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Abstract

The paper is devoted to studying the distribution of stationary solu-
tions for 3D Navier–Stokes equations perturbed by a random force. Under
a non-degeneracy assumption, we show that the support of such a distri-
bution coincides with the entire phase space, and its finite-dimensional
projections are minorised by a measure possessing an almost surely pos-
itive smooth density with respect to the Lebesgue measure. Similar as-
sertions are true for weak solutions of the Cauchy problem with a regular
initial function. The results of this paper were announced in the short
note [Shi06b].
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0 Introduction

Let us consider the 3D Navier–Stokes (NS) system

∂tu+ 〈u,∇〉u− ν∆u+∇p = f(t, x), div u = 0, x ∈ T3, (0.1)

where T3 denotes the 3D torus, u = (u1, u2, u3) and p are unknown velocity field
and pressure of the fluid, ν > 0 is the viscosity, and f is an external force. In
what follows, we assume that f is the time derivative of a random process with
independent increments and sufficiently non-degenerate distribution in the space
variables. Our aim is to study qualitative properties of the law of stationary
weak solutions for (0.1). This question has significant importance in applications
for at least two reasons. First, it is widely believed that stationary solutions
corresponding to small values of viscosity can be used to describe turbulent
behaviour of solutions. And, second, under some additional assumptions, a
large class of weak solutions for (0.1) converge to a stationary solution as time
goes to infinity. Before turning to a description of the contents of this paper,
let us recall some earlier results on 3D stochastic NS equations.

Existence of weak solutions for the Cauchy problem and of stationary solu-
tions, as well as some a priori estimates for them, was established by Bensoussan,
Temam [BT73], Vishik, Komech, Fursikov [VKF79], Capiński, Ga̧tarek [CG94],
Flandoli, Ga̧tarek [FG95] and others. A first result showing the mixing character
of 3D NS dynamics under non-degenerate random forcing was obtained by Flan-
doli [Fla97]. He proved that if the noise is effective in all Fourier modes, then the
support of any “admissible” weak solution coincides with the entire phase space.
In the case of a rough white noise, Da Prato and Debussche [DD03] constructed
a Markov semigroup concentrated on weak solutions of the 3D NS equations and
established a mixing property for it. Under similar conditions, Odasso [Oda07]
proved that any solution obtained as a limit of Galerkin approximations con-
verges exponentially to a stationary solution. Flandoli and Romito [FR06] have
constructed a Markov selection of weak solutions and proved the irreducibil-
ity and strong Feller property for it, provided that the random perturbation is
sufficiently rough. The results of this paper show that, in the case of periodic
boundary conditions, non-degeneracy of the noise with respect to the first few
Fourier modes ensures mixing character of the dynamics.
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We now describe in more details the main result of this paper. Let us assume
that the right-hand side of (0.1) has the form

f(t, x) = h(x) +
∞∑

j=1

bj β̇j(t)ej(x), (0.2)

where h is a deterministic function belonging to the space L2 = L2(T3,R3)
of square-integrable vector fields on T3, {ej} is a trigonometric basis in L2,
bj ≥ 0 are some constants going to zero sufficiently fast, and {βj} is a sequence
of independent standard Brownian motions. As is shown in [VKF79, FG95],
problem (0.1), (0.2) has a stationary weak solution u(t) defined for t ≥ 0.
Let µ be its distribution. Thus, µ is a probability measure on the Hilbert
space H ⊂ L2 of divergence-free square-integrable vector fields. The following
theorem is a simplified version of the main result of this paper.

Main Theorem. There is an integer N ≥ 1 not depending on h and ν such
that if

bj 6= 0 for j = 1, . . . , N,

then the following assertions hold.

(i) Any ball in the space H1 ∩H has a positive µ-measure. In particular, the
support of µ coincides with H.

(ii) Let F ⊂ H be a finite-dimensional subspace. Then the projection of µ to F
can be minorised by a measure of the form ρF (y)`F (dy), where `F (dy)
denotes the Lebesgue measure on F and ρF stands for a smooth function
that is positive almost everywhere.

It should be mentioned that if we restrict ourselves to the family M of
stationary measures obtained as limits of Galerkin approximations, then the
measure of balls in H1 ∩H can be minorised uniformly with respect to µ ∈M,
and the function ρF can be chosen independently of µ ∈ M. Furthermore, the
proof given in Section 3 does not use the Gaussian structure of the noise η, and
therefore a similar result is true for other types of random perturbations, such
as random kick forces,

η(t, x) =
∞∑

k=1

ηk(x)δ(t− k), (0.3)

or piecewise-constant stochastic processes,

η(t, x) =
∞∑

k=1

ηk(x)I[k−1,k)(t). (0.4)

Here δ(t) denotes the Dirac measure concentrated at zero, I[k−1,k)(t) stands
for the indicator function of the interval [k − 1, k), and {ηk} is a sequence of
i.i.d. random variables in appropriate functional space. These questions and
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similar problems for 3D NS equations in other domains will be addressed in a
subsequent publication.

The Main Theorem formulated above is related to some earlier results es-
tablished in the 2D case. Namely, using the Malliavin calculus, it was shown
by Mattingly and Pardoux [MP06] that, in the case of NS equations perturbed
by a degenerate white noise force, the law of finite-dimensional projections of
solutions possesses a positive smooth density with respect to the Lebesgue mea-
sure. In [AKSS07], the authors have proved a weaker version of that result for
various types of (non-Gaussian) perturbations, including random forces of the
form (0.3) and (0.4). The proofs in the present paper are based on a combi-
nation of the methods developed in [AKSS07] and some properties of 3D NS
equations. The most important of them are the controllability, regularity of the
resolving operator on strong solutions, and weak-strong uniqueness. Roughly
speaking, we show that a large part of weak (stationary) solutions consists of
strong solutions, and therefore the law of weak solutions is minorised by that
of strong solutions. Combining this with the property of approximate control-
lability, we obtain assertion (i) (cf. [Fla97]). Furthermore, applying a general
result on the image of probability measures under a smooth mapping to strong
solutions (this can be done due to solid controllability of NS equations, see Sub-
section 1.4) and using a simple localisation argument, we establish the second
part of the theorem. We refer the reader to Section 3.1 for a more detailed
description of the scheme of the proof.

The paper is organised as follows. In Section 1, we have compiled some
preliminaries. Exact formulation of the main theorem is given in Section 2.
The third section is devoted to the proofs. In the appendix, we establish some
auxiliary results.

