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Abstract

The paper is devoted to the description of a coupling method that

enables one to study ergodic properties of random dynamical systems

associated with stochastic PDE’s. This approach was developed in re-

cent years by several authors. We first establish a general criterion for

uniqueness of stationary measure and an exponential mixing property.

We next illustrate the method on the example of a complex Ginzburg–

Landau equation.
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0 Introduction

The method of coupling was introduced in the famous work of Doeblin [Doe40]
to study ergodic properties of Markov chains. To make the main idea of this
paper more transparent, let us briefly describe the Doeblin approach in the
simplest situation.

Let X be a compact metric space and let (uk,Pu) be a family of Markov
chains inX parametrised by the initial point u ∈ X . We shall denote by Pk(u,Γ)
the transition function associated with the Markov family, that is,

Pk(u,Γ) = Pu{uk ∈ Γ} for k ≥ 0, Γ ∈ BX ,

where BX stands for the Borel σ-algebra on X . Recall that a probability mea-
sure µ on the space (X,BX) is said to be stationary for (uk,Pu) if

µ(Γ) =

∫

X

P1(u,Γ)µ(du) for any Γ ∈ BX . (0.1)

Suppose there is a constant γ < 1 such that

‖P1(u, ·) − P1(u
′, ·)‖var ≤ γ (0.2)

for any u, u′ ∈ X , where ‖ · ‖var denotes the total variation distance. In this
case, one can use the following argument to prove that the family (uk,Pu) has
a unique stationary measure. 1

Let (R(u, u′, ·),R′(u, u′, ·)) be a pair of random variables depending on
u, u′ ∈ X such that the laws of R and R′ coincide with P1(u, ·) and P1(u

′, ·),
respectively, and

P
{
R(u, u′) 6= R′(u, u′)

}
= ‖P1(u, ·) − P1(u

′, ·)‖var for all u, u′ ∈ X. (0.3)

1It would be easier to observe that the right-hand side of (0.1) defines a contraction in the
space of probability measures on X (endowed with the total variation distance) and therefore
has a unique fixed point. However, we use a longer coupling argument whose development is
applied in the paper.
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It can be shown that such random variables exist (see [Lin92]). Let us denote
by Ω the direct product of countably many independent copies of the proba-
bility space on which R and R′ are defined and consider a family of Markov
chains {Uk} in X = X ×X given by the rule

U0(ω) = U, Uk(ω) = (R(Uk−1, ωk),R′(Uk−1, ωk)) for k ≥ 1, (0.4)

where ω = (ωj , j ≥ 1) ∈ Ω denotes the random parameter and U ∈ X is
an initial point. Writing U = (u, u′) and Uk = (uk, u

′
k), we derive from (0.2)

and (0.3) that

PU{uk+1 6= u′k+1 | Fk} ≤ γ for any U ∈ X , k ≥ 0, (0.5)

where Fk denotes the σ-algebra generated by U1, . . . , Uk and the subscript U
indicates that we consider the trajectory starting from U . Iterating inequal-
ity (0.5), we obtain

PU{uk 6= uk} ≤ γk for any U ∈ X , k ≥ 0. (0.6)

This estimate implies that

‖Pk(u, ·) − Pk(u′, ·)‖var ≤ γk. (0.7)

Combining (0.7) with (0.1) and the Kolmogorov–Chapman relation, we can
easily show that there is at most one stationary measure. Moreover, it follows
from (0.7) that the sequence {Pk(u, ·)} converges to a limiting measure µ, which
is stationary for (uk,Pu).

The Doeblin argument can be used to prove uniqueness of stationary measure
for stochastic differential equations (SDE) with non-degenerate diffusion on a
compact manifold. At the same time, application of the above scheme to SDE’s
in Rn encounters an obstacle related to the fact that the phase space of the
problem is not compact, and inequality (0.2) cannot be satisfied uniformly in u
and u′, unless some restrictive conditions are imposed on the drift. However,
one can overcome this difficulty with the help of the following modification of
the Doeblin approach.

Let X be a separable Banach space with a norm ‖ · ‖ and let (uk,Pu) be a
family of Markov chains in X . Retaining the notation used above, suppose we
can find a closed subset B ⊂ X for which the two properties below are satisfied:

(i) Inequality (0.2) holds for any u, u′ ∈ B and a constant γ < 1.

(ii) The first hitting time τB of the set B is almost surely finite for any initial
point u ∈ X , and there is δ > 0 such that

Eu exp
(
δτB

)
<∞ for all u ∈ X. (0.8)

Let (R,R′) be the family of random variables in X defined above and let {Uk}
be the family of Markov chains given by (0.4). Denote by ρn the n-th instant
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when the trajectory Uk enters the set B := B × B. Then, using (0.2), (0.3),
and the strong Markov property (SMP), it can be shown that (cf. (0.5))

P{uρn+1 6= u′ρn+1 | Fρn
} ≤ γ for any U ∈ X , n ≥ 1, (0.9)

where Fρn
denotes the σ-algebra associated with the Markov time ρn. Iteration

of (0.9) results in (cf. (0.6))

PU{uρn+1 6= u′ρn+1} ≤ γn for any U ∈ X , n ≥ 1.

Combining this with (0.8), one can prove inequality (0.7) with a larger con-
stant γ < 1. Thus, the Doeblin method applies also in the case of unbounded
phase space, provided that inequality (0.2) is satisfied on a subset that can
be reached exponentially fast from any initial point. However, it should be
noted that inequality (0.2) is rather restrictive for Markov chains in an infinite-
dimensional space. For instance, in the case of stochastic partial differential
equations (SPDE), it is satisfied only if the diffusion is “very rough.” The
aim of this paper is to establish a general criterion for uniqueness of station-
ary measure and exponential mixing and to show how to apply it to a complex
Ginzburg–Landau (CGL) equation. Without going into details, let us describe
our scheme in the case of discrete time.

As before, we consider a Markov family (uk,Pu) in a separable Banach
space X and denote by Pk(u,Γ) its transition function. Suppose we can con-
struct a family of Markov chains (Uk,PU ), Uk = (uk, u

′
k), in the product space X

such that the laws of uk and u′k under PU , U = (u, u′), coincide with Pk(u, ·)
and Pk(u′, ·), respectively, and the following two properties hold (cf. proper-
ties (i) and (ii) above):

(i’) Let σ = min{k ≥ 1 : ‖uk − u′k‖ > γk}, where γ < 1 is a positive constant
and the minimum over an empty set is +∞. Then there is a subset B ⊂ X

and positive constants C and α < 1 such that

PU{σ = +∞} ≥ 1
2 , PU{σ = k} ≤ Cαk for U = (u, u′) ∈ B .

(ii’) Let τB = min{k ≥ 0 : Uk ∈ B}. Then there is δ > 0 such that

EU exp
(
δτB

)
<∞ for any U ∈ X .

In this case, the difference Pk(u, ·) − Pk(u′, ·), regarded as a signed measure
in X , goes to zero in the dual Lipschitz norm ‖ · ‖∗L exponentially fast. (See
Notation for the definition of ‖ · ‖∗L.) Indeed, it follows from (i’) that, each time
the process is in B , with probability ≥ 1

2 we have σ = +∞, which means that
the difference ∆k = ‖uk − u′k‖ goes to zero exponentially fast. Let us consider
a sequence of stopping times ρk defined by the following rule. Denote by ρ0

the first hitting time of B (i.e., ρ0 = τB). With probability ≥ 1
2 , we have

σ = +∞ for the chain starting from Uρ0
, and in this case we set ρk = +∞ for

k ≥ 2. Otherwise we denote by ρ the first instant after σ when Uρ0+k hits B
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and define ρ1 by the formula ρ1 = ρ0 + ρ. In general, if ρk is already defined,
then ρk+1 = ρk + ρ, where ρ is the first instant after σ when the chain starting
from Uρk

hits B . As in the case of ρ0, with probability ≥ 1
2 we have ρl = +∞

for l ≥ k + 1.
The above construction implies that, if ρk < +∞ and ρk+1 = +∞, then

∆ρk+m ≤ γm for allm ≥ 0. Using the strong Markov property and assertions (i’)
and (ii’), it can be shown that PU{ρk < +∞} ≤ 2−k. What has been said implies
that, with probability ≥ 1 − 2−k−1, we have

‖uk − u′k‖ ≤ γk−ρk for all k ≥ ρk. (0.10)

Moreover, further analysis enables one to show that

PU

{
k/2 ≤ ρk <∞

}
≤ Cβk, (0.11)

where C and β < 1 are positive constants. Combining (0.10) and (0.11), we see
that

PU

{
‖uk − u′k‖ > γk/2

}
≤ 2−k−1 + Cβk for k ≥ 1.

Thus, the difference ‖uk − u′k‖ converges to zero in probability exponentially
fast. This property implies the uniqueness of stationary measure.

Let us mention that the problem of ergodicity for randomly forced equations
of mathematical physics was in the focus of attention of many researchers during
the last ten–fifteen years, and first results in this direction were obtained in the
papers [Sin91, FM95, KS00, EMS01, BKL02]. We refer the reader to the review
papers [ES00, Kuk02, Bri02, Shi05b] and to the book [Kuk06] for a detailed
account of the results obtained so far. The coupling technique described above
is a modified version of the one used in [KS01, KS02, Shi04]. Related approaches
were also developed in [Mat02, MY02, Hai02, Oda06].

