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Abstract

The paper is devoted to the problem of mixing for two-dimensional
Navier–Stokes equations perturbed by an unbounded kick force. We de-
velop the coupling approach suggested in [16] to show that any solution
exponentially converges to the stationary measure in the dual Lipschitz
norm. This property complements some earlier results established in [15]
for the same model.
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0 Introduction

Let D ⊂ R
2 be a bounded domain with smooth boundary ∂D. We consider the

Navier–Stokes (NS) system

u̇ − ν∆u + (u,∇)u + ∇p = η(t, x), div u = 0, x ∈ D, (0.1)

where ν > 0 is the viscosity, u = u(t, x) is the velocity field, p = p(t, x) is the
pressure, and η(t, x) is an external force. Equation (0.1) is supplemented with
Dirichlet boundary condition

u
∣

∣

∣

∂D
= 0. (0.2)

It is assumed that the right-hand side of (0.1) is a random process of the form

η(t, x) =
∞
∑

k=1

ηk(x)δ(t − k), (0.3)

where δ(t) is the Dirac measure and ηk are independent identically distributed
(i.i.d.) random variables with range in the space L2(D, R2) of square-integrable
vector fields on D. (See Section 2 for the exact conditions on ηk.)

As was shown in [14, 15], the long-time behaviour of solutions for Eqs. (0.1) –
(0.3) can be described in terms of the following random dynamical system:

uk = S1(uk−1) + ηk, k ≥ 1, (0.4)

where uk = u(k, x) and St is the resolving semi-group for the deterministic NS
system (0.1), (0.2) with η ≡ 0. It is proved in [14, 15] that if the distribution
of ηk is sufficiently non-degenerate, then there is a unique stationary measure
for (0.4). Moreover, the coupling approach suggested in [16, 17, 12] enabled one
to establish exponential convergence of solutions for (0.1), (0.2) to the stationary
measure on condition that the support of distribution of ηk is bounded. The
aim of this article is to show that a similar result holds in the general case.

The problem of ergodicity for randomly forced two-dimensional NS system
and other parabolic PDE’s with different types of additive noise was intensively
studied beginning with the paper [8] by Flandoli and Maslowski in 1995 (see [14,
2, 15, 16, 17, 19, 12] for discrete forcing and [6, 3, 7, 20, 11, 18] for white noise).
We refer the reader to [18, 13] for a detailed discussion of the results and methods
developed since then.

In this paper, we combine the coupling used in [16] with a stopping time
technique that is often applied to establish exponential mixing for processes

2



with unbounded phase space (see [1, 26]). Without going into details, let us
describe the main ideas. 1

Let Pk(u, Γ) be the transition function for a family of Markov chains in a
Hilbert space H endowed with norm | · |. Suppose that we can construct a
probability space Ω and a family Markov chains (Uk, PU ), Uk = (uk, u′

k), in the
direct product H = H × H such that the distributions of uk and u′

k under the
law PU , U = (u, u′), coincide with Pk(u, ·) and Pk(u′, ·), respectively, and the
following two properties hold:

(i) Let σ = min{k ≥ 1 : |uk − u′
k| > e−2k}, where the minimum over an

empty set is +∞. Then there is a subset B ⊂ H and a constant C > 0
such that, for U = (u, u′) ∈ B, we have

PU{σ = +∞} ≥ 1
2 , PU{σ = k} ≤ C e−k.

(ii) Let τ = min{k ≥ 0 : Uk ∈ B}. Then there is γ > 0 such that

EUeγτ < ∞ for any U ∈ H.

In this case, the difference Pk(u, ·) − Pk(u′, ·), regarded as a signed measure
in H , goes to zero in the dual Lipschitz norm ‖ · ‖∗L exponentially fast. (See
Notation for the definition of ‖ · ‖∗L.) Indeed, it follows from (i) that, each time
the process is in B, with probability ≥ 1

2 we have σ = +∞, which means that
the difference ∆k = |uk − u′

k| goes to zero exponentially fast. Let us consider a
sequence of stopping times ρk defined by the following rule. Let ρ0 be the first
hitting time of B (i.e., ρ0 = τ). With probability ≥ 1

2 , we have σ = +∞ for the
chain starting from Uρ0

, and in this case we set ρk = +∞ for k ≥ 2. Otherwise
we denote by ρ the first instant after σ when Uρ0+k hits B and define ρ1 by the
formula ρ1 = ρ0 + ρ. In general, if ρk is already defined, then ρk+1 = ρk + ρ,
where ρ is the first instant after σ when the chain starting from Uρk

hits B. As
in the case of ρ0, with probability ≥ 1

2 we have ρl = +∞ for l ≥ k + 1.
The above construction implies that, if ρk < +∞ and ρk+1 = +∞, then

∆ρk+m ≤ e−2m for all m ≥ 0. Using the strong Markov property (SMP) and
assertions (i) and (ii), it can be shown that PU{ρk < +∞} ≤ 2−k. What has
been said implies that with probability ≥ 1 − 2−k−1 we have

|uk − u′
k| ≤ e−2k+ρk for all k ≥ ρk. (0.5)

Moreover, further analysis enables one to show that

PU

{

k ≤ ρk < ∞
}

≤ C e−αk, (0.6)

where C and α are positive constants. Combining (0.5) and (0.6), we see that

PU

{

|uk − u′
k| > e−k

}

≤ 2−k−1 + C e−αk for k ≥ 1.

1We partially follow explanations in [26, Section 14].
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Thus, the difference |uk − u′
k| converges to zero in probability exponentially

fast. As in the case of bounded kicks, this implies the required assertion
(cf. Lemma 1.3 in [16]).

We note that the scheme described above is not entirely accurate. In partic-
ular, the definition of the stopping time σ used in the main text is different (see
Section 4.2). However, properties (i) and (ii) form the main mechanism that
leads to exponential convergence. We shall show in fact that |uk − u′

k| goes to
zero exponentially fast with probability 1 (see Corollary 2.4).

We also note that, in the context of randomly forced PDE’s, some ideas re-
lated to the above approach were used earlier by Mattingly [20] and Hairer [11].
However, their schemes (which are rather complicated) are based on a factorisa-
tion of the transition function and introduction of an auxiliary family of Markov
chains that takes into account the “future” of the original family.

The paper is organised as follows. In Section 1, some preliminaries are
compiled. In Section 2, we formulate the main result of this paper and show
that it can be derived from the existence of a coupling of solutions. Section 3
is devoted to studying a coupling operator introduced in [16]. In Section 4, we
describe the aforementioned coupling for solutions and show that it possesses all
necessary properties. The Appendix contains proof of some auxiliary assertions.

Notation

For a bounded domain D ⊂ R
2, we denote by L2(D, R2) the space of square

integrable vector functions (u1, u2), by | · | the natural norm in L2(D, R2), and
by H1(D, R2) the Sobolev space of order 1. Let C∞

0 (D) be the space of infinitely
smooth functions on D with compact support and let V be the space of vector
functions u = (u1, u2) such that ui ∈ C∞

0 (D) for i = 1, 2 and div u = 0. We
denote by H and V the closures of V in the spaces L2(D, R2) and H1(D, R2),
respectively. In what follows, we assume that the domain D is fixed and do not
specify the dependence of various constants on D.