Acknowledgments. I am grateful to S. B. Kuksin for drawing my at-
tention to the importance of having uniform estimates in Theorem 2.1, to
A.A. Agrachev for a stimulating discussion on controllability properties of Na-
vier–Stokes equations, and to V. I. Bogachev for his comments on Theorem 2.4.
This paper was finalised during my visit to Centro De Giorgi in Pisa within the
framework of the programme “Stochastic Analysis, Stochastic Partial Differen-
tial Equations and Applications to Fluid Dynamics and Particle Systems”, and
it is my pleasure to thank the organisers for the invitation and hospitality.

Notation

Let J ⊂ R be a closed interval, let D ⊂ R3 be a bounded domain with smooth
boundary ∂D, and let X be a Banach space. We shall use the following func-
tional spaces.

Hs(D) is the Sobolev space of order s on D.
Hs(D,R3) is the space of vector functions (u1, u2, u3) whose components belong
to Hs(D). In the case s = 0, we obtain the usual Lebesgue space L2(D,R3).
H1

0 (D,R3) is the space of functions in H1(D,R3) that vanish on ∂D.
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C(X) is the space of real-valued continuous functions on X.
Ck(J,X), 0 ≤ k ≤ ∞, is the space of k times continuously differentiable func-
tions f : J → X. In the case k = 0, we shall write C(J,X).
Lp(J,X) is the space of Bochner-measurable functions f : J → X such that

‖f‖Lp(J,X) :=
(∫

J

‖f(t)‖p
Xdt

)1/p

<∞.

Lp
loc(J,X) is the space of functions f : J → X whose restriction to any compact

interval I ⊂ J belongs to Lp(I,X).

If ξ is a random variable, then D(ξ) denotes its distribution. If X is a Polish
space, x0 ∈ X, and r > 0, then we denote by BX(x0, r) (respectively, ḂX(x0, r))
the closed (open) ball in X of radius r centred at x0 and by B(X) the Borel
σ-algebra on X.

1 Preliminaries

1.1 Weak and strong solutions for Navier–Stokes equa-
tions

Let D ⊂ R3 be a bounded domain with C2-smooth boundary ∂D. Consider the
3D Navier–Stokes (NS) equations

u̇+ 〈u,∇〉u− ν∆u+∇p = h(x), div u = 0, x ∈ D, (1.1)

where u = (u1, u2, u3) and p are unknown velocity field and pressure, 〈·, ·〉
denotes the Euclidean scalar product in R3, and h ∈ L2(D,R3) is a given
function. We introduce the spaces

H =
{
u ∈ L2(D,R3) : div u = 0 in D, 〈u,n〉|∂D = 0},

V = H1
0 (D,R3) ∩H, U = H2(D,R3) ∩ V,

where n stands for the outward unit normal to ∂D. It is well known (e.g.,
see [Tem79]) that H is a closed vector space in L2(D,R3), and we denote by Π
the orthogonal projection in L2(D,R3) onto H. The Navier–Stokes system (1.1)
is equivalent to the following evolution equation in H obtained formally by
applying Π to the first relation in (1.1):

u̇+ νLu+B(u) = h. (1.2)

Here L = −Π∆, B(u) = B(u, u), B(u, v) = Π{(u,∇)v}, and we use the same
notation for the right-hand side h and its projection to H.

In what follows, we shall need also the following NS type equation:

v̇ + νLv +B(v + z) = h. (1.3)

Here z is a given function belonging to the space Y := C(R+, V )∩L2
loc(R+, U).

Let J = [0, T ], let (·, ·) be the scalar product in L2(D,R3), and let ‖ · ‖ be the
corresponding norm. We denote by ‖u‖V = ‖∇u‖ the norm in the space V .
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Definition 1.1. A function v ∈ XJ := L∞loc(J,H) ∩ L2
loc(J, V ) is called a weak

solution for (1.3) if it possesses the following properties.

(i) Equation (1.3) holds in the sense of distributions, that is, for any divergence-
free vector field ϕ ∈ C∞0 (J ×D,R3), we have

∫

J

(−(v, ϕ̇) + ν(v, Lϕ) + (B(v + z), ϕ)− (h, ϕ)
)
ds = 0. (1.4)

(ii) The function v satisfies the energy inequality1

1
2
‖v(t)‖2 + ν

∫ t

0

‖v(s)‖2V ds+
∫ t

0

(B(v + z, z), v) ds

≤ 1
2
‖v(0)‖2 +

∫ t

0

(h, v) ds, t ∈ J. (1.5)

Note that if v ∈ XJ satisfies (1.3), then v̇ ∈ L1
loc(J,H

−1), where H−1 is the
dual space for H1

0 (D,R3). It follows that v is a weakly continuous function of
time with range in H, and therefore all terms in (1.5) are well defined.

Definition 1.2. A function v ∈ YJ := C(J, V ) ∩ L2
loc(J, U) is called a strong

solution for (1.3) if it satisfies (1.3) in the sense of distributions (see property (i)
in Definition 1.1).

Note that if v ∈ YJ is a strong solution for (1.3), then the following energy
equality holds for it:

1
2
‖v(t)‖2 + ν

∫ t

0

‖v(s)‖2V ds+
∫ t

0

(B(v + z, z), v) ds =
1
2
‖v(0)‖2 +

∫ t

0

(h, v) ds.

(1.6)
Indeed, a standard limiting argument shows that relation (1.4) remains valid
for any function ϕ ∈ YJ such that ϕ̇ ∈ L2(J,H) and ϕ(0) = ϕ(T ) = 0. Let
us fix any t > 0 and consider the sequence ϕk = χkv, where χk ∈ C∞(R) are
arbitrary functions such that 0 ≤ χk ≤ 1, |χ̇k| ≤ 3k,

χk(s) = 1 for 1
k ≤ s ≤ t− 1

k , χk(s) = 0 for s ≤ 0 or s ≥ t.

Writing identity (1.4) with ϕ = ϕk and using the relation (B(v + z, v), v) = 0,
we obtain

−
∫ t

0

(v, ∂s(χkv)) ds+
∫ t

0

χk(s)
(
ν‖v‖2V +(B(v+ z, z), v)− (h, v)

)
ds = 0. (1.7)

It is easily seen that

−
∫ t

0

(v, ∂s(χkv)) ds = −1
2

∫ t

0

(
∂s(χk‖v‖2)+ χ̇k‖v‖2

)
ds→ 1

2
(‖v(t)‖2−‖v(0)‖2)

1This inequality is obtained formally by taking the scalar product of (1.3) with v, inte-
grating in time, and replacing = by ≤.
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as k →∞. Passing to the limit in (1.7) as k →∞, we arrive at (1.6).
The following proposition establishes a weak-strong uniqueness for solutions

of (1.3).

Proposition 1.3. Let v ∈ XJ and ṽ ∈ YJ be, respectively, weak and strong
solutions for (1.3) such that v(0) = ṽ(0). Then v = ṽ.