The paper is organised as follows. In Section 1, we give a description of ran-
dom dynamical systems (RDS) studied in this work and introduce the concept
of an extension for RDS. A general criterion (in terms of extension) for unique-
ness of stationary measure and exponential mixing is presented in Section 2.
In the third section, we give some simple sufficient conditions under which one
of the hypotheses of our criterion is satisfied. The fourth section is devoted to
application of these results to complex Ginzburg–Landau equation with random
perturbation. We also formulate an open problem. Finally, in Appendix, we
present two auxiliary results used in the main text.

Notation

Let X be a separable Banach space endowed with its Borel σ-algebra BX . De-
note by BR the ball in X of radius R centred at origin, by P(X) the set of
probability measures on (X,BX), by C(X) the space of continuous functions
f : X → R, and by L(X) the space of functions f ∈ C(X) such that

‖f‖L := sup
u∈X

|f(u)| + sup
u6=v

|f(u) − f(v)|

‖u− v‖
<∞,
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where ‖ · ‖ stands for the norm in X . The space P(X) is endowed with either
the total variation distance,

‖µ1 − µ2‖var := sup
Γ∈BX

|µ1(Γ) − µ2(Γ)|,

or the dual Lipschitz distance,

‖µ1 − µ2‖
∗
L := sup

‖f‖L≤1

∣∣(f, µ1) − (f, µ2)
∣∣,

where (f, µ) denotes the integral of the function f with respect to the measure µ.
The space P(X) is complete with respect to both metrics ‖ · ‖var and ‖ · ‖∗L
(see [Dud89]).

LetD ⊂ Rn be a bounded domain with a smooth boundary ∂D and let T > 0
be a constant. We shall use the following functional spaces.

L2 = L2(D,C) is the space of complex-valued square-integrable functions on D.

H1 = H1(D,C) is the Sobolev space of order 1.

H1
0 = H1

0 (D,C) is the space of functions u ∈ H1 vanishing on ∂D.

Ck(0, T ;X) is the space of continuous functions u : [0, T ] → X that are k times
continuously differentiable. In the case k = 0, we shall write C(0, T ;X).

L2(0, T ;X) is the space of Bochner-measurable square-integrable functions on
the interval [0, T ] with range in X .

If a and b are real numbers, then a ∨ b (a ∧ b) stands for their maximum
(minimum). For a random variable ξ, we denote by D(ξ) its distribution. If A
is a subset in a given space, then IA stands for its indicator function and Ac

denotes its complement. We denote by R+ the half-line [0,∞).

1 Description of the class of problems

1.1 A class of random dynamical systems

Let (Ω,F ,P) be a complete probability space endowed with a filtration Ft,
t ≥ 0, and a semigroup of measure-preserving transformations θt : Ω → Ω such
that θ−1

t Fs ⊂ Ft+s. We shall always assume that Ft is augmented with respect
to (F ,P), that is, the σ-algebra Ft contains all P-null sets of F .

We consider a random dynamical system (RDS) whose trajectories form a
Markov process. More precisely, let X be a separable Banach space with a
norm ‖ · ‖, let BX be the Borel σ-algebra on X , and let St(u, ω), t ≥ 0, ω ∈ Ω,
u ∈ X , be a continuous RDS over θt (see Definitions 1.1.1 and 1.1.2 in [Arn98]).
We shall always assume that the following two properties hold:

• For a.a. ω ∈ Ω, the trajectories St(u, ω), u ∈ X , are continuous in t ≥ 0.
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• For any u ∈ X , the random process St(u, ω), t ≥ 0, is Markov with respect
to the filtration Ft, that is, for any Γ ∈ BX and any t, s ≥ 0, we have

P
(
St+s(u, ·) ∈ Γ | Ft) = Ps(St(u, ω),Γ), (1.1)

where the equality holds for a.a. ω ∈ Ω, and Ps(u,Γ) is the transition
function defined by the formula

Pt(u,Γ) = P
{
St(u, ·) ∈ Γ

}
, u ∈ X, Γ ∈ BX . (1.2)

In what follows, random dynamical systems satisfying the above properties (in
particular, the continuity condition with respect to time) will be said to be
Markov . With every Markov RDS, we shall associate a family of Markov pro-
cesses parametrised by the initial point u ∈ X . To fix notation, let us briefly
recall the corresponding construction.

Let us set

Ω′ = X × Ω, F ′ = BX ⊗F , F ′
t = BX ⊗Ft, Pu = δu ⊗ P,

where δu ∈ P(X) is the Dirac measure concentrated at u ∈ X and ⊗ denotes
the direct product of measures and σ-algebras. For ω′ = (u, ω) ∈ Ω′, we set

S′
t(ω

′) = St(u, ω), θ′tω
′ = (St(u, ω), θtω).

We thus obtain a Feller2 family (S′
t,P

′
u) of homogeneous Markov processes in the

phase space X with the transition function (1.2) and the corresponding Markov
semigroups

Ptf(u) =

∫

X

Pt(u, dv)f(v), P∗
tµ(Γ) =

∫

X

Pt(u,Γ)µ(du), (1.3)

where f ∈ Cb(X) and µ ∈ P(X). In what follows, we shall drop the prime from
the notation and write ω,Ω, St,F ,Ft, θt instead of ω′,Ω′, S′

t,F
′,F ′

t, θ
′
t.

In this paper, we consider Markov RDS associated with the randomly forced
complex Ginzburg–Landau (CGL) equation

u̇− (ν + i)∆u+ i|u|2pu = h(x) + ζ̇(t, x), x ∈ D, (1.4)

u
∣∣
∂D

= 0, (1.5)

where u = u(t, x) is a complex-valued unknown function, D ⊂ Rn is a bounded
domain with smooth boundary ∂D, h ∈ L2(D,C) stands for a deterministic
function, and ζ(t, x) is a complex-valued coloured Wiener process. We shall show
that the problem in question has a unique stationary measure and possesses a
property of exponential mixing. We refer the reader to Section 4.2 for an exact
formulation of the result.

2The Feller property of the transition function follows from the continuity of St(u, ω) with
respect to u and the Lebesgue theorem on dominated convergence.
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1.2 Extension of random dynamical systems

Let X be a separable Banach space and let St(u, ω) be a Markov RDS in X
over a semigroup θt. We define the product space X = X ×X endowed with
the usual norm and denote by BX its Borel σ-algebra. Write u = (u, u′) and
denote by

ΠX : u 7→ u, Π′
X : u 7→ u′

the natural projections to the components of u . Let (Ω̂, F̂ , P̂) be a complete

probability space endowed with a filtration F̂t, t ≥ 0, which is assumed to be
augmented with respect to (F̂ , P̂), and let θ̂t : Ω̂ → Ω̂ be a semigroup of measure-

preserving transformations such that θ−1
t F̂s ⊂ F̂t+s. Consider a Markov RDS

S t(u , ω̂) in X over θ̂t.

Definition 1.1. A Markov RDS S t in X defined on the half-line t ≥ 0 is
called an extension of St if for any u = (u, u′) ∈ X the distributions of the
random processes ΠXS t(u , ω̂) and Π′

XS t(u , ω̂) regarded as random variables
in C(R+, X) coincide with those of St(u, ω) and St(u

′, ω), respectively.

In what follows, if St is an RDS and S t is its extension, then we shall
denote the corresponding stochastic bases by the same symbol (Ω,F ,P,Ft, θt).
Moreover, abusing the notation, we shall write S t(u , ω) = (St(u , ω), S′

t(u , ω)).
Finally, we shall denote by (S t,Pu) the family of Markov processes associated
with S t and parametrised by the initial point u ∈ X .

Let us note that, if S t is an extension of St, then for any f ∈ C(X) and
u = (u, u′) ∈ X , we have

Euf(ΠXS t) = Ptf(u), Euf(Π′
XS t) = Ptf(u′). (1.6)

This observation, which is a simple consequence of the definition of extension,
will be important in the next section (see the proof of Theorem 2.3).

We shall also need an auxiliary concept of extension on a finite time interval .
More precisely, let Rt(u , ω) = (Rt(u , ω),R′

t(u , ω)) be a continuous Markov
RDS defined for t ∈ [0, T ], where T > 0 is a constant not depending on (u , ω).
(In other words, the properties entering the definition of a Markov RDS hold
on the interval [0, T ]; see Definitions 1.1.1 and 1.1.2 in [Arn98].)

Definition 1.2. The RDS Rt = (Rt,R′
t) in X is called an extension of St

on [0, T ] if for any u = (u, u′) ∈ X the distributions of the random pro-
cesses Rt(u , ·) and R′

t(u , ·) regarded as random variables in C(0, T ;X) coincide
with those of St(u, ·) and St(u

′, ·), respectively.

Given an extension Rt of St on an interval [0, T ], we can iterate it to con-
struct an extension defined on the half-line t ≥ 0. To this end, we denote
by (Ωk,Fk,Pk,Fk

t , θ
k
t ), k ≥ 1, a countable family of independent copies of the

stochastic bases on which Rt is defined. Let us consider a new stochastic ba-
sis (Ω,F ,P,Ft, θt) defined by the following rules:

• The space Ω is the product of Ωk, k ≥ 1, and its points are denoted
by ω = (ω1, ω2, . . . ).
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• The σ-algebra F is the direct product of Fk, k ≥ 1, completed with respect
to the product measure P = P1 ⊗ P2 ⊗ · · · .