Let Π be the orthogonal projection in L2(D, R2) onto the space H and
let L be the Stokes operator defined as the restriction of −Π∆ to the space H
with natural domain of definition. It is well known [25, 4] that L is a self-
adjoint operator with discrete spectrum. Let {e1, e2, . . . } be a complete set of
normalised eigenfunctions for L that correspond to eigenvalues α1 ≤ α2 ≤ · · · .
We denote by HN ⊂ H the linear span of {e1, . . . , eN} and by H⊥

N its orthogonal
complement in H . Let PN and QN be the orthogonal projections onto HN

and H⊥
N , respectively.

Let B(H) be the Borel σ-algebra in H and let P(H) be the family of all
probability measures on (H,B(H)). If f(u) is an integrable function on H and
µ ∈ P(H), then (µ, f) denotes the integral of f over H with respect to µ.
Let L(H) be the space of functions f : H → R such that

‖f‖L := sup
u∈H

∣

∣f(u)
∣

∣ + sup
u,v∈H

|f(u) − f(v)|

|u − v|
< ∞.

4



We shall use the following metric on the space P(H) (see [5, Section 11.8]:

‖µ1 − µ2‖
∗
L := sup

‖f‖L≤1

∣

∣(µ1, f) − (µ2, f)
∣

∣, µ1, µ2 ∈ P(H).

We denote by P1(H) the set of measures µ ∈ P(H) for which

m1(µ) :=

∫

H

|u|µ(du) < ∞.

Let (Ω,F) be a measurable space. For set A ∈ F , we denote by Ac its com-
plement and by I(A) or IA its indicator function. If ξ is a random variable,
then D(ξ) stands for its distribution.

If uk is a sequence, and we let k = Tn, then we shall sometimes write u(Tn)
to avoid double subscript. We denote by C various unessential constants and
by a ∧ b (a ∨ b) the minimum (maximum) of a and b.

1 Preliminaries

In this section, we have compiled some auxiliary assertions that will be used in
the proof of the main result. To simplify notation, in what follows we assume
that ν = 1. All the results remain valid for 0 < ν < 1.

1.1 Functional spaces and Markov chains associated with

the NS system

Let St : H → H be the resolving semi-group for the NS system with η ≡ 0
and let S = S1. We shall need the following two inequalities for St, which
can be obtained by taking the scalar product in H of the NS system and the
solution u(t) (e.g., see [25, 4] or [15, Section 6]):

∣

∣S(u)
∣

∣ ≤ q|u|, 2

∫ 1

0

∥

∥St(u)
∥

∥

2
dt ≤ |u|2, (1.1)

where ‖v‖ = |L
1
2 v| is the norm in V , q = e−α1 < 1 and u is any function in H .

Let us consider the random dynamical system

uk = S(uk−1) + ηk, (1.2)

where k ≥ 1 and {ηk} is a sequence of i.i.d. random variables in H defined
on a probability space (Ω,F , P) and satisfying the following inequality with a
constant κ > 0:

Q := E exp(κ|η1|
2) < ∞. (1.3)

We study Eq. (1.2) supplemented with the initial condition

u0 = u, (1.4)

where u = u(x) is a random variable in H independent of ηk, k ≥ 1. The
following result is a simple consequence of the first inequality in (1.1).
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Proposition 1.1. Let uk, k ≥ 0, be the random sequence defined by (1.2),
(1.4). Then for any m ≥ 1 the following statements hold:

(i) There is a constant Cm > 0 such that

|uk|
m ≤ qk|u|m + Cm

k
∑

l=1

qk−l|ηl|
m, k ≥ 1. (1.5)

Furthermore, we have C1 = 1 and C2 = (1 − q)−1.

(ii) Let Km = E |η1|
m. If E |u|m < ∞, then

E |uk|
m ≤ E

(

qk|u|m
)

+ (1 − q)−1CmKm, k ≥ 1. (1.6)

Moreover, if σ is a stopping time such that E =
∞
∑

l=1

(

P{σ = l}
)

1
2 < ∞,

then

E
(

I{σ<∞}|uσ|
m

)

≤ E
(

qσ|u|m
)

+
ECmK

1
2

2m

1 − q
. (1.7)

Proof. Inequality (1.5) follows from [15, Section 6.1] and (1.6) is easily derived
from (1.5) by taking the expectation. Therefore we confine ourselves to the
proof of (1.7).

Let us multiply (1.5) by I{σ<∞} and set k = σ∧n, where n ≥ 1 is an integer.
This results in

I{σ<∞}|uσ∧n|
m ≤ I{σ<∞}q

σ∧n|u|m + CmI{σ<∞}

σ∧n
∑

l=1

qσ∧n−l|ηl|
m

≤ qσ∧n|u|m + Cm

∞
∑

s=1

s∧n
∑

l=1

qs∧n−lI{σ=s}|ηl|
m.

Taking the expectation and using Fatou’s lemma and the monotone convergence
theorem to pass to the limit as n → ∞ in the above inequality, we derive

E
(

I{σ<∞}|uσ|
m

)

≤ E
(

qσ|u|m
)

+ CmEm, (1.8)

where

Em =

∞
∑

s=1

s
∑

l=1

qs−l
E
(

I{σ=s}|ηl|
m

)

.

We now note that

Em ≤
∞
∑

l=1

∞
∑

s=l

qs−l
(

E |ηl|
2m

)
1
2
(

P{σ = l}
)

1
2 ≤ EK

1
2

2m(1 − q)−1.

Substituting this inequality into (1.8), we obtain (1.7).
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Proposition 1.1 enables one to construct a family of Markov chains associated
with (1.2) and parametrised by the initial condition u from (1.4). For the
reader’s convenience, we now briefly recall the construction.

Let Fk be the σ-algebra generated by ηl, 1 ≤ l ≤ k. We set

Ω′ = H × Ω, F ′ = B(H)⊗F , F ′
k = B(H) ⊗Fk, Pu = δu ⊗ P,

where B(H) is the Borel σ-algebra on H , δu ∈ P(H) is the Dirac measure con-
centrated at u, and ⊗ denotes the direct product for measures and σ-algebras.
For ω′ = (u, ω) ∈ Ω′, let u′

k(ω′) = uk(u, ω), where uk(u, ω) is the random
sequence defined by (1.2), (1.4). Since ηk are i.i.d., (u′

k, Pu) is a family of homo-
geneous Markov chains with respect to F ′

k. Its transition function is given by
the formula Pk(u, Γ) = Pu{u

′
k ∈ Γ}, and the corresponding Markov operators

have the form

Pkf(u) =

∫

H

Pk(u, dv)f(v), P∗
kµ(Γ) =

∫

H

Pk(u, Γ)µ(du),

where f : H → R is a bounded continuous function and µ ∈ P(H). In what
follows, we shall drop the prime from notation and write ω, uk, Ω,F ,Fk instead
of ω′, u′

k, Ω′,F ′,F ′
k. This will not lead to confusion.

1.2 Estimates for some stopping times

For any sequence vk ∈ H , l ≤ k ≤ m, we set

〈

‖v‖2
〉m

l
:=

1

m − l + 1

m
∑

k=l

∫ 1

0

∥

∥St(vk)
∥

∥

2
dt. (1.9)

Let us introduce the stopping time

T (M) = min
{

k ≥ 1 :
〈

‖u‖2
〉k

0
> M

}

, (1.10)

where M > 0 is a constant, (uk, Pu) is the Markov chain defined in the foregoing
subsection, and we set T (M) = ∞ if the condition in the brackets is never
satisfied.

For any probability measure λ ∈ P(H), we set

Pλ(A) =

∫

Ω

Pu(A)λ(du), A ∈ F .

