is problem (2.3), (1.2).

Step 2: Convexification principle. Now let N ⊂ H2 ∩H1
0 be another finite-

dimensional subspace such that

N ⊂ G, B(N) ⊂ G, (2.5)

where B(u) = u∂xu. Denote by F(N, G) ⊂ H2 ∩ H1
0 the largest vector space

spanned by the functions of the form1

η + ξ∂xξ̃ + ξ̃∂xξ, (2.6)

where η, ξ ∈ G and ξ̃ ∈ N . It is easy to see that F(N, G) is a well-defined finite-
dimensional space. The following proposition, which is an infinite-dimensional
analogue of the well-known convexification principle for controlled ODE’s (e.g.,
see [AS04, Theorem 8.7]), is a key point of the proof of Theorem 2.3.

Proposition 2.5. Let N,G ⊂ H2 ∩H1
0 be finite-dimensional subspaces satisfy-

ing (2.5). Then (2.3), (1.2) is (ε, u0,K)-controllable by a G×G-valued control
if and only if (1.1), (1.2) is (ε, u0,K)-controllable by an F(N,G)-valued control.

Step 3: Saturating property. Propositions 2.4 and 2.5 imply the following
result, which is a kind of “relaxation property” for the controlled Navier–Stokes
system.

Proposition 2.6. Let N, G ⊂ H2 ∩ H1
0 be finite-dimensional subspaces satis-

fying (2.5). Then problem (1.1), (1.2) is (ε, u0,K)-controllable by a G-valued
control if and only if it is (ε, u0,K)-controllable by an F(N, G)-valued control.

We now introduce the subspaces Ek = {sin(jx), 1 ≤ j ≤ k}, so that the
space E defined in the Main Theorem coincides with E2. We wish to apply
Proposition 2.6 to the subspaces N = E1 and G = Ek.

1Note that a function of the form (2.6) does not necessarily belong to H2 ∩ H1
0 , and

therefore the space F(N, G) may be not larger than G.
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Lemma 2.7. For any integer k ≥ 2, we have F(E1, Ek) = Ek+1.

Proposition 2.6 and Lemma 2.7 imply that, for any integer k ≥ 2, prob-
lem (1.1), (1.2) is (ε, u0,K)-controllable by an Ek-valued control if and only if
it is (ε, u0,K)-controllable by an Ek+1-valued control. Thus, Theorem 2.3 will
be established if we find an integer N ≥ 2 such that problem (1.1), (1.2) is
(ε, u0,K)-controllable by an EN -valued control. We shall be able to do that due
to the saturating property

∞⋃

k=2

Ek is dense in H, (2.7)

which is a straightforward consequence of the definition of Ek.

Step 4: Case of a large control space. It is easy to construct a continuous
mapping Ψ0 : K → L2(0, T ; H) such that

sup
u∈K

‖RT (u0, Ψ0(u))− u‖ < ε. (2.8)

Since K ⊂ H is a compact set, the image Ψ0(K) is compact in L2(0, T ; H).
Using (2.7), it is not difficult to approximate Ψ0, within any accuracy δ > 0, by
a continuous function Ψ : K → L2(0, T ; H) with range in L2(0, T ; EN ):

sup
u∈K

‖Ψ0(u)− Ψ(u)‖ < δ. (2.9)

Since Rt(u0, η) is Lipschitz continuous on bounded subsets, inequalities (2.8)
and (2.9) with δ ¿ 1 imply (2.1). This completes the proof of Theorem 2.3.

3 Approximate controllability

In this section, we prove Theorem 2.3. To simplify the presentation, we shall
assume that K consists of a single point û ∈ H. The proof in the general case can
be carried out by similar arguments, following carefully the dependence of all
the objects on the final point û; cf. [Shi07]. In what follows, the constant ε, the
functions u0, and the subset K are fixed, and we shall say simply ε-controllable
rather than (ε, u0,K)-controllable.

3.1 Extension principle

In this subsection, we prove Proposition 2.4. It is clear that if problem (1.1),
(1.2) is ε-controllable, then so is problem (2.3), (1.2), because it suffices to
take ζ ≡ 0. Let us establish the converse assertion.