• If t = (k − 1)T + s, where k ≥ 1 is an integer and 0 ≤ s < T , then Ft is
the augmentation (with respect to (F ,P)) of the σ-algebra generated by
the sets of the form

Γ =
{
ω = (ω1, ω2, . . . ) : ωm ∈ Γm for m = 1, . . . , k

}
,

where Γm ∈ Fm
T for m = 1, . . . , k−1 and Γk ∈ Fk

s . Furthermore, the shift
operator θt is given by the formula

θtω = θt(ω1, ω2, . . . ) = (θk
sωk, θ

k+1
s ωk+1, . . . )

An extension S t on t ≥ 0 is now defined by induction. Namely, for 0 ≤ t ≤ T
we set

S t(u , ω) = Rt(u , ω1). (1.7)

If S t is already defined for 0 ≤ t ≤ kT , where k ≥ 1 is an integer, then for
0 ≤ s ≤ T we set

SkT+s(u , ω) = Rs(SkT (u , ω), ωk+1). (1.8)

It is a matter of direct verification to show that S t(u , ω) is a continuous Markov
RDS in X over θt and that it is an extension of St.

2 Coupling hypothesis

2.1 Markov RDS satisfying a coupling condition

Let (Ω,F ,P,Ft, θt) be a stochastic basis satisfying the conditions formulated in
Section 1, let St(u, ω) be a Markov RDS in a separable Banach space X , and
let Pt and P∗

t be the corresponding Markov semigroups (see (1.3)). Recall that
µ ∈ P(X) is called a stationary measure for St(u, ω) if P∗

tµ = µ for all t ≥ 0.

Definition 2.1. We shall say that St is exponentially mixing if it has a unique
stationary measure µ ∈ P(X), and there is a constant γ > 0 and an increasing
function V : R+ → R+ such that, for any u ∈ X , we have

‖Pt(u, ·) − µ‖∗L ≤ V (‖u‖)e−γt, t ≥ 0. (2.1)

Let S t(u , ω) be an extension of St(u, ω) (see Section 1.2). Let us fix positive
constants C, β and a closed subset B ⊂ X and introduce the stopping times

τB = τB(u , ω) = inf
{
t ≥ 0 : S t(u , ω) ∈ B

}
, (2.2)

σ = σ(u , ω) = inf
{
t ≥ 0 : ‖St(u , ω) − S′

t(u , ω)‖ ≥ C e−βt
}
, (2.3)

where u = (u, u′), and the infimum over an empty set is +∞. In other words,
τB is the first hitting time of the closed set B for the trajectory S t(u , ω) and σ
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is the first instance when the curves St(u , ω) and S′
t(u , ω) “stop converging” to

each other exponentially fast. In particular, if σ(u , ω) = ∞, then

‖St(u , ω) − S′
t(u , ω)‖ ≤ C e−βt for t ≥ 0. (2.4)

Definition 2.2. We shall say that the RDS St(u, ω) satisfies the coupling hy-

pothesis if it has an extension S t(u , ω) possessing the following properties:

(i) There is a constant δ > 0, a closed set B ⊂ X , and an increasing function
g(r) ≥ 1 of the variable r ≥ 0 such that

Eu exp
(
δτB

)
≤ G(u) for all u = (u, u′) ∈ X , (2.5)

where we set G(u) = g(‖u‖) + g(‖u′‖).

(ii) There are positive constants δ1, δ2, c, K, and q > 1 such that

Pu

{
σ = ∞

}
≥ δ1, (2.6)

Eu

{
I{σ<∞} exp

(
δ2σ

)}
≤ c, (2.7)

Eu

{
I{σ<∞}G(Sσ)q

}
≤ K (2.8)

for any u ∈ B .

Any extension of St satisfying properties (i) and (ii) will be called a mixing

extension.

Before formulating the main result of this section, we wish to make some
comments on the above definition. Let us take an arbitrary initial point u ∈ B .
Then, in view of (2.6), with probability ≥ δ1, we have σ = ∞, and therefore,
with the same probability, the trajectories St(u , ω) and S′

t(u , ω) converge to
each other exponentially fast (see (2.4)). On the other hand, if they do not,
inequality (2.7) says that the first instant σ(u , ω) when the trajectories “stop
converging” to each other is not very large. Moreover, by (2.8), we have some
control over S t(u , ω) at the instant t = σ(u , ω). If the initial point u ∈ X does
not belong to B , we cannot claim that the above properties hold. However, we
know that, with probability 1, any trajectory hits the set B , and by (2.5), the
first hitting time τB has a finite exponential moment.

These observations make it plausible that, for any initial point u ∈ X , the
trajectories St(u , ω) and S′

t(u , ω) converge to each other exponentially fast. In
fact, we have the following result, whose proof is given in the next subsection.

Theorem 2.3. Let St(u, ω) be a continuous Markov RDS satisfying the coupling

hypothesis and let S t(u , ω) be a mixing extension for St. Then there is a random

time ℓ = ℓ(u , ω) such that

‖St(u , ω) − S′
t(u , ω)‖ ≤ C1e

−β(t−ℓ(u,ω)) for t ≥ ℓ(u , ω), (2.9)

Eue
αℓ ≤ C1

(
g(‖u‖) + g(‖u′‖)

)
, (2.10)
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where u ∈ X is an arbitrary initial point, g(r) is the function in Definition 2.2,

and C1, α, and β are positive constants not depending on u and t. If, in

addition, there is an increasing function g̃(r) ≥ 1, r ≥ 0, such that

Eu g
(
‖St‖

)
≤ g̃(‖u‖) for u ∈ X, t ≥ 0, (2.11)

then St(u, ω) is exponentially mixing, and inequality (2.1) holds with

V (r) = 3C1

(
g(r) + g̃(0)

)
. (2.12)

2.2 Proof of Theorem 2.3

We first note that inequalities (2.9), (2.10), and (2.11) imply that St(u, ω) is
exponentially mixing. Indeed, to prove this, let us show that, for any u, u′ ∈ X ,
we have

∥∥Pt(u, ·) − Pt(u
′, ·)

∥∥∗

L
≤ 3C1

(
g(‖u‖) + g(‖u′‖)

)
e−γt, t ≥ 0. (2.13)

To this end, we fix an arbitrary functional f ∈ L(X) with ‖f‖L ≤ 1 and note
that, in view of (1.6),

∣∣(f, Pt(u, ·) − Pt(u
′, ·)

)∣∣ =
∣∣Eu

(
f(St) − f(S′

t)
)∣∣ ≤ Eu

∣∣f(St) − f(S′
t)

∣∣

≤ 2Pu

{
ℓ > t

2

}
+ Eu

{
I{ℓ≤ t

2
}

∣∣f(St) − f(S′
t)

∣∣}. (2.14)

In view of (2.10) and the Chebyshev inequality, we have

Pu

{
ℓ > t

2

}
≤ C1

(
g(‖u‖) + g(‖u′‖)

)
e−

αt
2 . (2.15)

Furthermore, it follows from the condition ‖f‖L ≤ 1 and inequality (2.9) that
the second term on the right-hand side of (2.14) does not exceed

Eu

{
I{ℓ≤ t

2
}‖St − S′

t‖
}
≤ C1e

−βt
2 . (2.16)

Substituting (2.15) and (2.16) into (2.14), we obtain

∣∣(f, Pt(u, ·) − Pt(u
′, ·)

)∣∣ ≤ 2C1

(
g(‖u‖) + g(‖u′‖)

)
e−

αt
2 + C1e

−βt
2 ,

which implies the required inequality (2.13) with γ = 1
2 (α ∧ β).

We now use (2.13) to show that St is exponentially mixing. Let us fix
arbitrary points u, u′ ∈ X and a functional f ∈ L(X) such that ‖f‖L ≤ 1. By
the Kolmogorov–Chapman relation and inequality (2.13), for t ≤ s we have

∣∣(f, Pt(u, ·) − Ps(u
′, ·)

)∣∣ =

∣∣∣∣
∫

X

Ps−t(u
′, dz)

∫

X

(
Pt(u, dv) − Pt(z, dv)

)
f(v)

∣∣∣∣

≤ 3C1e
−γt

∫

X

Ps−t(u
′, dz)

[
g(‖u‖) + g(‖z‖)

]

= 3C1e
−γt

[
g(‖u‖) + Eu′ g(‖Ss−t‖)

]
.

11



Taking into account (2.11), we conclude that

∥∥Pt(u, ·) − Ps(u
′, ·)

∥∥∗

L
≤ 3C1

(
g(‖u‖) + g̃(‖u′‖)

)
e−γt. (2.17)

By the Prokhorov theorem (see [Dud89, Corollary 11.5.5]), P(X) is a complete
metric space with respect to the norm ‖ · ‖∗L. Hence, we conclude that Pt(u, ·)
converges, as t → +∞, to a measure µ ∈ P(X), which does not depend on u
and is stationary. Setting u′ = 0 in (2.17) and passing to the limit as s→ +∞,
we obtain inequality (2.1) with V given by (2.12).

Thus, we need to establish inequalities (2.9) and (2.10). Their proof is
divided into four steps.