Note that Pλ is a probability measure on (Ω,F), and uk is a Markov chain with
respect to Pλ (see [22, Section 1.2]).

Proposition 1.2. Suppose that (1.3) holds. Then there is δ > 0 depending only

on κ such that for any initial measure λ ∈ P(H) satisfying the condition

∫

H

eδ|u|2λ(du) ≤ R,
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where R > 0 is a constant, we have

Pλ{T (M) = k} ≤ R Qke−δM(k+1), k ≥ 1. (1.11)

In particular, if δM ≥ log(R + Q), then

Pλ{T (M) = ∞} ≥ R
R+Q

> 0. (1.12)

The proof will imply that (1.11) is valid for 0 < δ ≤ δ0, where δ0 > 0 depends
only on κ.

Proof. Inequality (1.12) follows easily from (1.11), and therefore we confine
ourselves to the proof of (1.11).

As is shown in [15, formula (1.24)], for any integer k ≥ 0 we have 2

|uk|
2 + k

〈

‖u‖2
〉k−1

0
≤ |u0|

2 + (1 + α−1
1 )

k
∑

l=1

|ηl|
2. (1.13)

Setting u = uk in the second inequality in (1.1) and adding the resulting estimate
to (1.13), we obtain

Ik := (k + 1)
〈

‖u‖2
〉k

0
≤ |u0|

2 + (1 + α−1
1 )

k
∑

l=1

|ηl|
2. (1.14)

Let δ be such that δ (1 + α−1
1 ) ≤ κ. Then it follows from (1.3) and (1.14) that

EλeδIk ≤ R Qk.

Chebyshev’s inequality now implies that

Pλ

{

Ik > M(k + 1)
}

≤ R Qke−δM(k+1),

It remains to note that {T (M) = k} ⊂ {Ik > M(k + 1)}.

For any d > 0, we define the first hitting time of the ball Bd = {|u| ≤ d} ⊂ H
by the formula

τd = min{k ≥ 0 : |uk| ≤ d}. (1.15)

Proposition 1.3. Suppose that K = E |η1| < ∞ and P{|η1| ≤ ε} > 0 for any

ε > 0. Then for any d > 0 there are positive constants γ and C such that for

any initial measure λ ∈ P1(H) we have

Eλeγτd ≤ C
(

1 + m1(λ)
)

. (1.16)

Proof. The proof is based on the existence of a Lyapunov function and the fact
that any trajectory visits arbitrarily small neighbourhood of zero with positive
probability. More precisely, we use the following two observations:

2In [15], the case of a torus is discussed. However, the derivation of formula (1.24) remains
valid for the case of Dirichlet boundary condition.
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(a) There are positive constants R and C such that, for any initial measure
λ ∈ P1(H), we have τR < ∞ Pλ-a.s. and

Eλq−τR ≤ C
(

1 + m1(λ)
)

. (1.17)

(b) For any R > 0 and d > 0 there is an integer l ≥ 1 and a constant p > 0
such that

Pu

{

|ul| ≤ d
}

≥ p for any u ∈ H, |u| ≤ R. (1.18)

Taking these properties for granted, let us complete the proof of the proposi-
tion. We follow a standard argument (see [10, Sections III.7 and IV.2] and [26,
Section 13]).

Step 1. Without loss of generality, we can assume that, on the probability
space Ω, there is defined a shift operator θh : Ω → Ω (where h ≥ 0 is an integer)
such that uk(θhω) = uk+h(ω); see [22, Section 1] for details.

We fix a constant R > 0 for which (1.17) holds and define the stopping time
T = τ + l, where l = l(R, d) ≥ 1 is the integer in statement (b) and τ := τR.
Let us consider iterations of T :

T0 = T, Tm = Tm−1 + T ◦ θTm−1
, m ≥ 1.

For any initial measure λ ∈ P1(H), we set

Pλ(m) = Pλ

( m
⋂

n=1

{

|u(Tn)| > d
}

)

.

We claim that
Pλ(m) ≤ (1 − p)m, m ≥ 1. (1.19)

Indeed, let us set T ′
m = Tm−1 + τ ◦ θTm−1

and note that Tm = T ′
m + l. By the

strong Markov property (SMP), it follows that

Pλ

{

|u(Tm)| > d
∣

∣FT ′
m

}

= Pu(T ′
m

)

{

|ul| > d
}

≤ 1 − p,

where we used inequality (1.18) and the fact that |u(T ′
m)| ≤ R. Therefore, using

again the SMP, we derive

Pλ(m) = Eλ

( m−1
∏

n=1

I
(

|u(Tn)| > d
)

Pλ

{

|u(Tm)| > d
∣

∣FT ′
m

}

)

≤ (1 − p)Pλ(m − 1).

Iteration of this inequality results in (1.19).

Step 2. We now show that

Eλq−Tm ≤ C1D
m

(

1 + m1(λ)
)

, m ≥ 1, (1.20)
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where the positive constants C1 and D depend only on d. Indeed, let us set
T ′ = l + τ ◦ θl and note that, by the SMP and inequalities (1.17) and (1.6)
(with k = l and m = 1), for any u ∈ BR we have

Euq−T ′

= q−l
Eu

{

Eul
(q−τ )

}

≤ Cq−l
Eu

(

1 + |ul|
)

≤ D, (1.21)

where D > 0 does not depend of u. Furthermore, the stopping times T ′
m

introduced above can be represented in the form

T ′
0 = τ, T ′

m = T ′
m−1 + T ′ ◦ θT ′

m−1
, m ≥ 1.

Therefore, using the SMP and inequality (1.21), for any λ ∈ P1(H) we derive

Eλq−T ′

m = Eλ

{

q−T ′

m−1

(

Eu(T ′

m−1
)q

−T ′)}

≤ D Eλq−T ′

m−1 .

Iteration of this estimate results in

Eλq−T ′

m ≤ Dm
Eλq−T ′

0 ≤ C Dm
(

1 + m1(λ)
)

,

where we used (1.17). Recalling that Tm = T ′
m + l, we obtain inequality (1.20)

with C1 = Cq−l.

Step 3. We can now prove (1.16). For any initial measure λ ∈ P1(H) and
any integer m ≥ 1, we have

Pλ{τd ≥ k} = Pλ{τd ≥ k, Tm < k} + Pλ{τd ≥ k, Tm ≥ k}

≤ Pλ{τd > Tm} + Pλ{Tm ≥ k}. (1.22)

It follows from (1.19), (1.20), and Chebyshev’s inequality that

Pλ{τd > Tm} ≤ Pλ(m) ≤ (1 − p)m,

Pλ{Tm ≥ k} ≤ qk
Eλq−Tm ≤ C1D

mqk
(

1 + m1(λ)
)

.

Substitution of these estimates into (1.22) results in

Pλ{τd ≥ k} ≤ (1 − p)m + C1D
mqk

(

1 + m1(λ)
)

.

Choosing m = [εk] + 1, where ε > 0 is sufficiently small and [r] is the integer
part of r > 0, we obtain

Pλ{τd ≥ k} ≤ C2e
−αk

(

1 + m1(λ)
)

, (1.23)

where C2 and α are some positive constants. Inequality (1.16) is an obvious
consequence of (1.23).