Let (η̂, ζ̂) ∈ L2(0, T ;G) be an arbitrary control such that

‖R̂T (u0, η̂, ζ̂)− û‖ < ε. (3.1)
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In view of continuity of R̂T (u0, η, ζ) with respect to ζ ∈ L2(0, T ; H), there is no
loss of generality in assuming that

ζ̂ ∈ C∞(0, T ;G), ζ̂(0) = ζ̂(T ) = 0. (3.2)

Consider the function u(t, x) = R̂t(u0, η̂, ζ̂) + ζ̂(t, x). It is straightforward to
see that it belongs to XT and satisfies Eqs. (1.1), (1.2) with η = η̂ + ∂tζ̂ ∈
L2(0, T ; G). Moreover, it follows from (3.1) and (3.2) that

u(0) = u0, ‖u(T )− û‖ = ‖R̂T (u0, η̂, ζ̂)− û‖ < ε.

Thus, problem (1.1), (1.2) is ε-controllable.

3.2 Convexification principle

Let us prove Proposition 2.5. It follows from the extension principle that if
problem (2.3), (1.2) is ε-controllable by a G × G-valued control, then (1.1),
(1.2) is ε-controllable by a G-valued control and all the more by an F(N, G)-
valued control. The proof of the converse assertion is divided into several steps.
We need to show that if η1 ∈ L2(0, T ;H) is an F(N,G)-valued control such that

‖RT (u0, η1)− û‖ < ε, (3.3)

then there are η, ζ ∈ L2(0, T ; G) such that

‖R̂T (u0, η, ζ)− û‖ < ε. (3.4)

Step 1. We first show that it suffices to consider the case in which η1 is a
piecewise constant function. Indeed, suppose Proposition 2.5 is proved in that
case and denote G1 = F(N, G). For a given η1 ∈ L2(0, T ; G1), we can find a
sequence {ηm} of piecewise constant G1-valued functions such that

‖η1 − ηm‖L2(0,T ;G1) → 0 as m →∞.

By continuity of Rt, there is an integer n ≥ 1 such that

‖RT (u0, η
n)− û‖ < ε. (3.5)

Since the result is true for piecewise constant controls, for any δ > 0 there are
η, ζ ∈ L2(0, T ;G) such that

‖RT (u0, η
n)− R̂T (u0, η, ζ)‖ < δ. (3.6)

Comparing (3.5) and (3.6), for a sufficiently small δ > 0 we arrive at (3.4).

Step 2. We now consider the case of piecewise constant G1-valued controls.
A simple iteration argument combined with the continuity of Rt and R̂t shows
that it suffices to consider the case of one interval of constancy. Thus, we shall
assume that η1(t) ≡ η1 ∈ G1.

We shall need the lemma below, whose proof is given at the end of this
subsection. Recall that B(u) = u∂xu.
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Lemma 3.1. For any η1 ∈ F(N, G) and any δ > 0 there is an integer k ≥ 1,
constants αj > 0, and vectors η, ζj ∈ G, j = 1, . . . , k, such that

k∑

j=1

αj = 1, (3.7)

∥∥∥η1 −B(u)−
(
η −

k∑

j=1

αj

(
B(u + ζj)− ν∂2

xζj
))∥∥∥ ≤ δ for any u ∈ H1. (3.8)

We fix a small δ > 0 and choose constants αj > 0 and vectors η, ζj ∈ G
satisfying (3.7), (3.8). Let us consider the equation

∂tu− ν∂2
xu +

k∑

j=1

αj

(
B(u + ζj(x))− ν∂2

xζj(x)
)

= h(t, x) + η(x). (3.9)

This is a Burgers-type equation, and using the same arguments as in the case
of the Burgers equation, it can be proved that problem (3.9), (1.2), (1.3) has a
unique solution ũ ∈ XT . On the other hand, we can rewrite (3.9) in the form

∂tu− ν∂2
xu + u∂xu = h(t, x) + η1(x)− rδ(t, x), (3.10)

where rδ(t, x) stands for the function under sign of norm on the left-hand side
of (3.8) in which u = ũ(t, x). Since Rt is Lipschitz continuous on bounded
subsets, there is a constant C > 0 depending only on the L2 norm of η1 such
that

‖RT (u0, η1)− ũ(T )‖ = ‖RT (u0, η1)−RT (u0, η1 − rδ)‖
≤ C‖rδ‖L2(0,T ;H) ≤ C

√
Tδ,

where we used inequality (3.8). Combining this with (3.3), we see that if δ > 0
is sufficiently small, then

‖ũ(T )− û‖ < ε. (3.11)

We shall show that there is a sequence ζm ∈ L2(0, T ;G) such that

‖R̂T (u0, η, ζm)− ũ(T )‖ → 0 as m →∞. (3.12)

In this case, inequalities (3.11) and (3.12) with m À 1 will imply the required
estimate (3.4) in which ζ = ζm.