Step 1. We introduce the stopping time

ρ = σ + τB ◦ θσ = σ(u , ω) + τB
(
Sσ(u ,ω)(u , ω), θσ(u,ω)ω)

)
. (2.18)

In other words, we wait until the first instant σ when the trajectories St and S′
t

“stop converging” to each other and denote by ρ the first hitting time of B

after σ. Let δ, δ1 and δ2 be the constants in (2.5), (2.6), and (2.7). We claim
that, for any u ∈ B ,

Pu{ρ = ∞} ≥ δ1, (2.19)

Eu

{
I{ρ<∞}e

αρ
}
≤ a, (2.20)

where α ≤ δ2 ∧ δ and a < 1 are positive constants not depending on u . Indeed,
the definition of ρ(u , ω) (see (2.18)) implies that {ρ = ∞} = {σ = ∞}, and
therefore (2.19) is an immediate consequence of (2.6).

To prove (2.20), we first show that

Eu

{
I{ρ<∞}e

δ3ρ
}
≤M for any u ∈ B , (2.21)

where δ3 = (q−1)(δ2∧δ)
q and M > 0 is a constant not depending on u . Indeed,

using relation (2.18), the strong Markov property (SMP), and inequality (2.5),
we derive

Eu

{
I{ρ<∞}e

δ3ρ
}

= Eu

{
I{σ<∞}e

δ3σ
(
ESσ

eδ3τB

)}
≤ E

{
I{σ<∞}e

δ3σG(Sσ)
}
.

Combining this with (2.7) and (2.8), we conclude that

Eu

{
I{ρ<∞}e

δ3ρ
}
≤

(
Eu

{
I{σ<∞}e

δ2σ
}) q−1

q
(
Eu

{
I{σ<∞}G(Sσ)q

}) 1
q

≤ (cq−1K)
1
q =: M.

To derive (2.20), let us set α = εδ3 and note that, in view of (2.19) and (2.21),
we have

Eu

{
I{ρ<∞}e

αρ
}
≤

(
Pu{ρ <∞}

)1−ε(
Eu

{
I{ρ<∞}e

δ3ρ
})ε

≤ (1 − δ1)
1−εM ε.

The right-hand side of this inequality is less than 1 if ε > 0 is sufficiently small.

12



Step 2. We now consider the iterations of ρ. Namely, we define a sequence
of stopping times ρk = ρk(u , ω) by the formulas

ρ0 = τB , ρk = ρk−1 + ρ ◦ θρk−1
, k ≥ 1.

We claim that

Eu

{
I{ρk<∞}e

αρk
}
≤ akG(u) for any u ∈ X . (2.22)

Indeed, since Sρk(u,ω)(u , ω) ∈ B , inequality (2.20) and the SMP imply that

Eu

{
I{ρk<∞}e

αρk
}
≤ Eu

{
I{ρk−1<∞}e

αρk−1 sup
v∈B

Ev

(
I{ρ<∞}e

αρ
)}

≤ aEu

{
I{ρk−1<∞}e

αρk−1
}
≤ ak

Eue
ατB .

The required inequality (2.22) follows now from (2.5) and the fact that α ≤ δ.

Step 3. We now note that, if ρk(u , ω) < ∞ and ρk+1(u , ω) = ∞ for an
integer k ≥ 0, then

‖St(u , ω) − S′
t(u , ω)‖ ≤ C e−β(t−ρk(u,ω)) for t ≥ ρk(u , ω). (2.23)

For any u ∈ X , let us set

k̄ = k̄(u , ω) = sup{k ≥ 0 : ρk(u , ω) <∞}.

We wish to show that

k̄ <∞ for Pu -almost every ω. (2.24)

To this end, note that, in view of (2.19) and the SMP,

Pu{ρk <∞} ≤ (1 − δ1)Pu{ρk−1 <∞} ≤ (1 − δ1)
k
Pu{ρ0 <∞} ≤ (1 − δ1)

k.

Hence, the Borel–Cantelli lemma implies (2.24).

Step 4. Let us set

ℓ = ℓ(u , ω) =

{
ρk̄(u,ω)(u , ω) if k̄(u , ω) <∞,

+ ∞ if k̄(u , ω) = ∞.

Inequality (2.9) follows immediately from (2.23), the definition of ρk, and the
fact that ρℓ+1 = ∞. To prove (2.10), we write

Eue
αℓ =

∞∑

k=0

Eu

{
I{k̄=k}e

αρk
}
≤

∞∑

k=0

Eu

{
I{ρk<∞}e

αρk
}
≤ (1 − a)−1G(u),

where we used inequality (2.22) and the fact that ℓ(u , ω) < ∞ for Pu -a.a. ω.
This completes the proof of Theorem 2.3.

Remark 2.4. Analyzing the proof given above, it is not difficult to see that The-
orem 2.3 remains valid if σ(u , ω) is replaced with any other stopping time σ̃ ≤ σ.
In other word, if inequalities (2.6)–(2.9) hold with σ replaced by σ̃, then the
conclusion of Theorem 2.3 is true. To see this, it suffices to repeat the arguments
above, replacing everywhere σ by σ̃.
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3 Dissipative RDS and their extensions

In this section, we give sufficient conditions for the existence of an extension
satisfying inequality (2.5). These results will be used in the next section to
prove exponential mixing for the complex Ginzburg–Landau equation.

3.1 Lyapunov function

Let St(u, ω) be a Markov RDS in a separable Banach space X and let F (u) ≥ 1
be a continuous functional on X tending to +∞ as ‖u‖ → ∞. Suppose that St

satisfies the following condition:

(H1) Lyapunov function. There are positive constants t∗, R∗, C∗, and a < 1
such that

EuF
(
St∗

)
≤ aF (u) for ‖u‖ ≥ R∗, (3.1)

EuF
(
St

)
≤ C∗ for ‖u‖ ≤ R∗, t ≥ 0, (3.2)

In what follows, we shall call F a Lyapunov function for St. An important
property of a Markov RDS possessing a Lyapunov function is that the first
hitting time of sufficiently large balls in the phase space is almost surely finite
for any initial condition and has a finite exponential moment. Namely, we have
the following result:

Proposition 3.1. Let St(u, ω) be a Markov RDS satisfying Hypothesis (H1)
and let τR(u, ω) be the first hitting time of the ball BR = {u ∈ X : ‖u‖ ≤ R},
where R ≥ R∗. Then

Pu{τR <∞} = 1 for all u ∈ X. (3.3)

Moreover, there are positive constants δ and C not depending on R and u such

that

Eu exp(δτR) ≤ 1 + CK−1
R F (u), (3.4)

where we set

KR = inf
‖v‖≥R

F (v). (3.5)

Proposition 3.1 can be established by a standard argument (see [MT93]).
However, for the sake of completeness, we give its proof.

Proof of Proposition 3.1. Step 1. The result is trivial for ‖u‖ ≤ R, since in this
case τR(u, ω) = 0 for Pu-almost every ω. Let us fix an arbitrary u ∈ X with
‖u‖ > R and consider an auxiliary stopping time defined by the formula

τ̄ = τ̄ (u, ω) = min
{
t = mt∗ : ‖St‖ ≤ R, m ≥ 0 is an integer

}
.

For any integer k ≥ 0 and any v ∈ X , we set

pk(v) = Ev

{
I{τ̄>kt∗}F (Skt∗)

}
. (3.6)

14



We claim that
pk(u) ≤ akF (u) for all k ≥ 0. (3.7)

Indeed, the Markov property (1.1) and inequality (3.1) imply that

pk+1(u) ≤ Eu

{
I{τ̄>kt∗}Eu

(
F (S(k+1)t∗) | Fkt∗

)}

= Eu

{
I{τ̄>kt∗}ESkt∗

F (St∗)
}

≤ aEu

{
I{τ̄>kt∗}F (Skt∗)

}
= apk(u), (3.8)

where we used the non-negativity of F and the fact that ‖Skt∗‖ > R ≥ R∗ on
the set {τ̄ > kt∗}. Iterating (3.8) and noting that

Eu{I{τ̄>0}F (S0)} ≤ F (u),

we arrive at (3.7).
Step 2. It follows from (3.6) and (3.7) that

Pu{τ̄ > kt∗} ≤ K−1
R Eu

{
I{τ̄>kt∗}F (Skt∗)

}
≤ akK−1

R F (u). (3.9)

Combining this with the Borel–Cantelli lemma, we see that

Pu{τ̄ <∞} = 1 for any u ∈ X. (3.10)

Furthermore, if δ > 0 is so small that b := eδt∗a < 1, then, by (3.9), we have

Eue
δτ̄ ≤ 1 +

∞∑

k=1

Eu

{
I{τ̄=kt∗}e

δτ̄
}

≤ 1 +

∞∑

k=1

eδkt∗Pu{τ̄ > (k − 1)t∗}

≤ 1 +K−1
R F (u)

∞∑

k=1

eδkt∗ak−1 = 1 + CK−1
R F (u), (3.11)

where we set C = eδt∗(1−b)−1. It remains to note that τ̄ ≥ τR, and hence (3.10)
and (3.11) imply (3.3) and (3.4).

A result similar to Proposition 3.1 is true for any extension of St. More pre-
cisely, let S t(u , ω) be an extension of a Markov RDS satisfying Hypothesis (H1)
and let3

τR = min{t ≥ 0 : ‖St(u , ω)‖ ∨ ‖S′
t(u , ω)‖ ≤ R}. (3.12)

Let R∗ > 0 be the smallest constant such that KR∗ ≥ 2C∗

1−a , where a and C∗

are the constants in Hypothesis (H1) and KR is defined by (3.5). The assertion
below can be established by repeating the arguments in the proof of Proposi-
tion 3.1.