In the case z = 0, a proof of Proposition 1.3 can be found in [Soh01]. For the
reader’s convenience, we outlined the proof for the general case in the Appendix.

1.2 Admissible weak solutions for stochastic Navier–Stokes
equations

Let us consider 3D Navier–Stokes equations perturbed by a random force:

u̇+ νLu+B(u) = h+ η(t). (1.8)

Here h ∈ H is a deterministic function and η is a random process white in time
and regular in the space variables. In what follows, we always assume that η
satisfies the following assumption.

Condition 1.4. There exists a Hilbert–Schmidt operator Q : H → V and
an H-valued cylindrical Wiener process ζ defined on a complete probability
space (Ω,F ,P) with a right-continuous filtration {Ft}t≥0 such that

η(t) =
∂

∂t
Qζ(t). (1.9)

The following lemma gives an alternative description of random processes
satisfying Condition 1.4; its proof is given in the Appendix (see Section 4.2).

Lemma 1.5. A random process η satisfies Condition 1.4 if and only if it is
representable in the form

η(t) =
∞∑

j,k=1

bjkβ̇j(t)fk, (1.10)

where {fk} is an orthonormal basis in V , {βj} is a sequence of independent stan-
dard Brownian motions on R+, and {bjk} is a family of real numbers satisfying
the condition ∞∑

j,k=1

b2jk <∞.

We now recall the concept of an admissible weak solution for (1.8). To this
end, we first define the Ornstein–Uhlenbeck process

z(t) =
∫ t

0

e−ν(t−s)LQdζ(t). (1.11)
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Relation (1.11) implies that z is a V -valued Gaussian process whose almost
every trajectory belongs to the space Y = C(R+, V )∩L2

loc(R+, U) and satisfies
the Stokes equation

u̇+ νLu = η(t). (1.12)

Definition 1.6. An H-valued random process u(t) is called an admissible so-
lution for (1.8) if it is representable in the form

u(t) = v(t) + z(t), (1.13)

where v(t) is an H-valued Ft-progressively measurable random process whose
almost every trajectory is a weak solution for (1.3) on the half-line R+.

Definition 1.7. An H-valued random process u(t) is called an admissible weak
solution for (1.8) if there is a process {η̃(t), t ≥ 0} satisfying Condition 1.4 such
that u(t) is an admissible solution for (1.8) with η replaced by η̃.

Definition 1.8. An admissible weak solution u(t) for (1.8) is said to be sta-
tionary if its distribution does not depend on t:

D(u(t)) = µ for all t ≥ 0.

In this case, µ is called a stationary measure for (1.8).

Note that, in Definition 1.8, we do not require u to be a stationary process.
The following proposition is essentially established in [VF88, CG94, FG95] (see
also [Rom01] for the existence of a suitable weak solution).

Proposition 1.9. Suppose that h ∈ H and Condition 1.4 is fulfilled. Then
Eq. (1.8) has at least one stationary measure µ ∈ P(H) such that

m(µ) :=
∫

H

‖v‖2V µ(dv) <∞. (1.14)

Note that, in [VF88, CG94, FG95], the authors do not state explicitly the
fact that the energy inequality (1.5) holds. However, they construct a solution as
a pointwise limit of Galerkin approximations, which satisfy an energy inequality
of the form (1.5). It is not difficult to see that one can pass to the limit in those
inequalities. Also note that if µ is a stationary measure obtained as a limit of
Galerkin approximations, then m(µ) is bounded by a constant depending only
on ν, D, h, and η.

1.3 Controllability properties of Navier–Stokes equations

In this subsection, we have compiled some recent results on controllability for
the NS system (1.8) supplemented with the initial condition

u(0) = u0, (1.15)

where u0 ∈ V . We first introduce some notations.
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Let h ∈ H be a function, let T > 0 be a constant, and let J = [0, T ]. For any
u0 ∈ V , we denote by ΘT (h, u0) the set of functions η ∈ L2(JT ,H) for which
problem (1.8), (1.15) has a unique solution u ∈ YJ . Using the implicit function
theorem, it can be shown that (see Theorem 1.8 in [Shi06a])

DT (h) := {(η, u0) ∈ L2(JT ,H)× V : η ∈ ΘT (h, u0)} (1.16)

is an open subset of L2(JT ,H)× V , and the operator R taking (η, u0) ∈ DT to
the solution u ∈ YJ of (1.8), (1.15) is locally Lipschitz continuous. We denote
by Rt the restriction of R to the time t ∈ J .

Let E ⊂ U and F ⊂ H be finite-dimensional subspaces and let PF : H → H
be the orthogonal projection onto F . In the next definition, we assume that η
is an E-valued control function.

Definition 1.10. Equation (1.8) is said to be approximately controllable in
time T if for any u0, û ∈ V and any ε > 0 there is η ∈ ΘT (h, u0) ∩ C∞(J,E)
such that

‖RT (η, u0)− û‖V < ε. (1.17)

Equation (1.8) is said to be solidly F -controllable in time T if for any u0 ∈ V
and any R > 0 there is a constant δ > 0 and a compact set K in a finite-
dimensional subspace X ⊂ C∞(J,E) such that K ⊂ ΘT (h, u0), and for any
continuous mapping Φ : K → F satisfying the inequality

sup
η∈K

‖Φ(η)− PFRT (η, u0)‖F ≤ δ, (1.18)

we have Φ(K) ⊃ BF (R).

For any finite-dimensional subspace G ⊂ U , we denote by F(G) the largest
vector space G1 ⊂ U such that any element η1 ∈ G1 is representable in the form

η1 = η −
k∑

j=1

λjB(ζj),

where η, ζ1, . . . , ζk ∈ G are some vectors and λ1, . . . , λk are non-negative con-
stants. Since B is a quadratic operator continuous from U to H1(D,R3), we
see that F(G) ⊂ U is a well-defined vector space of finite dimension. Also note
that F(G) ⊃ G.

We now define a sequence of subspaces Ek ⊂ U by the rule

E0 = E, Ek = F(Ek−1) for k ≥ 1, E∞ =
∞⋃

k=1

Ek. (1.19)

The following result is established in [Shi06a, Shi07].

Proposition 1.11. Let E ⊂ U be a finite-dimensional subspace such that E∞
is dense in H. Then the following assertions take place for any h ∈ H, T > 0,
and ν > 0.
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(i) Equation (1.8) is approximately controllable in time T by an E-valued
control.

(ii) For any finite-dimensional subspace F ⊂ H, Eq. (1.8) is solidly F -controllable
in time T by an E-valued control.