Thus, it remains to establish assertions (a) and (b). The first of them is a
consequence of Lemma 5.1 (see the Appendix). Assertion (b) follows immedi-
ately from the first inequality in (1.1) and the fact that P{|η1| ≤ ε} > 0 for any
ε > 0 (e.g., see [16, Lemma 3.1]).
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1.3 Foiaş–Prodi type estimate

We denote by HN the finite-dimensional subspace spanned by {e1, e2, . . . , eN}
and by H⊥

N its orthogonal complement in H . Let PN and QN be the orthogonal
projections onto HN and H⊥

N , respectively.
For any two sequences uk, u′

k ∈ H , l ≤ k ≤ m, we set
〈

‖u‖2 + ‖u ′‖2
〉m

l
:=

〈

‖u‖2
〉m

l
+

〈

‖u ′‖2
〉m

l
. (1.24)

Let l ≤ m be some integers and let ζk and ζ′k, l + 1 ≤ k ≤ m, be two
sequences in H . Suppose that sequences uk, u′

k ∈ H satisfy the equations

uk = S(uk−1) + ζk, u′
k = S(uk−1) + ζ′k, l + 1 ≤ k ≤ m.

The following result is an analogue of an estimate due to Foiaş and Prodi [9].

Proposition 1.4. Suppose that

PNuk = PNu′
k, QNζk = QNζ′k for l + 1 ≤ k ≤ m. (1.25)

Then there is a constant C > 0 not depending on uk, u′
k, m, l, and N such

that, for l ≤ k ≤ m, we have

|uk − u′
k| ≤

(

Cα
− 1

4

N+1

)k−l
exp

(

C(k − l)
〈

‖u‖2 + ‖u ′‖2
〉k−1

l

)

|ul − u′
l|. (1.26)

In the case of a torus, the proposition is proved in [15] (see inequality (2.24)).
For the Dirichlet boundary conditions, the proof is similar and is outlined in
the Appendix (see Section 5.1).

2 Main result

To formulate the main result, we shall need the following hypothesis:

Condition 2.1. The i.i.d. random variables ηk have the form

ηk =

∞
∑

j=1

bjξjkej(x),

where ξjk are independent scalar random variables and bj ≥ 0 are some con-
stants such that

B :=

∞
∑

j=1

b2
j < ∞. (2.1)

Moreover, for any j ≥ 1 the distribution of ξjk possesses a density pj(r) (with
respect to the Lebesgue measure) that is a function of bounded variation satis-
fying the conditions

∫

R

er2

pj(r) dr ≤ Q, pj(r) > 0 for all r ∈ R, (2.2)

where Q > 0 is constant not depending on j.
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Before formulating the main result of this paper, let us note that inequali-
ties (2.1) and (2.2) imply that (1.3) holds with κ = 1

B
and that P{|η1| > ε} > 0

for any ε > 0. In particular, Propositions 1.1, 1.2, and 1.3 are valid if Condi-
tion 2.1 is satisfied.

We recall that a measure µ ∈ P(H) is said to be stationary for the Markov
semi-group P∗

k if P∗
1µ = µ.

Theorem 2.2. Suppose that Condition 2.1 is satisfied. For any B ≥ 0 there is

an integer N ≥ 1 such that, if

bj 6= 0 for j = 1, . . . , N, (2.3)

then there is a unique stationary measure µ ∈ P(H) for P∗
k. Moreover, there

are positive constants β and C such that for any initial measure λ ∈ P1(H) we

have

‖P∗
kλ − µ‖∗L ≤ C

(

1 + m1(λ)
)

e−βk, k ≥ 1. (2.4)

Theorem 2.2 will be derived from the proposition below, which is of inde-
pendent interest. Before formulating it, let us explain its main idea.

The assertions of Theorem 2.2 concern the distributions of random sequences
{uk} defined by (1.4) (and not the random sequences themselves). Suppose
that ζk, k ≥ 1, is a sequence of i.i.d. in H (which may be defined on a different
probability space) such that D(ζk) = D(ηk) and let {vk} be a random sequence
satisfying the relation vk = S(vk−1)+ζk for k ≥ 1. In this case, if D(v0) = D(u0)
and v0 is independent of {ζk}, then D(vk) = D(uk) for all k. Therefore, if the
choice of ζk is such that vk converges in distribution, then the same is true
for uk.

Let us denote by H the direct product of two copies of H . In the proposi-
tion below, for any probability measure Λ on H we construct a pair of random
variables (u0, u

′
0) with distribution Λ and two random sequences ζk and ζ′k pos-

sessing the above-mentioned properties such that the difference of the sequences
defined by the formulas

uk = S(uk−1) + ζk, u′
k = S(u′

k−1) + ζ′k, k ≥ 1, (2.5)

converges to zero exponentially fast. This will imply the required assertions
about the Markov semi-group P∗

k. We emphasize that {ζk} and {ζ′k} are not

independent.

Proposition 2.3. Under the conditions of Theorem 2.2, there is an integer-

valued function N(r) ≥ 1 such that, if (2.3) holds with N ≥ N(B), then there

is a probability space (Ω,F , P) such that for any initial measure Λ ∈ P1(H) there

exists a pair of random sequences (uk, u′
k) that are defined on Ω and possess the

following properties:

(i) The initial distribution of Uk = (uk, u′
k) coincides with Λ :

D(U0) = Λ. (2.6)

12



Furthermore, each of the sequences {ζk} and {ζ′k} defined by relations (2.5)
consists of i.i.d. random variables such that

D(ζk) = D(ζ′k) = D(ηk). (2.7)

(ii) There is a constant M > 0, depending only on B, and an integer-valued

random variable ℓ(ω) ≥ 0 such that

PNuk = PNu′
k for k ≥ ℓ + 1, (2.8)

QNζk = QNζ′k for k ≥ 1, (2.9)
〈

‖u‖2 + ‖u ′‖2
〉k

ℓ
≤ M for k ≥ ℓ + 1. (2.10)

(iii) There are positive constants α and C not depending on Λ such that

E eαℓ ≤ C
(

1 + m1(Λ)
)

, (2.11)

|uℓ| ∨ |u′
ℓ| ≤ 1. (2.12)

We emphasize that the random variable ℓ(ω) and the constants α and C de-
pend on N . The proof of Propositions 2.3, which is given in Section 4, will imply
in fact that Uk = (uk, u′

k) is a Markov chain. We now show that Theorem 2.2
is a simple consequence of Proposition 2.3.

Proof of Theorem 2.2. Step 1. We first show that for any initial measures λ, λ′ ∈
P1(H) the following inequality holds:

∥

∥P∗
kλ − P∗

kλ′
∥

∥

∗

L
≤ C1

(

1 + m1(λ) + m1(λ
′)

)

e−βk, k ≥ 1, (2.13)

where C1 > 0 is a constant not depending on λ and λ′. Indeed, let uk and u′
k

be the random sequences constructed in Proposition 2.3 that correspond to the
measure Λ = λ⊗λ′. Then, in view of (2.6), u0 and u′

0 are (independent) random
variables whose distributions coincide with λ and λ′, respectively. Therefore,
for any f ∈ L(H) we have

∆k(f) :=
∣

∣(λk, f) − (λ′
k, f)

∣

∣ ≤
∣

∣E
(

f(uk) − f(u′
k)

)∣

∣, (2.14)

where λk = P∗
kλ and λ′

k = P∗
kλ′. Let us set Gk = {ω ∈ Ω : 2ℓ + 1 ≤ k}

and choose N ≥ 1 so large that log αN+1 ≥ 4(CM + log C + 2), where C is
the constant in inequality (1.26). It follows from (2.8) – (2.10), (2.12), and
Proposition 1.4 that, for ω ∈ Gk, we have

∣

∣uk − u′
k

∣

∣ ≤
(

Cα
− 1

4

N+1

)k−ℓ
eCM(k−ℓ)

∣

∣uℓ − u′
ℓ

∣

∣ ≤ e−k. (2.15)

Furthermore, inequality (2.11) implies that

P
(

Gc
k

)

≤ C
(

1 + m1(λ) + m1(λ
′)

)

e−
αk

2 . (2.16)
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Combining (2.14) – (2.16) and setting β = 1∧α
2 , we derive

∆k(f) ≤ E
{

IGk
|(λk, f) − (λ′

k, f)|
}

+ E
{

IGc

k
|(λk, f) − (λ′

k, f)|
}

≤ ‖f‖LE
{

IGk
|uk − u′

k|
}

+ 2‖f‖LP
(

Gc
k

)

≤ C1‖f‖L
(

1 + m1(λ) + m1(λ
′)

)

e−βk.