3The stopping time (3.12) is different from the one defined in Proposition 3.1 for the original
RDS. However, we retained the same notation since they play similar roles for S t and St.
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Proposition 3.2. Let St(u, ω) be a Markov RDS satisfying Condition (H1) and

let S t(u , ω) be its extension. Then there are positive constants δ and C such

that, for any u ∈ X and R ≥ R∗, we have

Pu{τR <∞} = 1, (3.13)

Eu exp(δτR) ≤ 1 + CK−1
R

(
F (u) + F (u′)

)
. (3.14)

3.2 Dissipation

Let St(u, ω) be a continuous Markov RDS in a separable Banach space X and
let Rt(u , ω) be its extension on an interval [0, T ]. Suppose that Rt = (Rt,R′

t)
satisfies the following condition.

(H2) Dissipation. For any R > 0 there is a constant q ∈ (0, 1) and an increas-
ing function ε(d) > 0 defined for d > 0 such that, for any u = (u, u′) ∈ X

with ‖u‖ ∨ ‖u′‖ ≤ R and any d > 0, we have

Pu

{
‖RT (u , ·)‖ ∨ ‖R′

T (u , ·)‖ ≤ {q(‖u′‖ ∨ ‖u′‖)} ∨ d
}
≥ ε(d). (3.15)

In other words, the dissipation condition (H2) means that for any d > 0, with
positive probability, any ball in X of radius R ≥ d/q centred at zero is pushed
into a ball of radius qR by the maps RT and R′

T . Therefore, it is reasonable to
expect that, if S t is the extension of St constructed by iteration of Rt (see (1.7)
and (1.8)), then for any initial point u ∈ X the trajectory S t(u , ω) will hit, in a
finite time, any ball of given radius centred at zero. We have in fact the following
result, which shows that the existence of a Lyapunov function combined with the
dissipation property (H2) implies that the first hitting time of any ball centered
at zero has a finite exponential moment (cf. (2.5)).

Proposition 3.3. Let St(u, ω) be a Markov RDS possessing a Lyapunov func-

tion F (u) in the sense of (H1) and let Rt(u , ω) be its extension defined on an

interval [0, T ] and satisfying condition (H2). Then for any d > 0 there are pos-

itive constants C and ν such that, for the extension S t constructed by iteration

of Rt, we have

Eu exp(ντd) ≤ C
(
F (u) + F (u′)

)
, u = (u, u′) ∈ X , (3.16)

Proof. We first describe the main idea, which is well known; for instance, see
Sections 3.7 and 4.2 in [Has80] or Section 13 in [Ver00]. By Proposition 3.2,
the first hitting time of the set

BR = {u ∈ X : ‖u‖ ∨ ‖u′‖ ≤ R} (3.17)

has a finite exponential moment for R ≥ R∗, and by the dissipation prop-
erty (H2), each time the process S t is in BR, with positive probability it
hits Bd in finite (deterministic) time. Combining these two observations with
the Markov property, we can prove the required result. An accurate proof is
divided into four steps.
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Step 1. Let R∗ and q be the constants in Proposition 3.2 and Hypothe-
ses (H2). We fix an arbitrary d > 0 and set ld = min{l ≥ 0 : qlR∗ ≤ d}. It
follows from inequality (3.15) and the Markov property that, for any u ∈ BR∗ ,
we have

Pu

{
S ldT ∈ Bd

}
≥ pd := ε(d)ld > 0. (3.18)

Step 2. Let us set τ = τR∗ and define two sequences of stopping times by
the formulas

ρ′1 = τ, ρ1 = τ + ldT, ρ′m = ρm−1 + τ ◦ θρm−1
, ρm = ρ′m + ldT, m ≥ 2.

Consider the events Γm =
{
Sρn

/∈ Bd for n = 1 . . . ,m
}
. Let us show that, for

any u ∈ X , the sequence Pm(u) = Pu(Γm) satisfies the inequality

Pm(u) = (1 − pd)
m, m ≥ 1. (3.19)

Indeed, by the SMP, for any m ≥ 1 we have 4

Pu

{
Sρm

/∈ Bd

∣∣Fρ′
m

}
= PS(ρ′

m)

{
S ldT /∈ Bd

}
≤ 1 − pd, (3.20)

where we used inequality (3.18) and the fact that Sρ′
m
∈ BR∗ . Therefore, using

again the SMP, we derive

Pm(u) = Eu

(
IΓm−1

Pu

{
Sρm

/∈ Bd

∣∣Fρ′
m

})
≤ (1 − pd)Pm−1(u).

Iterating this inequality and using (3.20) with m = 1, we obtain (3.19).

Step 3. We now show that for any d > 0 there is a constant K ≥ 1 such that

Eue
δρm ≤ Km

(
F (u) + F (u′)

)
, m ≥ 1, (3.21)

where δ > 0 is the constant in (3.14). Indeed, applying the SMP and inequali-
ties (3.14) and (3.2) (with t = ldT ), we derive

Eue
δρ′

m = Eu

{
eδρm−1ES(ρm−1)(e

δτ )
}

≤ C1Eu

{
eδρm−1

(
F (Sρm−1

) + F (S′
ρm−1

)
)}

≤ C1e
δldT

Eu

{
eδρ′

m−1ES(ρ′

m−1
)

(
F (SldT ) + F (S′

ldT )
)}

≤ C2e
δldT

Eue
δρ′

m−1 ,

where we used the fact that Sρm−1
∈ BR∗ . Iterating this inequality and using

again (3.14), we obtain (3.21).

Step 4. We can now prove inequality (3.16) with sufficiently small ν > 0.
To this end, we define the random integer

n̂ = min{n ≥ 1 : Sρn
∈ Bd}

4We write S(ρ′m) instead of Sρ′
m

to avoid a double subscript.
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and note that τd ≤ ρn̂. Moreover, it follows from (3.19) and the Borel–Cantelli
lemma that Pu{n̂ <∞} = 1 for any u ∈ X . Hence, for any ν > 0 we have

Eue
ντd ≤ Eue

νρn̂ =

∞∑

n=1

Eu

(
I{n̂=n}e

νρn
)

≤ Eue
νρ1 +

∞∑

n=2

Eu

(
IΓn−1

eνρn
)

≤ Eue
νρ1 +

∞∑

m=1

Pm(u)
1
2

(
Eue

2νρm+1
) 1

2

≤ K
(
1 +

∞∑

m=1

(1 − pd)
m
2 K

νm
δ

)(
F (u) + F (u′)

)
. (3.22)

Comparing this inequality with (3.19) and (3.21), we see that, for a sufficiently
small ν > 0, the right-hand side of (3.22) can be estimated by C(F (u)+F (u′)).
This completes the proof of Proposition 3.3.

4 Complex Ginzburg–Landau equation

4.1 Cauchy problem and a priori estimates

Let D ⊂ Rn (n = 3 or 4) be a bounded domain with smooth boundary ∂D and
let L2 = L2(D,C) be the space of square-integrable complex-valued functions
on D. We regard L2 as a real Hilbert space and endow it with the scalar product

(u, v) = Re

∫

D

u(x)v̄(x) dx

and the corresponding norm ‖ · ‖. Let {ej} be a complete set of L2-normalised
eigenfunctions of the Dirichlet Laplacian and let {αj} be the corresponding set
of eigenvalues indexed in an increasing order.

We consider the problem

u̇− (ν + i)∆u+ i|u|2pu = h(x) + η(t, x), (4.1)

u
∣∣
∂D

= 0, (4.2)

u(0, x) = u0(x), (4.3)

where ν > 0 and p ≥ 0 are some constants, h ∈ L2 is a deterministic function,
and η is an H1-valued random force. More precisely, we assume that

η(t, x) =
∂

∂t
ζ(t, x), ζ(t, x) =

∞∑

j=1

bjβj(t)ej(x), (4.4)
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where βj(t) = βj1(t) + iβj2(t) are complex-valued independent Brownian mo-
tions and bj ≥ 0 are some constant satisfying the condition

B1 :=

∞∑

j=1

αjb
2
j <∞.

In what follows, we always assume that 0 ≤ p ≤ 2
n . For any function u(t, x), let

us set

Eu(t) = ‖u(t)‖2 + ν

∫ t

0

‖u(s)‖2
1ds. (4.5)

The theorem below establishes the well-posedness of problem (4.1)–(4.3) in ap-
propriate functional spaces. We refer the reader to the papers [Kry00, MR01,
KS04, Shi06] for proofs of similar (and more general) results.

Theorem 4.1. Suppose that the above-mentioned conditions are fulfilled, and

let u0 be an L2-valued random variable that is independent of ζ and satisfies the

condition E ‖u0‖
2 <∞. Then the following statements hold.

(i) There is a random process u(t) = u(t, x), t ≥ 0, whose almost every

trajectory belongs to the space

X := C(R+;L2) ∩ L2
loc(R+;H1

0 )

and satisfies Eqs. (4.1) and (4.3) in the sense that

u(t) = u0 +

∫ t

0

(
(ν + i)∆u(s) − i|u(s)|2pu(s)

)
ds+ th+ ζ(t), t ≥ 0.

Moreover, the random process u(t, x) is adapted to the filtration Ft gener-

ated by u0 and ζ.

(ii) The process u(t) constructed in (i) is unique in the sense that if ũ(t) is

another random process satisfying (i), then, with probability 1, we have

u(t) = ũ(t) for all t ≥ 0.