Step 3. Following a classical idea in the control theory, we define a sequence
ζm ∈ L2(0, T ; G) by the relation ζm(t) = ζ(mt/T ), where ζ(t) is a 1-periodic
G-valued function such that

ζ(t) = ζj for 0 ≤ t− (α1 + · · ·+ αj−1) ≤ αj , j = 1, . . . , k.

Let us rewrite (3.9) in the form

∂tu− ν∂2
x(u + ζm(t, x)) + B(u + ζm(t, x)) = h(t, x) + η(x) + fm(t, x),
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where we set fm = fm1 + fm2,

fm1 = −ν∂2
xζm + ν

k∑

j=1

αj∂
2
xζj , (3.13)

fm2 = B(ũ + ζm)−
k∑

j=1

αjB(ũ + ζj). (3.14)

We now define an operator K : L2(0, T ; H) → XT that takes a function f to
the solution u(t, x) of the equation

∂tu− ν∂2
xu = f(t, x),

supplemented with initial and boundary conditions (1.2), (1.3) with u0 = 0. In
other words,

(Kf)(t) =
∫ t

0

eν(t−s)Af(s) ds,

where A stands for the operator d2

dx2 with the domain D(A) = H2∩H1
0 . Setting

vm = ũ−Kfm, we see that vm ∈ XT satisfies the equation

∂tv − ν∂2
x(v + ζm) + B(v + ζm + Kfm) = h + η. (3.15)

Suppose we have shown that

‖Kfm‖XT
→ 0 as m →∞. (3.16)

Then, by the Lipschitz continuity of the resolving operator for (3.15) on bounded
subsets, we have

‖R̂T (u0, η, ζm)− ũ(T )‖ ≤ ‖R̂T (u0, η, ζm)− vm(T )‖+ ‖Kfm(T )‖ → 0

as m →∞. Thus, it remains to prove (3.16).

Step 4. We first note that {fm} is a bounded sequence in L2(0, T ; H). It
follows that

‖Kfm‖C(0,T ;H1) + ‖Kfm‖L2(0,T ;H2) ≤ C1, (3.17)

where we denote by Ci, i = 1, 2, . . . , positive constants not depending on m.
Furthermore, we have the interpolation inequalities

‖v‖ ≤ C2‖v‖1/2
1 ‖v‖1/2

−1 , ‖v‖1 ≤ C3‖v‖2/3
2 ‖v‖1/3

−1 for v ∈ H2 ∩H1
0 .

Combining this with (3.17), we obtain

‖Kfm‖XT ≤ ‖Kfm‖C(0,T ;H) + ‖Kfm‖L2(0,T ;H1)

≤ C4

(
‖Kfm‖1/2

C(0,T ;H−1) + ‖Kfm‖1/3
L2(0,T ;H−1)

)
.
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Thus, convergence (3.16) will be established if we show that

‖Kfm‖C(0,T ;H−1) → 0 as m →∞. (3.18)

Step 5. To prove (3.18), we write

(Kfm)(t) = Fm(t) + Gm(t), (3.19)

where

Fm(t) =
∫ t

0

fm(s) ds, Gm(t) = ν

∫ t

0

Aeν(t−s)AFm(s) ds.

Since ‖AeτA‖L(H,H−1) ≤ C5τ
−1/2 for τ > 0, where ‖ · ‖L(H,H−1) stands for the

usual norm of operators from H to H−1, we have

‖Gm‖C(0,T ;H−1) ≤ ν sup
t∈[0,T ]

∫ t

0

‖Aeν(t−s)A‖L(H,H−1)‖Fm(s)‖ ds

≤ C6 ‖Fm‖C(0,T ;H).