Taking the supremum over all f ∈ L(H) satisfying the condition ‖f‖L ≤ 1, we
obtain (2.13).

Step 2. The existence of a stationary measure µ ∈ P1(H) follows from (2.13)
and (1.6) by a standard argument (cf. [16, Lemma 1.2]), and therefore we confine
ourselves to the proof of uniqueness and inequality (2.4).

Inequality (2.4) implies that a stationary measure is unique in the class P1(H).
Thus, the required uniqueness will be established if we show that any stationary
measure belongs to P1(H). This assertion follows from (1.6) (cf. [23, Theo-
rem 2.2] for the case of white noise). Finally, to prove (2.4), it suffices to take
λ′ = µ in (2.13).

When proving Theorem 2.2, we established the following assertion on a.s. ex-
ponential convergence to zero for the difference |uk − u′

k| (see (2.15)).

Corollary 2.4. Let Λ ∈ P1(H) be an arbitrary initial measure and let (uk, u′
k)

be the corresponding random sequences constructed in Proposition 2.3. Then

|uk − u′
k| ≤ e−k for k ≥ 2ℓ(ω) + 1.

3 Coupling operator and its properties

Recall that {ηk} is the sequence of i.i.d. random variables in (1.2) and denote
by χ their distribution. Condition 2.1 implies that, if bj 6= 0 for j = 1, . . . , N ,
then the projection χN = PNχ is absolutely continuous with respect to the
Lebesgue measure dx:

χN (dx) = p(x) dx, (3.1)

where we set

p(x) =

N
∏

j=1

qj(xj), qj(xj) = b−1
j pj(xj/bj), x = (x1, . . . , xN ) ∈ HN .

For any u ∈ H , let νu be the distribution of the random variable PN (S(u)+η1).
It follows from (3.1) that νu is also absolutely continuous with respect to the
Lebesgue measure, and its density has the form p(x − PNS(u)).

The following result is a restatement of Lemma 3.2 in [16].

Lemma 3.1. Suppose that Condition 2.1 is satisfied and that bj 6= 0 for j =
1, . . . , N , where N ≥ 1 is an arbitrary integer. Then there is a probability

space (Ω,F , P) such that for any pair of functions u, u′ ∈ H there are H-valued

random variables ζ = ζ(u, u′, ω) and ζ′ = ζ′(u, u′, ω) possessing the following

properties:
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(i) The distributions of ζ and ζ′ coincide with χ.

(ii) The random variables (QN ζ, QNζ′) and (PNζ, PN ζ′) are independent, and

the projections QNζ and QNζ′ coincide for all ω ∈ Ω and do not depend

on (u, u′).

(iii) Let us set

v = PN

(

S(u) + ζ
)

, v′ = PN

(

S(u′) + ζ′
)

.

Then the pair (v, v′) is a maximal coupling 3 for (νu, νu′). Moreover, there

is CN ≥ 1 depending on min{bj : 1 ≤ j ≤ N} such that

P
{

v 6= v′
}

≤ CN

∣

∣S(u) − S(u′)
∣

∣ for all u, u′ ∈ H. (3.2)

(iv) The random variables ζ and ζ′ are measurable functions of (u, u′, ω) ∈
H × H × Ω.

Proof. We only outline the proof. As is shown in [16] (see Lemma 3.2 and in-
equality (3.8)), the variational distance between νu and νu′ admits the estimate

‖νu − νu′‖var ≤ CN

∣

∣S(u) − S(u′)
∣

∣. (3.3)

Let (v, v′) be a maximal coupling for (νu, νu′). By Theorem 4.2 in [16], we can
assume that the random variables v and v′ are defined on the same probability
space (Ω1,F1, P1) for all u, u′ ∈ H and are measurable functions of (u, u′, ω1).
Let (Ω2,F2, P2) be the probability space on which η1 is given. We denote
by (Ω,F , P) the direct product of (Ωi,Fi, Pi), i = 1, 2, and define ζ and ζ′ by
the relations

PNζ(ω) = v(ω1) − PNS(u), PNζ′(ω) = v′(ω1) − PNS(u′),

QNζ(ω) = QNζ′(ω) = QNη(ω2),

where ω = (ω1, ω2) ∈ Ω. Assertions (i), (ii), and (iv) and the fact that (v, v′)
is a maximal coupling for (νu, νu′) follow from the construction, while inequal-
ity (3.2) is a consequence of (3.3) and the definition of maximal coupling (see
Section 5.3).

Let us define coupling operators by the formulas

R(u, u′, ω) = S(u) + ζ(u, u′, ω), R′(u, u′, ω) = S(u′) + ζ′(u, u′, ω), (3.4)

where u, u′ ∈ H and ω ∈ Ω. We shall need the following lemma:

Lemma 3.2. Under the conditions of Lemma 3.1, for any r > 0 there is ε > 0
such that

P

{

|R| + |R′| ≤
(

1+q
2 (|u| + |u′|)

)

∨ r
}

≥ ε for all u, u′ ∈ H. (3.5)

3For the definition of a maximal coupling, see Section 5.3.
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Proof. Step 1. For C > 0, we set AC = {|ζ| + |ζ′| ≤ C} and choose C so large
that P(AC) ≥ 1

2 for all u, u′ ∈ H . If |u| + |u′| ≥ R := 2C
1−q

, where q is the

constant in (1.1), then for ω ∈ AC we have

|R| + |R′| ≤ q
(

|u| + |u′|
)

+ C ≤ 1+q
2

(

|u| + |u′|
)

.

Thus, if |u| + |u′| ≥ R, then (3.5) holds with ε = 1
2 .

Step 2. We now assume that |u| + |u′| ≤ R. Suppose that for any δ > 0 we
found ε′ = ε′(δ) > 0 such that

P
{

|v| ∨ |v′| ≤ δ
}

≥ ε′ for |u| + |u′| ≤ R. (3.6)

It follows from assertion (ii) of Lemma 3.1 and the condition pj(r) > 0 that

P
{

|PNR| ∨ |PNR′| ≤ δ, |QNζ| = |QNζ′| ≤ δ
}

≥ ε for |u| + |u′| ≤ R,

where ε = ε(δ) > 0 does not depend on (u, u′). Therefore, with probability ≥ ε,
we have

|R| + |R′| ≤ |PNR| + |PNR′| + |QNR| + |QNR′|

≤ 2δ + |S(u)| + |S(u′)| + 2|QNζ|

≤ q
(

|u| + |u′|
)

+ 4δ.