1.4 Analyticity of the resolving operator

Let X and Y be Banach spaces and let D ⊂ X be an open set. Recall that a
continuous function f : D → Y is said to be analytic if for any x0 ∈ D there is
a constant r > 0 such that

f(x) = f(x0) +
∞∑

m=1

Lm(x− x0) for x ∈ BX(x0, r), (1.20)

where Lm : X → Y is an m-linear operator depending on x0, and series (1.20)
converges regularly. The latter means that

∞∑
m=1

|||Lm|||rm <∞,

where ||| · ||| stands for the norm of an m-linear operator (see [VF88] for more
details).

Let us fix an interval J = [0, T ] and consider Eq. (1.3), in which h ∈ H
and z ∈ YJ are given functions. We denote by CT (h) the set of functions
(z, v0) ∈ YJ ×V for which Eq. (1.3) has a unique solution v ∈ YJ satisfying the
initial condition

v(0) = v0. (1.21)

Theorem 1.8 in [Shi06a] implies that CT (h) is an open subset of YJ × V and
the operator S taking (z, v0) ∈ CT (h) to the solution v ∈ YJ is locally Lips-
chitz continuous. The following proposition can be proved by the methods used
in [Kuk82] (see also [Brz91]).

Proposition 1.12. For any h ∈ H, T > 0, and ν > 0, the resolving operator
S : CT (h) → YT is analytic.

1.5 Decomposable measures

Let Z be a separable Banach space and let λ ∈ P(Z).

Definition 1.13. The measure λ is said to be decomposable if there are two
sequences of closed subspaces {Fn} and {Gn} such that the following properties
hold.

(i) For any n ≥ 1, we have Fn ⊂ Fn+1, and the union ∪nFn is dense in Z.
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(ii) For any n ≥ 1, the space Z can be decomposed into the direct sum of Fn

and Gn,
Z = Fn uGn, (1.22)

and the measure λ is representable as

λ = Pnλ⊗ Qnλ, (1.23)

where Pn and Qn are the projections associated with decomposition (1.22).

Example 1.14. Let λ ∈ P(Z) be a non-degenerate centred Gaussian measure,
that is, a probability Borel measure on Z such that for any continuous func-
tional ` ∈ Z∗ the image of µ under ` is a centred Gaussian measure on the
real line, and the support of λ coincides with Z. We claim that λ is decom-
posable. Indeed, let H(λ) be the Cameron–Martin space for λ (see Section 2.1
in [Bog98a]), let {ej} be an orthonormal basis in H(λ), and let {ξj} be a se-
quence of scalar i.i.d. random variables on the same probability space such that
the distribution of ξj is a standard Gaussian measure on R. Then, by Theo-
rem 3.4.4 in [Bog98a], the series

∞∑

j=1

ξj(ω)ej

converges almost surely in Z, and the distribution of its sum ξ(ω) coincides
with λ. Let us set

Fn = span{ej , 1 ≤ j ≤ n}, Gn = span{ej , j ≥ n+ 1},

where B denotes the closure of B in the space Z. Let us show that properties (i)
and (ii) of Definition 1.13 hold.

By Theorem 3.5.1 in [Bog98a], the support of λ coincides with the closure
of H(λ) in Z. By assumption, we have suppλ = Z, and therefore the vector
space ∪nFn = span{ej , j ≥ 1} is dense in Z. To prove (ii), we fix any inte-
ger n ≥ 1 and note that Fn ∩ Gn = {0}. Therefore decomposition (1.22) will
be established if we show that any vector z ∈ Z is representable in the form
z = yn + zn, where un ∈ Fn and vn ∈ Gn. This fact is obvious for elements
of H(λ) and can be proved by a simple approximation argument for any z ∈ Z.
Furthermore, to prove (1.23), we write

ξ(ω) =
n∑

j=1

ξj(ω)ej +
∞∑

j=n+1

ξj(ω)ej =: ηn(ω) + ζn(ω).

The construction implies that D(ηn) = Pnλ and D(ζn) = Qnλ. Since ηn and ζn
are independent, we obtain (1.23)

In what follows, we shall deal with measures λ ∈ P(Z) satisfying the follow-
ing condition:
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Condition 1.15. The measure λ is decomposable in the sense of Definition 1.13,
its support coincides with Z, and for any n ≥ 1 the projection Pnλ possesses a
positive continuous density with respect to the Lebesgue measure on Fn.

Example 1.16. Let λ be a Gaussian measure on a separable Banach space X.
Denote by Z the support of λ. Then Z is also a separable Banach space, and
the restriction of λ to Z is a non-degenerate Gaussian measure. Furthermore,
any finite-dimensional projection of λ possesses a positive smooth density with
respect to the Lebesgue measure. Thus, any Gaussian measure satisfies Condi-
tion 1.15.

2 Main results

2.1 Formulations

Let us consider the NS system (1.8), where h ∈ H is a deterministic function
and η is a random process satisfying Condition 1.4. In what follows, we assume
that h and η are fixed and do not trace the dependence of various parameters on
them. Recall that the concept of stationary measure for (1.8) is introduced in
Definition 1.8. For any finite-dimensional space F , we denote by `F the Lebesgue
measure on it. If µ1 and µ2 are two measures such that µ1(Γ) ≥ µ2(Γ) for any
measurable set Γ, then we write µ1 ≥ µ2. The following theorem is the main
result of this paper.

Theorem 2.1. Suppose that the image of the operator Q in Condition 1.4
contains a finite-dimensional subspace E ⊂ U for which the vector space E∞
defined in (1.19) is dense in H. Let µ ∈ P(H) be a stationary measure for (1.8)
such that

m(µ) =
∫

H

‖v‖2V µ(dv) ≤ m0, (2.1)

where m0 > 0 is a constant. Then the following assertions take place.

(i) For any ball B ⊂ V there is a constant p(B,m0) > 0 such that

µ(B) ≥ p(B,m0). (2.2)

In particular, the support of µ coincides with H.

(ii) Let F ⊂ H be a finite-dimensional subspace and let µF be the projection
of µ to F . Then there is a function ρF ∈ C∞(F ) depending only on m0

such that µF ≥ ρF `F and ρF (y) > 0 for `F -almost every y ∈ F .

A proof of Theorem 2.1 is given in the next section. It is based on an
auxiliary result, which is of independent interest. Before formulating it, we
make two remarks.
Remark 2.2. Analysing the proof given below, it is not difficult to see that
Theorem 2.1 remains valid for any admissible weak solution u of Eq. (1.8) such
that P{u(0) ∈ V } > 0. In particular, we can take a solution of the Cauchy
problem (1.8), (1.15) with any deterministic initial function u0 ∈ V .
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Remark 2.3. For a general bounded domain D ⊂ R3, the condition of density
of E∞ in the space H is difficult to check. However, Theorem 2.1 is valid for
any three-dimensional torus, and it is shown in [Shi06a] that if E contains the
first N eigenvalues of the Stokes operator, then E∞ is dense in H for sufficiently
large N . We thus obtain a “uniform” version of the Main Theorem stated in
the Introduction.