(iii) We have the a priori estimates

E ‖u(t)‖2 + ν

∫ t

0

E ‖u(s)‖2
1ds ≤ E ‖u0‖

2 + Ct for t ≥ 0, (4.6)

P

{
sup
t≥0

(
Eu(t) − Lt

)
≥ ‖u0‖

2 + ρ
}
≤ e−κρ for ρ > 0, (4.7)

where C, L, and κ are positive constants not depending on u0.
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4.2 Formulation of the result and an open problem

Let us denote by St(u0, ω) the solution of (4.1)–(4.3) constructed in Theo-
rem 4.1. Using a standard argument (e.g., see [Kry00, MR01]), it is not difficult
to show that St(u0, ω) can be regarded as a Markov RDS in L2, and we shall
denote by (ut,Pu) the corresponding Markov family (cf. Section 1.1). The tran-
sition function and Markov operators associated with (ut,Pu) will be denoted
by Pt(u,Γ), Pt, and P∗

t . The following theorem is the main result of this section.

Theorem 4.2. Suppose that the conditions of Theorem 4.1 are satisfied and

that

bj 6= 0 for all j ≥ 1. (4.8)

Then for any ν > 0 the Markov RDS associated with (4.1), (4.2) has a unique

stationary measure µ ∈ P(L2). Moreover, there are positive constants C and γ
such that

|Ptf(u) − (f, µ)| ≤ C ‖f‖L(1 + ‖u‖2) e−γt for any t ≥ 0, u ∈ L2, (4.9)

where f ∈ L(L2) is an arbitrary functional.

To prove this theorem, we shall construct an extension S t for St that sat-
isfies the coupling hypothesis in the sense of Definition 2.2, and application of
Theorem 2.3 will imply the required result. Moreover, using the regularising
property for CGL equation and the associated Markov semigroup (see Propo-
sition 4 in [Shi06]), it is not difficult to show that the stationary measure µ
is concentrated on the space H1, and the exponential convergence to µ holds
also for continuous functionals on H1

0 . At the same time, the following question
remains open.

Open Problem. The CGL equation is well posed in the space H1
0 for n = 3

or 4 and p ≤ 2
n−2 . Prove the uniqueness of stationary measure and exponential

mixing property for these values of p.

The rest of this section is organised as follows. In Section 4.3, we construct
an extension for St. Section 4.4 is devoted to verification of Conditions (H1)
and (H2) (see Section 3). In Section 4.5, we prove inequalities (2.6) and (2.7).
The proof of Theorem 4.2 is completed in Section 4.6.

4.3 Construction of an extension

We wish to construct an extension for St that satisfies the coupling hypothesis
described in Definition 2.2. As was explained in Section 1.2, if we have an
extension Rt = (Rt,R′

t) on a time interval [0, T ], then its iteration results in
an extension defined on the half-line R+. Our construction of Rt will depend
on T ≥ 1 and an integer N ≥ 1. Both parameters will be fixed later.

Step 1. Let HN be the 2N -dimensional subspace in L2 spanned by the
vectors ej , iej, 1 ≤ j ≤ N , and let H⊥

N be its orthogonal complement in L2.
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Denote by PN and QN the orthogonal projections in L2 onto the subspaces HN

and H⊥
N , respectively.

Let us set v = PNu, w = QNu and rewrite Eq. (1.4) in the form

v̇ − (ν + i)∆v + FN (v + w) = PNh+ ϕ̇(t), (4.10)

ẇ − (ν + i)∆w +GN (v + w) = QNh+ ψ̇(t), (4.11)

where we set

ϕ = PNζ, ψ = QNζ, FN (u) = iPN (|u|2pu), GN (u) = iQN (|u|2pu).

Equations (4.10) and (4.11) are supplemented with the initial conditions

v(0) = v0, (4.12)

w(0) = w0, (4.13)

where v0 ∈ HN and w0 ∈ H⊥
N . Using standard arguments, it is not difficult to

check that, for any functions

w0 ∈ H⊥
N , v ∈ C(0, T ;HN), ψ ∈ C(0, T ;H⊥

N ∩H1
0 ),

problem (4.11), (4.13) has a unique solution

w ∈ XN (T ) := C(0, T ;H⊥
N) ∩ L2(0, T ;H⊥

N ∩H1
0 ).

We shall denote by

W : H⊥
N × C(0, T ;HN) × C(0, T ;H⊥

N ∩H1
0 ) → XN (T ), (w0, v, ψ) 7→ w,

the resolving operator for problem (4.11), (4.13) and by Wt its restriction to
the time t. The operators W and Wt are uniformly Lipschitz with respect
to (w0, v, ψ) on bounded subsets, and it is easy to see that Wt(w0, v, ψ) depends
only on the restriction of v and ψ to the interval [0, t].

Step 2. We now fix an arbitrary function χ ∈ C∞(R) such that

0 ≤ χ ≤ 1, χ(t) = 1 for t ≤ 0, χ(t) = 0 for t ≥ 1.

Let us take any initial points u0, u
′
0 ∈ L2 and set fN(u0, u

′
0) = PN (u′0 − u0).

Denote by λT (u0, u
′
0) and λ′T (u0, u

′
0) the laws of the processes

{(
PNu(t)

QNζ(t)

)
, t ∈ [0, T ]

}
,

{(
PNu

′(t) − fN (u0, u
′
0)χ(t)

QNζ(t)

)
, t ∈ [0, T ]

}
, (4.14)

respectively, where u(t) = St(u0, ω) and u(t) = St(u
′
0, ω). Thus, λT (u0, u

′
0) and

λ′T (u0, u
′
0) are probability measures on the separable Banach space C(0, T ;L2).

Let (U(u0, u
′
0), U

′(u0, u
′
0)) be a maximal coupling for (λT (u0, u

′
0), λ

′
T (u0, u

′
0)).

5

5See Section 5.2 for a definition of maximal coupling.
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By Proposition 5.2, such a pair of random variables exists and is a measurable
function of its arguments. Now let

Rt(u0, u
′
0) = PNUt + Wt(QNu0,PNU,QNU), (4.15)

R′
t(u0, u

′
0) = PNUt + fN (u0, u

′
0)χ(t)

+ Wt(QNu
′
0,PNU

′ + fN (u0, u
′
0)χ,QNU

′), (4.16)

where Ut stands for the restriction of U(u0, u
′
0) to the time t, and U ′

t is defined
in a similar way. We claim that Rt = (Rt,R′

t) is an extension of St on the
interval [0, T ].

Indeed, we need to show that the laws of the processes {Rt(u0, u
′
0)} and

{R′
t(u0, u

′
0)} coincide with those of {St(u0, ω)} and {St(u

′
0, ω)}, respectively.

To this end, let us set

X (T ) = C(0, T ;L2) ∩ L2(0, T ;H1
0 )

and introduce an operator

Υ : H⊥
N × C(0, T ;HN) × C(0, T ;H⊥

N ∩H1
0 ) → X (T )

defined by the relation

Υ (w0, v, ψ) = v + W(w0, v, ψ). (4.17)

The definition of W implies that

{St(u0, ω), t ∈ [0, T ]} = Υ
(
QNu0,PNS·(u0, ω),QNζ(·)

)
. (4.18)

Thus, the law of {St, t ∈ [0, T ]} coincides with the image of the law of the
first process in (4.14) under the mapping Υ (QNu0, ·, ·). Furthermore, it follows
from (4.15) that the distribution D(R·(u0, u

′
0)) is the image of λT (u0, u

′
0) under

Υ (QNu0, ·, ·). By construction, the law of the first process in (4.14) coincides
with λT (u0, u

′
0), and we conclude that

D(R·(u0, u
′
0)) = D(S·(u0, ·)).

A similar argument proves that D(R′
·(u0, u

′
0)) = D(S·(u

′
0, ·)).

Our next goal is to check that Hypotheses (H1) and (H2) are satisfied for St

and Rt. In view of Propositions 3.2 and 3.3, this will imply that property (i)
of Definition 2.2 is true for the extension S t.

4.4 Lyapunov function and dissipation

Let us show that St satisfies Hypothesis (H1) with F (u) = ‖u‖2 and any t∗ > 0.
Indeed, it follows from (4.6) and the Gronwall inequality that

EuF (St) ≤ e−νtF (u) + Cν−1, t ≥ 0.
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In particular, fixing any constant a ∈ (e−νt∗ , 1), we see that (3.1) and (3.2) hold
with

R∗ =

(
C

ν(a− e−νt∗)

)1/2

, C∗ = R2
∗ + Cν−1.

We now show that the extension Rt satisfies Hypothesis (H2) for sufficiently
large N and T . Note that, in view of (4.8), the distribution of {ζ(t), 0 ≤ t ≤ T }
is a non-degenerate Gaussian measure on C(0, T ;H1

0 ). Combining this with the
obvious property of approximate controllability of the CGL equation (1.4) with
a control force ζ ∈ C1(0, T ;H1

0 ), for any R > 0, q ∈ (0, 1), and d > 0 we can
find α(R, q, d) > 0 such that (e.g., see [FM95, Shi05a])

Pu{‖ST (u, ·)‖ ≤ (q‖u‖) ∨ d} ≥ α(R, q, d) for any u ∈ L2, ‖u‖ ≤ R. (4.19)

Moreover, using the existence of a Lyapunov function for St, the constant
α(R, q, d) can be made independent of T ≥ 1. Since Rt is an extension for St,
we conclude from (4.19) that

Pu{‖RT (u, u′)‖ ≤ (q‖u‖) ∨ d} ≥ α(R, q, d),

Pu{‖R
′
T (u, u′)‖ ≤ (q‖u′‖) ∨ d} ≥ α(R, q, d)

(4.20)

for any (u, u′) ∈ L2 × L2 with ‖u‖ ∨ ‖u′‖ ≤ R. Inequalities (4.20) would im-
ply (3.15) with ε(d) = α(R, q, d)2 and any T ≥ 1, if the processes Rt and R′

t were
independent. However, this is not the case, and we have to proceed differently.