Choosing δ = r(1−q)
8 , we see that the above expression does not exceed

(

1+q
2 (|u|+

|u′|)
)

∨ r. This completes the proof of (3.5) in the case |u| + |u′| ≤ R.
Step 3. Thus, it remains to establish (3.6). To this end, recall that (v, v′) is

a maximal coupling for (νu, νu′), and therefore, by Lemma 5.2, we have

P
{

|v| ∨ |v′| ≤ δ
}

≥ P
{

|v| ≤ δ, v = v′
}

= νu ∧ νu′(BN
δ ),

where BN
δ = {x ∈ HN : |x| ≤ δ} and νu ∧ νu′ is the minimum of νu and νu′ (see

Section 5.3 for definition). Hence, it suffices to show that for any δ > 0 there is
ε′ > 0 such that

νu ∧ νu′(BN
δ ) ≥ ε′ for |u| + |u′| ≤ R. (3.7)

To prove (3.7), we recall that

νu(dx) = p(x − PNS(u)) dx, νu′(dx) = p(x − PNS(u′)) dx.

Inequality (3.7) is a simple consequence of these formulas and the fact that
pj(r) > 0 for all j ≥ 1 and r ∈ R.

4 Proof of Proposition 2.3

4.1 Description of coupled sequences

Throughout this section, we assume that Condition 2.1 is satisfied, and therefore
we can define the coupling operators (3.4). We now use them to construct pairs
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of sequences satisfying (2.5) that correspond to a given initial measure and
possess the properties mentioned in Proposition 2.3.

Let (Ω0,F0, P0) be a probability space such that for any measure Λ ∈ P(H),
H = H × H , there is a random variable U = (u, u′) on Ω0 whose distribution
coincides with Λ. (For the existence of such a space, see [24, Exercise 1.1.16].)
We denote by (Ωk,Fk, Pk), k ≥ 1, independent copies of the probability space
constructed in Lemma 3.1 and by (Ω,F , P) the direct product of (Ωk,Fk, Pk),
k ≥ 0. Points of Ω will be denoted by ω = (ω0, ω1, . . . ), where ωk ∈ Ωk. Any
random variable ξ(ωk) can be extended to Ω by the formula ξ(ω) = ξ(ωk) and
regarded as a random variable on Ω.

We now turn to construction of random sequences (uk, u′
k). Let Λ ∈ P(H)

be an arbitrary measure and let U = (u, u′) be a random variable on Ω0 with
distribution Λ. We set u0(ω) = u(ω), u′

0(ω) = u′(ω), and

uk(ω) = R
(

uk−1(ω), u′
k−1(ω), ωk

)

,

u′
k(ω) = R′

(

uk−1(ω), u′
k−1(ω), ωk

)

,
(4.1)

where k ≥ 1. Assertion (i) of Proposition 2.3 follows from the construction.
Properties (ii) and (iii) will be established in Section 4.3.

4.2 Auxiliary assertions

Let us note that formulas (3.4) and (4.1) and the definition of the probabil-
ity space (Ω,F , P) imply that Uk = (uk, u′

k) is a Markov chain for any initial
measure Λ. We shall denote by (Uk, PU ), U = (u, u′) ∈ H, the associated
Markov family (see the end of Section 1.1). We now study some properties of
the family (Uk, PU ).

Let us introduce the stopping time

T (M) = min
{

k ≥ 1 :
〈

‖u‖2 + ‖u ′‖2
〉k

0
> M

}

,

where the brackets 〈 · 〉 are defined by (1.9) and (1.24). Note that this stopping
time is different from the one given by (1.10); however, we use the same notation
since they play similar roles for the Markov families (Uk, PU ) and (uk, Pu). The
proof of the following result is similar to that of Proposition 1.2.

Lemma 4.1. There is δ > 0 depending only on B such that for any initial

measure Λ ∈ P(H) satisfying the condition
∫

H

eδ(|u|2+|u′|2)Λ(du, du′) ≤ R,

where R > 0 is a constant, we have

PΛ{T (M) = k} ≤ R Qke−δM(k+1), k ≥ 1. (4.2)

In particular, if δM ≥ log(R + Q), then

PΛ{T (M) = ∞} ≥ R
R+Q

. (4.3)
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Let τd be the first hitting time of the set Bd = {(u, u′) ∈ H : |u| ∨ |u′| ≤ d}
(cf. (1.15)):

τd = min{k ≥ 0 : |uk| ∨ |u′
k| ≤ d}.

Lemma 4.2. For any d > 0 there are positive constants γ and C such that for

any initial measure Λ ∈ P1(H) we have

EΛeγτd ≤ C
(

1 + m1(Λ)
)

. (4.4)

Proof. As was shown in the proof of Proposition 1.3, inequality (4.4) will follow
from the two statements below:

(a) There are positive constants R and C such that for any initial measure
λ ∈ P1(H) we have

EΛq−τR ≤ C
(

1 + m1(Λ)
)

.

(b) For any R > 0 and d > 0 there is an integer l ≥ 1 and a constant p > 0
such that

PU

{

Ul ∈ Bd

}

≥ p for any U = (u, u′) ∈ BR. (4.5)

Proof of (a) is similar to that of Lemma 5.1, and we shall not dwell on it. To
prove (b), we use Lemma 3.2. Inequality (3.5) and the Markov property imply
that

PΛ

{

|ul| + |u′
l| ≤

(

cl(|u| + |u′|)
)

∨ d
}

≥ εl for any l ≥ 1,

where c = 1+q
2 < 1 and ε = ε(d) > 0 is a constant not depending on l. Choosing

the integer l ≥ 1 so large that 2Rcl ≤ d, we obtain (4.5) with p = εl.

We now turn to the most important property of the Markov family (Uk, PU ).
Let us fix a constant M > 0 and consider the stopping time

σ(M) = T (M) ∧ min
{

k ≥ 1 : PNuk 6= PNu′
k

}

,

where N is the integer entering the definition of the coupling operators R and R′

(see Lemma 3.1). In other words, σ(M) is the first instant k ≥ 1 when either the
projections of uk and u′

k to HN are different or the time average 〈‖u‖2+‖u ′‖2〉k0
is greater than M .

Proposition 4.3. There is a non-decreasing integer-valued function N(r) ≥ 1
such that the following statements hold as soon as condition (2.3) is satisfied

with N ≥ N(B):

(i) Let CN ≥ 1 be the constant in (3.2) and let d = 1
2CN e2 . Then there is a

constant M > 0 depending only on B such that

PU{σ(M) = k} ≤ 2e−2k, k ≥ 1, (4.6)

where U ∈ Bd is an arbitrary initial point.
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(ii) For any U ∈ Bd, we have

PU{σ(M) = ∞} ≥ 1
2 , (4.7)

EU

(

I{σ(M)<∞}e
σ(M)

)

≤ 2. (4.8)

Proof. Inequalities (4.7) and (4.8) follow immediately from (4.6), and therefore
we confine ourselves to the proof of (i).

Let δ and Q be the constants in Lemma 4.1 and Condition 2.1 (see (2.2)),
respectively. Without loss of generality, we can assume that δ ≤ 1 and Q ≥ e2δ.
We set M = log Q+2

δ
and introduce the events 4

A(k) =
{

PNuk = PNu′
k

}

, Ā(k) =
k

⋂

l=1

A(l),

D(k) =
{〈

‖u‖2 + ‖u ′‖2
〉k

0
≤ M

}

.