We now turn to the auxiliary result needed in the proof of Theorem 2.1.
Let Z be a separable Banach space, let V be a Polish space, and let F be a
finite-dimensional vector space. For any points z0 ∈ Z and u0 ∈ V and positive
constants r1 and r2, we set

D(z0, u0) = ḂZ(z0, r1)× ḂV (u0, r2).

Let f : D(z0, u0) → F be a continuous mapping. For any λ ∈ P(Z) and
µ ∈ P(V ), denote by f∗(λ, µ) the image under f of the restriction of the product
measure λ ⊗ µ to D(z0, u0). The following theorem is a modified version of a
result established in [AKSS07]; its proof is given in the next subsection.

Theorem 2.4. Let f : D(z0, u0) → F be a continuous mapping such that,
for any u ∈ ḂV (u0, r2), the function f(·, u) : ḂZ(z0, r1) → F is continuously
differentiable, the derivative (Dzf)(z, u) is continuous on D(z0, u0), and the
image of the linear operator (Dzf)(z0, u0) coincides with the entire space F .
Let λ ∈ P(Z) and µ ∈ P(V ) be two measures such that Condition 1.15 holds
for λ, and suppµ = V . Then there is a function ρ ∈ C(F ) such that ρ > 0 in a
neighbourhood of y0 = f(z0, u0) and

f∗(λ, µ) ≥ ρ`F . (2.3)

Furthermore, there is an open ball B ⊂ V centred at u0 and a bounded function
ψ ∈ C(F ×B), both of them not depending on µ, such that

ρ(y) =
∫

B

ψ(y, u)µ(du) for y ∈ F , (2.4)

ψ(y0, u0) > 0. (2.5)

We emphasise that more general results on the image of probability measures
under smooth mappings can be found in [Bog98b]. They show, in particular,
that the decomposibility assumption for λmay be replaced by a weaker condition
of existence of positive continuous densities (against the Lebesgue measure) for
the disintegrations of λ with respect to subspaces of finite codimension. We do
not need this type of results for our purposes.

2.2 Proof of Theorem 2.4

We repeat the scheme used in [AKSS07] for the case of analytic functions and
measures on Hilbert spaces. By assumption, the image of A := (Dzf)(z0, u0)
coincides with F and ∪nFn is dense in Z. Therefore we can find an integerm ≥ 1
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and a subspace F 1
m ⊂ Fm of dimension dimF such that A(F 1

m) = F . Let us
denote by F 2

m ⊂ Fm any subspace such that Fm = F 1
m u F 2

m. Combining this
with (1.22), we obtain the direct decomposition

Z = F 1
m u F 2

m uGm.

For z ∈ Z, we shall write z = (zm, z
′
m) = (z1

m, z
2
m, z

′
m), where z1

m ∈ F 1
m,

z2
m ∈ F 2

m, zm ∈ Fm, and z′m ∈ Gm. Applying the implicit function theorem to
the function f(z, u) in the neighbourhood of (z0, u0), we can find open balls

V1 ⊂ F 1
m, V2 ⊂ F 2

m, V3 ⊂ Gm, B ⊂ V

such that, for any z2
m ∈ V2, z′m ∈ V3, and u ∈ B, the mapping f(·, z2

m, z
′
m, u) is

a diffeomorphism of V1 onto its image W (z2
m, z

′
m, u). Let g(·, z2

m, z
′
m, u) be the

inverse mapping, so that for z1
m ∈ V1 and y ∈W (z2

m, z
′
m, u), we have

y = f(z1
m, z

2
m, z

′
m, u) if and only if z1

m = g(y, z2
m, z

′
m, u). (2.6)

Let us fix some bases in F 1
m and F and denote by d(z1

m, z
2
m, z

′
m, u) the determi-

nant of the derivative (Dz1
m
f)(z1

m, z
2
m, z

′
m, u). Now note that, in view of (1.23),

the product measure λ⊗ µ on the space Z × V can be written as

(λ⊗ µ)(dz, du) = ρm(zm) dzm λ′m(dz′m)µ(du)

where dzm denotes the Lebesgue measure on Fm, ρm is the density of Pmλ
with respect to dzm, and λ′m = Qmλ . It follows that if χ(z, u) is a continuous
function on Z × V with support in the set S := V1 × V2 × V3 × B, then the
image of the truncated measure χ(λ⊗µ) under f admits the representation (cf.
Sections 2.2 and 2.3 in [AKSS07])

f∗
(
χ(λ⊗ µ)

)
(dy) =

{∫
(χ̃ρ̃m)(y, z2

m, z
′
m, u)

|d̃(y, z2
m, z

′
m, u)|

dz2
mλ

′
m(dz′m)µ(du)

}
`F (dy), (2.7)

where the integral is taken over V2 × V3 ×B,

ρ̃m(y, z2
m, z

′
m, u) = ρm(g(y, z2

m, z
′
m, u), z

2
m),

and the functions χ̃, d̃ are defined in a similar way. Let us choose a continuous
function χ supported by S and equal to 1 in the neighbourhood of (z0, u0) and
denote

ψ(y, u) =
∫

V2×V3

(χ̃ρ̃m)(y, z2
m, z

′
m, u)

|d̃(y, z2
m, z

′
m, u)|

dz2
mλ

′
m(dz′m), (y, u) ∈ F ×B. (2.8)

Then it follows from (2.7) that inequality (2.3) holds with the function ρ defined
by (2.4). The continuity of the functions ψ and ρ is obvious from the explicit
formulas for them. To prove (2.5), it suffices to note that the support of the
measure dz2

m⊗λ′m is the entire space F 2
m×Gm, and the integrand in (2.8) with

y = y0 and u = u0 is positive on an open set. Finally, the positivity of ρ in
the neighbourhood of y0 follows from (2.5) and the fact that the support of µ
coincides with V . The proof is complete.
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3 Proof of the main theorem

In this section, we present a proof of Theorem 2.1. To make the main ideas
more transparent, we first prove a weaker version of our result. Namely, we
establish assertions (i) and (ii) of Theorem 2.1 for a given stationary solution,
without caring about the uniformity of estimates. In the second subsection, we
show how to modify the proof to obtain the result in full generality.