Step 1. To prove (3.15), it suffices to show that for any δ > 0 there is cδ > 0
such that

Pδ := Pu{‖RT (u, u′)‖ ∨ ‖R′
T (u, u′)‖ ≤ q1(‖u‖ ∨ ‖u′‖) + δ} ≥ cδ (4.21)

for u, u′ ∈ BR, where q1 ∈ (0, 1) is a constant and BR denotes the ball in L2 of
radius R centred at origin. Indeed, suppose that (4.21) is already proved and
fix any d > 0. Setting δ = 1−q1

1+q1
d and q = 1+q1

2 , we derive

q1‖v‖ + δ = (q‖v‖) ∨ d for any v ∈ L2.

It follows that the probability on the left-hand side of (3.15) is bounded below
by Pδ. Since δ depends only on d and q1, this proves (3.15).

Step 2. We now prove (4.21). In view of the existence of a Lyapunov function
for St, we can assume that u, u′ ∈ BR∗

for some R∗ > 0. Introduce the events

Gδ = {‖RT (u, u′)‖ ≤ q1(‖u‖ ∨ ‖u′‖) + δ},

G′
δ = {‖R′

T (u, u′)‖ ≤ q1(‖u‖ ∨ ‖u′‖) + δ},

Eρ = {ER(t) + ER′(t) ≤ 2(R2
∗ + Lt) + ρ for all t ≥ 0},

where Eu is defined by (4.5). We need to estimate from below the expression
Pu(GδG

′
δ). It follows from (4.19) that

Pu (Gδ) ≥ κδ, Pu(G′
δ) ≥ κδ for any u, u′ ∈ BR∗

, (4.22)
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where κδ > 0 is a constant not depending on u, u′, and T . Moreover, inequal-
ity (4.7) implies that

Pu(Eρ) ≥ 1 − βρ for any u, u′ ∈ BR∗
, (4.23)

where βρ → 0 as ρ→ ∞. Now recall that (see (4.15) and (4.16))

Rt(u, u
′) = Υt(QNu, U), R′

t(u, u
′) = Υt(QNu, U

′ + f̃N (u, u′)χ), (4.24)

where (U,U ′) is a maximal coupling for the pair (λT (u, u′), λ′T (u, u′)), the op-
erator Υ is defined in (4.17), Υt stands for its restriction to the time t, and

f̃N(u, u′) =
(
fN (u,u′)

0

)
. Without loss of generality, we can assume that

Pu(G′
δ/2N

c) ≤ Pu(Gδ/2N
c), (4.25)

where N = {U(u, u′) 6= U ′(u, u′)} and N c denotes the complement of N . The
case in which the opposite inequality is satisfied can be treated by a similar
argument.

Suppose we have shown that

Gδ/2EρN
c ⊂ GδG

′
δ for any ρ > 0 and T ≥ Tρ, (4.26)

where Tρ ≥ 1 depends only on ρ. In this case, we can write

Pu(GδG
′
δ) = Pu(GδG

′
δN

c) + Pu(GδG
′
δN )

≥ Pu(GδG
′
δEρN

c) + Pu(Gδ | N )Pu (G′
δ | N )Pu (N )

≥ Pu(Gδ/2EρN
c) + Pu (GδN )Pu (G′

δN ),

where we used inclusion (4.26) and the independence of U and U ′ conditioned
on N . Combining this inequality with (4.23), we derive

Pu (GδG
′
δ) ≥ Pu(Gδ/2N

c) + Pu(GδN )Pu (G′
δN ) − βρ. (4.27)

We claim that if ρ > 0 is so large that βρ ≤ 1
8κ2

δ/2, then (4.21) holds with

cδ = 1
8κ

2
δ/2. Indeed, if Pu (Gδ/2N

c) ≥ 1
4κ

2
δ/2, then (4.21) follows immediately

from (4.27). In the opposite case, inequalities (4.22) and (4.25) imply that

κ
2
δ/2 ≤ Pu(Gδ/2)Pu (G′

δ/2) ≤ Pu (Gδ/2N )Pu (G′
δ/2N ) +

3

4
κ

2
δ/2,

whence it follows that

Pu (GδN )Pu (G′
δN ) ≥ Pu(Gδ/2N )Pu (G′

δ/2N ) ≥
1

4
κ

2
δ/2.

Combining this with (4.27), we obtain (4.21) with cδ = 1
8κ2

δ/2.

Step 3. It remains to prove (4.26). The construction implies that if ω ∈ N c,
then the processes Rt(u, u

′) and R′
t(u, u

′) belong to the space X (T ) and satisfy
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Eq. (1.4) with some right-hand sides ζ, ζ′ ∈ C(0, T ;H1
0 ). Moreover, we have the

relations (cf. (5.1), (5.2))

PNRt(u, u
′) = PNR′

t(u, u
′) − fN(u, u′)χ(t), (4.28)

QNζ(t) = QNζ
′(t) (4.29)

for 0 ≤ t ≤ T . Furthermore, if ω ∈ Gδ/2Eρ, then

∫ t

0

(
‖Rs(u, u

′)‖2 + ‖R′
s(u, u

′)‖2
)
ds ≤ 2(R2 + Lt) + ρ for 0 ≤ t ≤ T , (4.30)

‖RT (u, u′)‖ ≤ δ/2 + q1
(
‖u‖ ∨ ‖u′‖

)
. (4.31)

Applying Proposition 5.3 and using (4.28) and (4.30), we see that

‖Rt(u, u
′) −R′

t(u, u
′)‖ = ‖QN (Rt(u, u

′) −R′
t(u, u

′))‖

≤ C1 exp
{
−ναN+1(t− 1) + C1t+ 2R2

∗ + ρ
}
‖u− u′‖,

where C1 > 0 is a constant not depending on u, u′, and N . It follows that if N
is sufficiently large, then for any ρ > 0 we can choose Tρ ≥ 1 such that

‖RT (u, u′) −R′
T (u, u′)‖ ≤ δ

2 for u, u′ ∈ BR∗
, T ≥ Tρ. (4.32)

Combining this with (4.31), we obtain the inequality

‖RT (u, u′)‖ ∨ ‖R′
T (u, u′)‖ ≤ q1

(
‖u‖ ∨ ‖u′‖

)
+ δ,

which shows that Gδ/2EρN c ⊂ GδG
′
δ. This completes the verification of Hy-

pothesis (H2).

4.5 Squeezing: verification of (2.6) and (2.7)

Let us recall that the extension S t = (St, S
′
t) is obtained by the iteration of

Rt = (Rt,R′
t) and that the random processes St(u , ω) and S′

t(u , ω) satisfy
Eq. (1.4) with some right-hand sides ζ = ζ(t, u, u′) and ζ = ζ(t, u, u′), respec-
tively. Introduce the Markov times

σ1(u , ω) = inf{t ≥ 0 : PNSt 6= PNS
′
t − fN (u, u′)χ(t) or QNζ(t) 6= QNζ

′(t)}

σ2(u , ω) = inf{t ≥ 0 : ES·
(t) + ES′

·
(t) ≥ ‖u‖2 + 2(L+M)t+ 2ρ},

where M and ρ are positive parameters that will be chosen later. Let us set

σ̃(u , ω) = σ1(u , ω) ∧ σ2(u , ω).

The Foiaş–Prodi estimate (5.3) implies that if N ≫ 1 and u, u′ ∈ B1, then
(cf. the derivation of (4.32))

‖St(u , ω) − S′
t(u , ω)‖ ≤ C e−t for 0 ≤ t ≤ σ̃(u , ω), (4.33)
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where C > 0 does not depend on u and u′. It follows that σ̃ ≤ σ, where σ is
defined by relation (2.3) with β = 1. We shall show that if N ≫ 1, ρ≫ 1, and
B = Bd ×Bd with d≪ 1, then σ̃ satisfies (2.6) and (2.7).

Step 1. Let us set

Qk = {σ̃(u , ω) ∈ Ik}, Ik = [(k − 1)T, kT ].

Suppose we have shown that

Pu(Qk) ≤ 2e−2k for any k ≥ 1, u ∈ B . (4.34)

In this case, we can write

Pu{σ̃ = ∞} = 1 −
∞∑

k=1

Pu(Qk) ≥ 1 − 2

∞∑

k=1

e−2k =: δ1 > 0,

Eu

(
I{σ̃<∞}e

δ2σ̃
)
≤

∞∑

k=1

Pu(Qk)eδ2Tk ≤ 2
∞∑

k=1

e−(2−δ2T )k ≤ K,

where δ2 < T−1. Thus, it suffices to prove (4.34).

Step 2. To prove (4.34), we shall need the following result. Recall that the
measures λT (u, u′) and λ′T (u, u′) are defined in Section 4.3.