The proof of (4.6) is by induction on k. Let k = 1. We have

{σ(M) = 1} ⊂ {T (M) = 1} ∪ A(1)c. (4.9)

Lemma 4.1 implies that

PU

{

T (M) = 1
}

≤ Q e2δ(1−M) ≤ e−2. (4.10)

Furthermore, since |S(u) − S(u′)| ≤ |u| + |u′| ≤ 2d for U = (u, u′) ∈ Bd, it
follows from assertion (iii) of Lemma 3.1 that

PU{A(1)c} = PU{PNuk 6= PNu′
k

}

≤ 2CNd ≤ e−2. (4.11)

Combining (4.9) – (4.11), we obtain (4.6) with k = 1.
We now assume that k = m ≥ 2 and that for 1 ≤ k ≤ m− 1 inequality (4.6)

is already established. It follows from the definition of σ(M) that (cf. (4.9))

{σ(M) = m} ⊂ {T (M) = m} ∪ B(m), (4.12)

where B(m) = Ā(m−1)∩A(m)c∩{T (M) ≥ m}. Let us estimate the probability
of the events on the right-hand side of (4.12). Lemma 4.1 implies that

PU

{

T (M) = m
}

≤ Qme2δ−δM(m+1) ≤ e−(δM−log Q)m ≤ e−2m, (4.13)

Furthermore, using inequality (4.6) for 1 ≤ k ≤ m−1, for any U ∈ Bd we derive

PU

{

Ā(m − 1) ∩ D(m − 1)
}

≥ PU

{

σ(M) ≥ m
}

≥ 1 − 2
m−1
∑

k=1

e−2k ≥ 1
2 .

4Note that, if M = log Q+2

δ
, then inequalities (4.2) and (4.3) hold for any initial measure Λ

supported by B1.
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Therefore, since {T (M) ≥ m} ⊂ D(m − 1), we can write

PU

(

B(m)
)

≤ PU

{

Ā(m − 1) ∩ A(m)c ∩ D(m − 1)
}

≤ PU

{

PNum 6= PNu′
m | Ā(m − 1) ∩ D(m − 1)

}

. (4.14)

Now note that, in view of Proposition 1.4, for PU -a.e. ω ∈ Ā(m−1)∩D(m−1),
we have

∣

∣S(um−1) − S(u′
m−1)

∣

∣ ≤ 2d eCMm
(

Cα
− 1

4

N+1

)m
.

It follows that, if log αN+1 ≥ 4(CM + log C + 2), then

∣

∣S(um−1) − S(u′
m−1)

∣

∣ ≤ 2d e−2m.

Combining this inequality with (3.2) and using the Markov property, we see
that

PU

{

PNum 6= PNu′
m | Ā(m − 1) ∩ D(m − 1)

}

≤ 2CNd e−2m ≤ e−2m. (4.15)

The required inequality (4.6) with k = m follows now from (4.12) – (4.15).

4.3 Proof of (2.8) – (2.12)

We first outline the scheme of the proof. Let us fix an integer N ≥ 1 and positive
constants M and d ≤ 1 such that (4.6) – (4.8) hold and define a sequence of
stopping times ρk by the following rule.

Let ρ0 be the first instant when both components of Uk = (uk, u′
k) hit the

ball Bd. (Note that ρ0 < ∞ a.s.) Now two cases are possible: either

PNuk = PNu′
k,

〈

‖u‖2 + ‖u ′‖2
〉k

ρ0
≤ M for all k ≥ ρ0 + 1, (4.16)

and then we set ρ1 = ∞, or one of the two conditions in (4.16) is violated at a
random time ρ′1, and then we define ρ1 as the first instant ≥ ρ′1 when both uk

and u′
k are in Bd. If ρ1 = ∞, then ρk = ∞ for all k ≥ 2. Otherwise, we again

consider two cases and define ρ2 in exactly the same way as ρ1. Continuing this
process, we obtain a sequence of stopping times ρk.

Let us note that |uρk
| ∨ |u′

ρk
| ≤ d for any k ≥ 0, and therefore, by (4.7),

with probability ≥ 1
2 we have ρk+1 = ∞. We shall show that, for a. a. ω ∈ Ω,

there is an integer k̄ = k̄(ω) ≥ 0 such that ρk̄ < ∞ and ρk̄+1 = ∞. This implies
that the random variable ℓ(ω) = ρk̄(ω)(ω) is a.s. finite. Relations (2.8), (2.9)
and inequalities (2.10), (2.12) follow immediately from the definition of ℓ and
assertion (ii) of Lemma 3.1, and (2.11) will be established with the help of (4.4),
(4.7), and (4.8).

Let us turn to an accurate proof, which is divided into three steps.

Step 1. We fix N , M , and d as specified in the beginning of this subsection
and, to shorten notation, set σ = σ(M) and τ = τd. Let us introduce the
stopping time

ρ = σ + τ ◦ θσ (4.17)
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and note that the sequence ρk described above can be defined by the formulas

ρ0 = τ, ρk = ρk−1 + ρ ◦ θρk−1
, k ≥ 1.

We first show that

EΛ

(

I{ρk<∞}e
αρk

)

≤ C ak
(

1 + m1(Λ)
)

, (4.18)

where Λ ∈ P1(H) is an arbitrary initial measure and a < 1 and C are positive
constants not depending on Λ and k. To this end, we shall need the following
lemma, whose proof is given at the end of this section.

Lemma 4.4. Suppose that N ≥ 1, M > 0 and d ∈ (0, 1] are such that (4.7)
and (4.8) hold and let γ be the constant in (4.4). Then there are positive con-

stants α ≤ γ and a < 1 such that

PU

{

ρ = ∞
}

≥ 1
2 , (4.19)

EU

{

I{ρ<∞}e
αρ

}

≤ a, (4.20)

where U is any point in Bd.

By (4.20) and the SMP, for any integer m ≥ 0 we have

EΛ

(

I{ρm+1<∞}e
αρm+1

)

≤ EΛ

(

I{ρm<∞}e
αρm EΛ

{

I{ρ◦θ̄m<∞}e
αρ◦θ̄m

∣

∣Fρm

})

≤ EΛ

(

I{ρm<∞}e
αρm EU(ρm)

{

I{ρ<∞}e
αρ

})

≤ a EΛ

(

I{ρm<∞}e
αρm

)

, (4.21)

where we set θ̄m = θρm
and used the fact that Uρm

∈ Bd. Iterating (4.21) and
recalling that ρ0 = τ , we derive

EΛ

(

I{ρk<∞}e
αρk

)

≤ ak
EΛeατ .

Since α ≤ γ (see Lemma 4.4), inequality (4.18) follows from Lemma 4.2.

Step 2. For any ω ∈ Ω, let k̄(ω) = sup{k ≥ 0 : ρk < ∞}. We claim that

PΛ{k̄ < +∞} = 1, (4.22)

where Λ ∈ P1(H) is an arbitrary initial measure. Indeed, in view of the SMP
and (4.19), we have (cf. (4.21))

PΛ{ρk < ∞} = EΛ

(

I{ρk−1<∞}PU(ρk−1){ρ < ∞}
)

≤ 1
2 PΛ{ρk−1 < ∞}.

Iterating this inequality and noting that PΛ{τ < ∞} = 1 by Lemma 4.2, we see
that

PΛ{ρk < ∞} ≤ 2−k.

Relation (4.22) follows now from the Borel–Cantelli lemma.
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Step 3. We now set

ℓ(ω) =

{

ρk̄(ω)(ω) if k̄(ω) < ∞,

+ ∞ if k̄(ω) = +∞.