3.1 Simplified version: non-uniform estimates

We first explain the main idea. By definition, if µ ∈ P(H) is a stationary mea-
sure for (1.8), then there is an admissible weak solution u(t) defined on a com-
plete probability space (Ω,F ,P) with right-continuous filtration Ft such that
D(u(t)) = µ for any t ≥ 0. Let us represent u in the form (1.13), where z(t) is
the Ornstein–Uhlenbeck process defined by (1.11) and v(t) is an Ft-progressively
measurable random process whose almost every trajectory is a weak solution
of (1.3). Let J = [0, 1] and let

Ω0 =
{
ω ∈ Ω : u(0) ∈ V, z ∈ C(R+, V ) ∩ L2

loc(R+, U)
}
.

Then Ω0 ∈ F and P(Ω0) = 1. If ω ∈ Ω0, and Eq. (1.3) has a strong solu-
tion v̂ ∈ YJ satisfying the initial condition v̂(0) = u0, where u0 = u(0), then
Proposition 1.3 implies that

u(t) = z(t) + St(z, u0) =: Tt(z, u0) for t ∈ J. (3.1)

Here S denotes an operator taking (z, v0) ∈ YJ × V to the solution v ∈ YJ of
problem (1.3), (1.21) and St stands for the restriction of S to the time t. What
has been said implies that2

µ(Γ) = P{u(1) ∈ Γ} ≥ P{T1(z, u0) ∈ Γ} for any Γ ∈ B(H). (3.2)

Thus, Theorem 2.1 will be established if we show that assertions (i) and (ii) are
valid for the distribution of the random variable T1(u0, z). The first of them
is a simple consequence of the approximate controllability of the NS system,
while the other will follow from the solid controllability in finite-dimensional
projections and Theorem 2.4.

We now turn to the accurate proof. It is divided into several steps.

Step 1. Recall that the set CT (h) is defined in Section 1.4. Let us denote by
λ ∈ P(YJ ) the law of the restriction of the Ornstein–Uhlenbeck process (1.11)
to the interval J and let Z = suppλ. It is well known that λ is a Gaussian
measure on YJ . As was explained in Example 1.16, the measure λ ∈ P(Z)
satisfies Condition 1.15. We claim that, for any Borel subsets B1 ⊂ Z and
B2 ⊂ V satisfying the inclusion

B1 ×B2 ⊂ C1(h), (3.3)
2Inequality (3.2) is not entirely accurate, because the operator T1 is defined only on an

open subset of YJ × V .
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we have
µ ≥ T1∗(λB1 , µB2), (3.4)

where the right-hand side of (3.4) stands for the image under T1 of the restriction
of the product measure λ⊗ µ to the set B1 ×B2.

To prove (3.4), let us take any Borel set Γ ⊂ H and write

µ(Γ) = P{u(1) ∈ Γ} ≥ P{z ∈ B1, u0 ∈ B2, u(1) ∈ Γ}, (3.5)

where u0 = u(0). In view of the weak-strong uniqueness (see Proposition 1.3)
and inclusion (3.3), we have

u(1) = T1(z, u0) for z ∈ B1, u0 ∈ B2.

Substituting this relation into (3.5) and using the independence of z and u0, we
obtain

µ(Γ) ≥ P{z ∈ B1, u0 ∈ B2, T1(z, u0) ∈ Γ}
= EP{z ∈ B1, u0 ∈ B2, T1(z, u0) ∈ Γ | F0}
= E

(
IB2(u0)E

{
IB1(z)IΓ(T1(z, v))

}∣∣
v=u0

)
, (3.6)

where IΓ denotes the indicator function of Γ. Now note that

E
{
IB1(z)IΓ(T1(z, v))

}
= T1∗(λB1 , v)(Γ) for any v ∈ B2, (3.7)

where T1∗(λB1 , v) denotes the image of the restriction of λ to B1 under the
mapping T1(·, v). Substituting (3.7) into (3.6), we derive

µ(Γ) ≥ E{
IB2(u0)T1∗(λB1 , u0)(Γ)

}
= T1∗(λB1 , µB2)(Γ).

Since Γ was arbitrary, we arrive at the required inequality (3.4).

Step 2. We now show that for any û0 ∈ V and any ball B ⊂ V there is
ẑ ∈ suppλ such that

T1(ẑ, û0) ∈ B. (3.8)

Indeed, in view of Proposition 1.11, for any û0 ∈ V there exists η̂ ∈ C∞(J,E)
such that

R1(η̂, û0) ∈ B. (3.9)

Let us set

ẑ(t) =
∫ t

0

e−ν(t−s)Lη̂(s) ds.

It is a matter of direct verification to show that

R1(η̂, û0) = ẑ(1) + S1(ẑ, û0) = T1(ẑ, û0), (3.10)

and therefore (3.8) follows immediately from (3.9). To prove that ẑ ∈ suppλ,
first note that

ẑ = (M ◦ I)(η̂), (3.11)

16



where we set

(Iξ)(t) =
∫ t

0

ξ(s) ds, (Mξ)(t) =
∫ t

0

e−ν(t−s)L∂sξ(s) ds. (3.12)

Let us denote by W the law of the restriction of the process Qζ to the interval J .
Thus, W is a Gaussian measure on the space L2(J, V ). In view of (1.11) and
the second relation in (3.12), we have λ = M∗(W), where M∗(W) stands for
the image of W under the linear operator M . By assumption, the image of Q
contains E, and therefore Iη̂ ∈ suppW. Recalling (3.11), we see that ẑ is
contained in the support of M∗(W).

Step 3. Let us prove that

µ(B) > 0 for any ball B ⊂ V . (3.13)

Fix a ball B and a point û0 ∈ suppµ∩V . We choose ẑ ∈ suppλ such that (3.8)
holds. Since the function T1 : C1(h) → V is continuous (see Proposition 1.12),
we can find balls B1 ⊂ YJ and B2 ⊂ V satisfying (3.3) such that

T1(z, u0) ∈ B for z ∈ B1, u0 ∈ B2, (3.14)
λ(B1) > 0, µ(B2) > 0. (3.15)

Combining (3.4) and (3.14), we obtain

µ(B) ≥ T1∗(λB1 , µB2)(B) = λ(B1)µ(B2).

In view of (3.15), this implies the required inequality (3.13).

Step 4. We now turn to the proof of assertion (ii). Let us fix an arbitrary
finite-dimensional subspace F ⊂ H. We claim that there is a sequence of balls
Bj = BF (yj , rj) and functions ϕj ∈ C∞(F ) such that

`F (F \ F0) = 0, (3.16)
µ ≥ ϕj`F for all j ≥ 1, (3.17)
ϕj(y) > 0 for y ∈ Bj , (3.18)

where F0 = ∪jBj . If this claim is established, then the required result can be
proved by the following simple argument.