Proposition 4.3. There is an integer N0 ≥ 1 such that if N ≥ N0, then

∥∥λT (u, u′) − λ′T (u, u′)
∥∥

var
≤ Ce−c R2

+ CNde
CR2

(4.35)

for any u, u′ ∈ BR such that ‖u − u′‖ ≤ d. Here CN , C, and c are positive

constants not depending on R and d. 6

The proof of this result is based on a well-known argument using the Gir-
sanov theorem (see [EMS01, KS02]). The case of the CGL equation is technically
more complicated; however, the main ideas remain the same, and therefore we
omit the proof. We refer the reader to Proposition 3 in [Shi06] for a weaker
version of (4.35).

The proof of (4.34) is by induction on k. Let us denote by Ak the set of ω ∈ Ω
for which

PNSt = PNS
′
t − fN (u, u′)χ(t), QNζ(t) = QNζ

′(t) for t ∈ Ik.

For k = 1, we have
Q1 = {σ2 ∈ [0, T ]} ∪Ac

1. (4.36)

It follows from (4.7) that

Pu{σ2 ∈ [0, T ]} ≤ 2e−κρ ≤ e−2 for ρ ≥ 4/κ. (4.37)

6However, they may depend on T .
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Furthermore, Proposition 4.3 and the definition of maximal coupling imply that

Pu(Ac
1) ≤ Ce−c R2

+ CNde
CR2

. (4.38)

The right-hand side of this inequality is smaller then e−2 if

R ≥ c−1(lnC + 4), d ≤ (2CN )−1e−CR2

. (4.39)

Combining (4.36)–(4.38), we arrive at (4.34) for k = 1.
We now assume that k = l + 1 ≥ 2 and that inequality (4.34) is established

for 1 ≤ k ≤ l. Let us denote by Āl the intersection of A1, . . . , Al. We have

Ql+1 ⊂ {σ2 ∈ Il+1} ∪Dl+1, (4.40)

where Dl+1 = Āl ∩A
c
l+1 ∩ {σ2 ≥ (l+ 1)T }. Let us estimate the probabilities of

the events on the right-hand side of (4.40). Inequality (4.7) implies that

Pu{σ2 ∈ Il+1} ≤ 2e−κ(ρ+Ml) ≤ e−2(l+1), (4.41)

on condition that
M ≥ 2/κ, ρ ≥ 4/κ. (4.42)

Furthermore, using inequality (4.34) for 0 ≤ k ≤ l, we derive

Pu

(
Āl ∩ {σ2 ≥ lT }

)
≥ Pu{σ̃ ≥ lT } ≥ 1 − 2

l∑

k=1

e−2k ≥ 1/2 (4.43)

for u ∈ B . The Foiaş–Prodi inequality (5.3) implies that, for any P > 0 and
sufficiently large N , we have (cf. the derivation of (4.32))

‖SlT ‖ ∨ ‖S′
lT ‖ ≤ C1(ρ+MTl)1/2,

‖SlT − S′
lT ‖ ≤ C2d e

C2ρ−PTl

on the set Āl∩{σ2 ≥ lT }, where C1 and C2 are positive constants not depending
on N , d, and l. Applying now the Markov property and using inequalities (4.35)
and (4.43), we obtain

Pu(Dl+1) ≤ Pu

(
Ac

l+1 | Āl ∩ {σ2 ≥ lT }
)
Pu

(
Āl ∩ {σ2 ≥ lT }

)

≤ Ce−c C2
1(ρ+MTl) + CNC2d exp

{
ρ(CC2

1 + C2) + (CC2
1M − P )T l

}
. (4.44)

The right-hand side of this inequality is smaller than e−2(l+1) if

M ≥ (2cC2
1T )−1, ρ ≥

lnC + 2

cC2
1

,

P ≥ CC2
1M + 2, d ≤ (CNC2)

−1e−ρ(CC2
1+C2)−1.

(4.45)

Note that the conditions imposed on the parameters M , ρ, P , and d by in-
equalities (4.39), (4.42), and (4.45) are compatible. Combining (4.40), (4.41),
and (4.44), we arrive at (4.34) for k = l + 1. This completes the proof (4.34).
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4.6 Completion of the proof of Theorem 4.2

We have thus shown that the RDS associated with the CGL equation (4.2)
possesses an extension S t = (St, S

′
t) that satisfies (2.5)–(2.7) with

σ = σ̃, B = Bd ×Bd, g(r) = r2,

where d > 0 is sufficiently small. If we show that

Eu

{
I{σ̃<∞}‖S σ̃‖

2q
}
≤ K for any u ∈ B , (4.46)

where K and q are positive constants not depending on u , then application of
Theorem 2.3 and Remark 2.4 will prove that problem (4.2), (4.3) possesses a
unique stationary measure µ ∈ P(L2) and inequality (4.9) holds.

To prove (4.46), note that if σ̃ <∞, then

‖Sσ̃‖
2 + ‖S′

σ̃‖
2 ≤ 2(d2 + Lσ̃) + ρ for u, u′ ∈ Bd.

It follows that
‖S σ̃‖

2q ≤ Cq(σ̃
2 + 1) for any q > 1,

where Cq > 0 depends only on L, d, and ρ. Multiplying this inequality
by I{σ̃<∞}, taking the mean value, and using (2.7), we arrive at (4.46). The
proof of Theorem 4.2 is complete.

5 Appendix

5.1 Maximal coupling of measures

Let X be a Polish space and let µ, µ′ be two probability Borel measures on X .
Recall that a pair (ξ, ξ′) of X-valued random variables defined on the same
probability space is called a coupling for (µ, µ′) if

D(ξ) = µ, D(ξ′) = µ′.

Definition 5.1. A coupling (ξ, ξ′) for (µ, µ′) is said to be maximal if

P{ξ 6= ξ′} = ‖µ− µ′‖var,

and the random variables ξ and ξ′ conditioned on the event N = {ξ 6= ξ′} are
independent, that is,

P{ξ ∈ Γ, ξ′ ∈ Γ′ | N} = P{ξ ∈ Γ | N}P{ξ′ ∈ Γ′ | N}

for any Γ,Γ′ ∈ BX .

In Section 4.3, we have used the following result on the existence of maximal
coupling for measures depending on a parameter. Let Y be a Polish space
endowed with its Borel σ-algebra BY and let {µy}y∈Y be a family of measures
on X . We shall say that µy measurable depends on y ∈ Y if the function
y 7→ µy(Γ) is (BY ,BR)-measurable for any Γ ∈ BX .
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Proposition 5.2. Let {µy}, {µ′
y} ⊂ P(X) be two families that measurably de-

pend on y ∈ Y . Then there is a probability space (Ω,F ,P) and two measurable

functions

ξ : Y × Ω → X, ξ′ : Y × Ω → X

such that (ξ(y, ·), ξ′(y, ·)) is a maximal coupling for (µy , µ
′
y) for any y ∈ Y .

In the case X = Rn, a proof can be found in [KS01]. In the general case, it
suffices to use the fact that any Polish space is measurably isomorphic to (R,BR).

5.2 Foiaş–Prodi estimate

In this subsection, we present an estimate for the difference between two solu-
tions of problem (1.4), (1.5) in which ζ : R+ → H1 is a deterministic continuous
function. Recall that {ej} ⊂ H is the complete set of eigenfunctions for the
Dirichlet Laplacian in the domain D, HN is the 2N -dimensional subspace in L2

generated by {ej, iej, 1 ≤ j ≤ N}, and H⊥
N is the orthogonal complement of HN

in L2. Denote by PN : L2 → HN and QN : L2 → H⊥
N the corresponding

orthogonal projections.
The following result provides a Foiaş–Prodi type estimate for the difference

between two solutions whose projections to HN coincide (cf. [FP67]). Its proof
can be found in [Shi06, Section 4]. 7

Proposition 5.3. Let n = 3 or 4, let p ≤ 2
n , and let

u1, u2 ∈ X (T ) = C(0, T ;L2) ∩ L2(0, T ;H1
0 )

be two solutions of problem (1.4), (1.5) that correspond to deterministic func-

tions ζ1, ζ2 ∈ C(0, T ;H1
0 ) and h ∈ L2(D,C). Suppose that

PNu1(t) = PNu2(t) for t0 ≤ t ≤ T , (5.1)

QNζ1(t) = QNζ2(t) for 0 ≤ t ≤ T , (5.2)

where t0 ∈ [0, T ] and N ≥ 1 is an integer. Then there is a constant C > 0 not

depending on u1, u2, t0, and N such that

∥∥QN (u1(t) − u2(t))
∥∥2

≤ exp
{
−ναN+1t+ q(t)

} (∥∥QN (u1(0) − u2(0))
∥∥2

+CeναN+1t0+q(t0)

∫ t

0

(
‖u1(s)‖1 + ‖u2(s)‖1

)(4p−2)∨0∥∥PN (u1(s)− u2(s))
∥∥2

1
ds

)

(5.3)

for 0 ≤ t ≤ T , where we set

q(t) = C

∫ t

0

(
‖u1(s)‖

2
1 + ‖u2(s)‖

2
1 + 1

)
ds.

7The estimate established in [Shi06] is slightly different. However, a similar argument
enables one to prove (5.3).
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[ES00] W. E and Ya. G. Sinăı, New results in mathematical and statistical

hydrodynamics, Uspekhi Mat. Nauk 55 (2000), no. 4 (334), 25–58.

[FM95] F. Flandoli and B. Maslowski, Ergodicity of the 2D Navier-Stokes

equation under random perturbations, Comm. Math. Phys. 172 (1995),
119–141.
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