Comparing this with (3.19), we see that (3.18) will be established if we show
that

‖Fm‖C(0,T ;H) → 0 as m →∞. (3.20)

This convergence is a straightforward consequence of relations (3.13) and (3.14);
cf. [Shi06, Section 3.3]. The proof of Proposition 2.5 is complete.

Proof of Lemma 3.1. It suffices to find functions η, ζ̃j ∈ G, j = 1, . . . ,m, such
that ∥∥∥η1 − η +

k∑

j=1

B(ζ̃j)
∥∥∥ ≤ δ. (3.21)

If such vectors are constructed, then we can set k = 2m,

αj = αj+m =
1
2
, ζj = −ζj+m = ζ̃j for j = 1, . . . , m.

To construct η, ζ̃j ∈ G satisfying (3.21), note that if η1 ∈ F(N, G), then
there are functions η̃j , ξj ∈ G and ξ̃j ∈ N such that

η1 =
k∑

j=1

(
η̃j − ξj∂xξ̃j − ξ̃j∂xξj

)
. (3.22)

Now note that, for any ε > 0,

ξj∂xξ̃j + ξ̃j∂xξj = B(εξj + ε−1ξ̃j)− ε2B(ξj)− ε−2B(ξ̃j).

Combining this with (3.22), we obtain

η1 −
k∑

j=1

(
η̃j + ε−2B(ξ̃j)

)
+

k∑

j=1

B(εξj + ε−1ξ̃j) = ε2
k∑

j=1

B(ξj).
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Choosing ε > 0 sufficiently small and setting

η =
k∑

j=1

(
η̃j + ε−2B(ξ̃j)

)
, ζ̃j = εξj + ε−1ξ̃j ,

we arrive at (3.21).

3.3 Saturating property

Let us prove Lemma 2.7 and the inclusion B(E1) ⊂ E2. For ξ = sin(jx) and
ξ̃ = sin x, we have

ξ∂xξ̃ + ξ̃∂xξ = sin(jx) cos x + j sin x cos(jx)

=
1
2
(
(j + 1) sin(j + 1)x− (j − 1) sin(j − 1)x

)
. (3.23)

It follows that B(E1) ⊂ E2 and F(E1, Ek) ⊂ Ek+1. Furthermore, taking j = k
in (3.23), we write

sin(k + 1)x =
k − 1
k + 1

sin(k − 1)x +
2

k + 1
(
sin(kx) ∂x sinx + sin x ∂x sin(kx)

)
.

This relation implies that the function sin(k + 1)x belongs to F(E1, Ek) and
therefore Ek+1 ⊂ F(E1, Ek).

3.4 Case of a large control space

We wish to construct a control η ∈ L2(0, T ;EN ) with a large integer N ≥ 2
such that

‖RT (u0, η)− û‖ < ε. (3.24)

To this end, consider the function uµ(t, x) defined as

uµ(t, x) = T−1
(
teµAû + (T − t)eνAu0

)
,

where A denotes the operator d2

dx2 with the domain D(A) = H2∩H1
0 , and µ > 0

is a small constant that will be chosen later. The function uµ belongs to the
space XT and satisfies Eqs. (1.1) – (1.3), in which

η = ηµ := ∂tuµ − ν∂2
xuµ + uµ∂xuµ − h.

This function belongs to L2(0, T ; H). Furthermore,

‖uµ(T )− û‖ = ‖eµAû− û‖ → 0 as µ → 0. (3.25)

Choosing µ > 0 sufficiently small in (3.25) and approaching ηµ ∈ L2(0, T ; H)
by continuous H-valued functions, we can find η̃ ∈ C(0, T ; H) such that

‖RT (u0, η̃)− û‖ < ε. (3.26)
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Let us denote by Pk : H → H the orthogonal projection in H onto the
subspace Ek. In view of the saturating property (2.7), we have

sup
t∈[0,T ]

‖Pkη̃(t)− η̃(t)‖ → 0 as k →∞.

By continuity of Rt, we obtain

‖RT (u0,Pkη̃)−RT (u0, η̃)‖ → 0 as k →∞.

Combining this with (3.26), we see that for a sufficiently large N ≥ 1 the
function η = PN η̃ satisfies (3.24). This completes the proof of Theorem 2.3 in
the case K = {û}.
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