Without loss of generality, we assume that 0 ≤ ϕj ≤ 1. Let χj ∈ C∞(F ) be
such that 0 ≤ χj ≤ 1,

χj(y) = 0 for y /∈ BF (yj , 2rj), χj(y) = 1 for y ∈ BF (yj , rj).

Let {εj} be a sequence of positive constants such that

∞∑

j=1

εj = 1,
∞∑

j=1

εj‖χjϕj‖Cj <∞,
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where ‖ · ‖Cj stands for the usual norm in the space of bounded Cj-smooth
functions on F with bounded derivatives up to the order j. Then the function

ρ(y) :=
∞∑

j=1

εjχj(y)ϕj(y)

is infinitely smooth and ρ(y) > 0 for y ∈ F0. It follows from (3.16) that ρ > 0
almost everywhere on F . Furthermore, inequality (3.17) implies that

µ(Γ) ≥
∫

Γ

χj(y)ϕj(y)`F (dy) (3.19)

for any j ≥ 1 and Γ ∈ B(F ). Multiplying (3.19) by εj and summing up the
resulting inequalities, we obtain

µ(Γ) ≥
∫

Γ

ρ(y) `F (dy) for any Γ ∈ B(F ).

whence it follows that µ ≥ ρ`F .

Step 5. To construct sequences {Bj} and {ϕj} satisfying (3.16) – (3.18),
it suffices to prove that for any integer r > 0 there are countably many balls
Br

k ⊂ F and functions ϕr
k ∈ C∞(F ) such that (3.17) and (3.18) hold with Bj

and ϕj replaced by Br
k and ϕr

k, respectively, and

`F
(
BF (r) \ ∪kB

r
k

)
= 0. (3.20)

If such sequences are constructed, then we can take their union with respect to
all positive integers r and k to obtain the required sequences {Bj} and {ϕj}.

Step 6. Let us set

f(z, u0) = PFT1(z, u0) for (z, u0) ∈ C1(h), (3.21)

where z and u0 are regarded as deterministic functions. By Proposition 1.12,
the function f is analytic on its domain of definition C1(h). We wish to apply
Theorem 2.4 to f .

Let us fix a constant r > 0 and a point û0 ∈ V ∩ suppµ. We claim that
there is a finite-dimensional subspace Z0 ⊂ Z and an open subset O ⊂ Z0 such
that O ⊂ C1(h) and

f(O, û0) ⊃ BF (r). (3.22)

Indeed, by Proposition 1.11 (ii), there is a compact subset K in a finite-dimensio-
nal space X0 ⊂ C∞(J,E) such that K ⊂ Θ1(h, û0) and

PFR1(K, û0) ⊃ BF (r). (3.23)

Let us denote by Z0 the image of X0 under the linear operator M defined
in (3.12). Then Z0 is a finite-dimensional subspace of Z and M(K) is a compact
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subset of Z0 contained in {z ∈ YJ : (z, û0) ∈ C1(h)}. Furthermore, it follows
from (3.10) and (3.23) that

f(M(K), û0) ⊃ BF (r).

Since C1(h) is open, we conclude that (3.22) holds for a small neighbourhood O
of the compact set M(K).

Thus, the image of the smooth mapping

f(·, û0) : O → F (3.24)

contains the ball BF (r). By the Sard theorem, almost every point of BF (r) is
regular 3 (see [Ste83]). Applying Theorem 2.4, for almost every y0 ∈ BF (r) we
can construct a function ρy0 ∈ C(F ) and a closed ball By0 ⊂ F centred at y0
such that

f∗(λB1 , µB2) ≥ ρy0`F , ρy0(y) > 0 for y ∈ By0 ,

where B1 ⊂ O and B2 ⊂ V are some balls such that B1×B2 ⊂ C1(h). It is clear
that ρy0 can be minorised by a function ϕy0 ∈ C∞(F ) that is positive on By0 .
Recalling inequality (3.4), we see that

µF ≥ ρy0`F ≥ ϕy0`F . (3.25)

We can now complete the construction of Br
k and ϕr

k by a standard argument.
Namely, let {Kn}n≥1 be a sequence of compact subsets of BF (r) such that any
point y0 ∈ Kn is regular for (3.24) and `F

(
BF (r) \ ∪nKn

)
= 0. Each set Kn

can be covered by finitely many closed balls Bin, i = 1, . . . , In, such that

µF ≥ ϕin`F for i = 1, . . . , In,

where ϕin ≥ 0 is an infinitely smooth function on F that is positive on Bin. The
required families Br

k and ϕr
k can be obtained by taking the union of Bin and ϕin

over all i = 1, . . . , In and n ≥ 1. This completes the proof of assertions (i)
and (ii) for a given stationary measure.

3.2 General case: uniform estimates

The derivation of uniform estimates is based on the following simple result,
which shows that a compact subset of V carries some uniformly positive parts
of all stationary measures µ satisfying (2.1).

Proposition 3.1. For any m0 > 0 there is a compact set A ⊂ V and a con-
stant δ > 0 such that

µ(A) ≥ δ for any stationary measure µ satisfying (2.1). (3.26)

3Recall that a point y0 ∈ F is said to be regular for (3.24) if the rank of the derivative
(Dzf)(z0, û0) is maximal for any point z0 ∈ O such that f(z0, û0) = y0.
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Proof. We first note that inequality (3.4) proved for t = 1 is true for any time
t = s > 0. Namely, let us set Js = [0, s] and denote by λs the law for the
restriction of the Ornstein–Uhlenbeck process (1.11) to the interval Js and by
Zs ⊂ C(Js, V )∩L2(Js, U) the support of λs. Then for any Borel subsets B1 ⊂ Zs

and B2 ⊂ V satisfying the inclusion B1 ×B2 ⊂ Cs(h) we have

µ ≥ Ts∗(λs
B1
, µB2). (3.27)

Let B2 ⊂ V be a ball such that µ(B2) ≥ 1/2 for any µ satisfying (2.1).
Standard local existence results for the NS-type system (1.3) imply that we
can choose s > 0 and a compact set B1 ⊂ Zs of positive λs-measure such
that B1 × B2 ⊂ Cs(h) (for instance, see [FK64] or [Tay97]). Furthermore, it
follows from the regularising property of the resolving operator for (1.3) that
Ts(B1 × B2) is contained in a compact subset A of V . Inequality (3.27) now
implies that

µ(A) ≥ λs(B1)µ(B2) ≥ 1
2
λs(B1).

It remains to note that the right-hand side of this inequality is positive and does
not depend on µ.

We now turn to the proof of (2.2). Repeating the argument used in Step 3
of Subsection 3.1, for any û0 ∈ A we can find open balls B1(û0) ⊂ YJ and
B2(û0) ⊂ V such that B1(û0)×B2(û0) ⊂ C1(h) and

T1(z, u0) ∈ B for z ∈ B1(û0), u0 ∈ B2(û0), (3.28)
λ(B1(û0)) > 0. (3.29)

The family {B2(û0), û0 ∈ A} forms an open covering for the compact set A,
and we can choose a finite subcovering {Bi

2}N
i=1. Denote by {Bi

1}N
i=1 the corre-

sponding set of balls in the space YJ .
Now let µ ∈ P(H) be a stationary measure for (1.8) that satisfies (2.1).

Then it follows from (3.26) that

µ(Bj
2) ≥ N−1δ for some j.

Combining this inequality with (3.28) and (3.29), we see that

µ(B) ≥ T1∗(λBj
1
, µBj

2
) ≥ λ(Bj

1)µ(Bj
2) ≥ N−1δ min

1≤i≤N
λ(Bi

1).

It remains to note that the right-hand side of this inequality is positive and does
not depend on µ.

Let us prove assertion (ii) with a function ρF not depending on µ. As is
shown in Steps 4–6 of Subsection 3.1, it suffices to prove that for any r > 0
and almost every point y0 ∈ BF (r) there is a function ϕy0 ∈ C∞(F ), depending
only on m0 and positive at y0, such that

µF ≥ ϕy0`F . (3.30)
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Repeating the argument used in Step 6 of Subsection 3.1 and applying Theo-
rem 2.4, for almost every y0 ∈ BF (r) we can construct open balls B1(y0) ⊂ Z
and By0 ⊂ B2(y0) ⊂ V , a bounded function ψy0 ∈ C(F ×By0), and a constant
δ > 0 such that

ψy0(y0, u0) > 0 (3.31)

f∗(λB1(y0), µB2(y0)) ≥
(∫

By0

ψy0(y, u)µ(du)
)
`F , (3.32)

where u0 denotes the centre of By0 . Let us fix a closed ball Qy0 ⊂ By0 centred
at u0 and set

δ(y) := inf
u∈Qy0

ψy0(y, u).

It is clear that δ is a Borel function. In view of (3.31), we can choose Qy0 so
small that

δ(y) ≥ δ0 for y ∈ Oy0 , (3.33)

where δ0 > 0 is a constant and Oy0 is a ball centred at y0. Combining (3.4),
(2.2), and (3.32), we obtain

µF (dy) ≥ p(Qy0 ,m0) δ(y) `F (dy). (3.34)

In view of (3.33), we can minorise p(Qy0 ,m0)δ by a function ϕy0 ∈ C∞(F ) that
is positive at y0. Inequality (3.30) is now implied by (3.34). This completes the
proof of Theorem 2.1 in the general case.

4 Appendix

4.1 Proof of Proposition 1.3

A standard limiting argument shows that if v ∈ XJ is a weak solution for (1.3),
then relation (1.4) is true for any function ϕ ∈ YJ such that ϕ̇ ∈ L2

loc(J,H)
and ϕ(0) = ϕ(T ) = 0. In particular, we can take ϕ = χkṽ, where {χk} is the
sequence of functions defined in Section 1.1. We thus obtain

−
∫ t

0

(v, ∂s(χkṽ)) ds+
∫ t

0

χk(s)
(
ν(v, ṽ)V + (B(v+ z), ṽ)− (h, ṽ)

)
ds = 0. (4.1)

Furthermore, a similar argument shows that, in identity (1.4) for the strong
solution ṽ, we can take ϕ = χkv. This results in

−
∫ t

0

(ṽ, ∂s(χkv)) ds+
∫ t

0

χk(s)
(
ν(ṽ, v)V + (B(ṽ+ z), v)− (h, v)

)
ds = 0. (4.2)

Taking the sum of (4.1) and (4.2) and passing to the limit as k →∞, we obtain

(v(t), ṽ(t)) +
∫ t

0

(
2ν(ṽ, v)V + (B(v + z), ṽ) + (B(ṽ + z), v)

)
ds

= (v(0), ṽ(0)) +
∫ t

0

(h, ṽ + v) ds. (4.3)

21



Adding together relations (1.5) and (1.6) (with v replaced by ṽ), subtract-
ing (4.3), and carrying out some simple transformations, we derive

1
2
‖w‖2 +

∫ t

0

(
ν‖w‖2V + (B(w, z + ṽ), w)

)
ds ≤ 0, (4.4)

where w = v − ṽ. In view of standard estimates for the nonlinear term B and
Sobolev embedding theorems, we have

|(B(w, z + ṽ), w)| ≤ C1‖w‖2L3

(‖∇z‖L3 + ‖∇ṽ‖L3

)

≤ C2‖w‖V ‖w‖
(‖z‖U + ‖ṽ‖U

)

≤ ν‖w‖2V + C3‖w‖2
(‖z‖2U + ‖ṽ‖2U

)
.

Substituting this inequality into (4.4), we see that

‖w(t)‖2 ≤ C4

∫ t

0

‖w(s)‖2(‖z(s)‖2U + ‖ṽ(s)‖2U
)
ds.

Application of the Gronwall inequality shows that w = v − ṽ ≡ 0.

4.2 Proof of Lemma 1.5

Let η be a random process satisfying Condition 1.4 and let ζ be the corre-
sponding H-valued cylindrical Wiener process. Then there is an orthonormal
basis {ej} in H and a sequence of independent standard Brownian motions {βj}
such that

ζ(t) =
∞∑

j=1

βj(t)Qej ,

where the series converges in L2(Ω × [0, T ], V ) for any T > 0. Using the polar
decomposition for Q (see [RS80]), we can rewrite ζ as

ζ(t) =
∞∑

j=1

βj(t)AUej =
∞∑

j,k=1

bkβj(t)(Uej , fk)V fk, (4.5)

where U : H → V is a partial isometry, A is a Hilbert–Schmidt selfadjoint
operator in V with eigenbasis {fk} and eigenvalues {bk}, and (·, ·)V denotes the
scalar product in V . Setting bjk = bk(Uej , fk)V and differentiating (4.5) with
respect to t, we obtain (1.10).

Conversely, suppose that η is representable in the form (1.10). Choose an
arbitrary orthonormal basis {ej} in H and define a Hilbert–Schmidt operator
Q : H → V by the relations

Qej =
∞∑

k=1

bjkfk, j ≥ 1.
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We can rewrite (1.10) as

η(t) =
∞∑

j=1

β̇j(t)Qej .

This is equivalent to representation (1.9).
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