It follows from the definition of ρk and k̄ that (2.8), (2.10), and (2.12) hold.
Moreover, assertion (ii) of Lemma 3.1 and relation (4.1) imply (2.9). Thus, it
remains to establish (2.11).

In view of (4.22) and (4.18), we have

EΛeαℓ ≤

∞
∑

k=0

EΛ

(

I{k̄=k}e
αρk

)

≤

∞
∑

k=0

EΛ

(

I{ρk<∞}e
αρk

)

≤ C1

(

1 + m1(Λ)
)

,

where C1 > 0 is a constant not depending on Λ, and we used the fact that a < 1.
This completes the proof of Proposition 2.3.

Proof of Lemma 4.4. The definition of ρ implies that {ρ = ∞} ⊃ {σ = ∞},
and therefore (4.19) follows from (4.7).

To prove (4.20), we first show that

EU

{

I{ρ<∞}e
δρ

}

≤ A, (4.23)

where δ = 1
2 (1 ∧ γ) and A > 0 is a constant not depending on U ∈ Bd. Indeed,

using (4.17) and the SMP, we derive (cf. (4.21))

EU

{

I{ρ<∞}e
δρ

}

= EU

{

I{σ<∞}e
δσ

EU

(

I{τ◦θσ<∞}e
δτ◦θσ

∣

∣Fσ

)}

= EU

{

I{σ<∞}e
δσ

EUσ
(eγτ )

}

. (4.24)

By Lemma 4.2,
EUσ

(eγτ ) ≤ C
(

1 + |Uσ|
)

.

Substituting this estimate into (4.24) and using Schwarz’s inequality and the
fact that δ ≤ 1

2 , we obtain

EU

{

I{ρ<∞}e
δρ

}

≤ C EU

{

I{σ<∞}e
σ

2

(

1 + |Uσ|
)}

≤ C
(

EU

{

I{σ<∞}e
σ
}

EU

{

I{σ<∞}(1 + |Uσ|)
2
}

)
1
2

.

Since U ∈ Bd, inequality (4.23) follows from (4.8) and (1.7).
We now prove (4.20). Let us set α = εδ, where ε > 0 is chosen below. It

follows from (4.23) and (4.19) that

EU

{

I{ρ<∞}e
αρ

}

≤
(

PU{ρ < ∞}
)1−ε(

EU{I{ρ<∞}e
δρ}

)ε
≤ 2−1+εAε.

If ε > 0 sufficiently small, the right-hand side of this inequality is smaller than 1.
This completes the proof of (4.20).
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5 Appendix

5.1 Proof of Proposition 1.4

Using a standard technique of the theory of Navier–Stokes equations (e.g., see [4]
or [15, Section 6]), it can be shown that

∣

∣L
1
4

(

v(t) − v′(t)
)∣

∣ ≤ C t−
3
4 exp

(

C

∫ t

0

(

‖v(s)‖2 + ‖v′(s)‖2
)

ds
)

|v(0) − v′(0)|,

(5.1)
where t ≥ 0, v(t) and v′(t) are arbitrary two solutions of the homogeneous NS
system, and C > 0 is a constant not depending on them. Applying inequal-
ity (5.1) and recalling relations (1.25), we derive (cf. [15, Section 2.3])

∣

∣uk − u′
k

∣

∣ =
∣

∣QN (uk − u′
k)

∣

∣ =
∣

∣QN

(

S(uk−1) − S(u′
k−1)

)∣

∣

≤ α
− 1

4

N+1

∣

∣L
1
4

(

S(uk−1) − S(u′
k−1)

)∣

∣

≤ Cα
− 1

4

N+1 exp
(

C

∫ k

k−1

(

‖v‖2 + ‖v′‖2
)

ds
)

∣

∣uk−1 − u′
k−1

∣

∣.

Iteration of this inequality results in (1.26).

5.2 An estimate for the hitting time of a large ball

Lemma 5.1. Let K = E |η1| < ∞ and let a constant R > 0 be so large that

r := qR − (1 − q)−1K > 0. Then for any initial measure λ ∈ P1(H) we have

Eλq−τR ≤ r−1m1(λ) + 1. (5.2)

Proof. Derivation of (5.2) is quite standard and is based on the existence of a
Lyapunov function.

Step 1. Let us define a martingale Mk by the formulas

M0 = 0, Mk =
k

∑

l=1

q−l
(

|ηl| − E |ηl|
)

, k ≥ 1.

We first show that

rI{τR≥1}q
−k∧τR ≤ |u0| + Mk∧τR

, k ≥ 1. (5.3)

Indeed, if τR = 0, then the left hand side of (5.3) is zero, whereas the right-hand
side is non-negative. Let us assume that τR ≥ 1. Multiplying inequality (1.5)
by I{τR≥1}q

−k and replacing k by τ̂ := k ∧ (τR − 1), we derive 5

q−τ̂I{τR≥1}|uτ̂ | ≤ |u0| +

τ̂
∑

l=1

q−l|ηl|, (5.4)

5Note that τ̂ is not a stopping time.
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where the sum on the right-hand side is zero if τ̂ = 0. We now note that

q−τ̂ |uτ̂ | ≥ q−k∧τR+1R,

τ̂
∑

l=1

q−l|ηl| ≤

k∧τR
∑

l=1

q−l|ηl| ≤ Mk∧τR
+ q−k∧τR(1 − q)−1K.

Substituting these estimates into (5.4), we obtain (5.3).
Step 2. We now show that Pλ{τR < ∞} = 1 for any λ ∈ P1(H). Indeed,

applying Eλ to (5.3), we derive

Eλ

(

I{τR≥1}q
−k∧τR

)

≤ r−1m1(λ) =: C. (5.5)

By Chebyshev’s inequality, we have

Pλ

{

k ∧ τR ≥ k
}

≤ C qk, k ≥ 1. (5.6)

We now note that

{τR = ∞} =

∞
⋂

k=1

{

k ∧ τR ≥ k
}

,

and therefore inequality (5.6) implies that Pλ{τR = ∞} = 0.
Step 3. We can now prove (5.2). Passing to the limit in (5.5) as k → ∞ and

using Fatou’s lemma, we derive

Eλ

(

I{τR≥1}q
−τR

)

≤ r−1m1(λ).

It remains to note that q−τR ≤ I{τR≥1}q
−τR + 1. The proof is complete.

5.3 A property of maximal coupling

Let X be a Banach space and let ν, ν′ ∈ P(X). A pair of X-valued random
variables (ξ, ξ′) defined on a common probability space (Ω,F , P) is called a
coupling for (ν, ν′) if D(ξ) = ν and D(ξ′) = ν′. A coupling (ξ, ξ′) is said to be
maximal if

P
{

ξ 6= ξ′
}

= ‖ν − ν′‖var := sup
Γ∈B(H)

|ν(Γ) − ν′(Γ)|.

Let ν ∧ ν′ be the minimum of ν and ν′, i.e., a sub-probability measure whose
density with respect to µ = ν + ν′ is equal to g∧ g′, where g = dν

dµ
and g′ = dν′

dµ
.

For any event A ∈ F of positive probability and a random variable ζ, we denote
by D(ζ |A) the conditional distribution of ζ given A.

Lemma 5.2. Let (ξ, ξ′) be a maximal coupling for ν, ν′ ∈ P(X). Then

D(ξ | ξ = ξ′) = D(ξ′ | ξ = ξ′) =
ν ∧ ν′

ν ∧ ν′(X)
. (5.7)
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Proof. Let us µ = D(ξ | ξ = ξ′) and note that

ν = P{ξ = ξ′}µ + P{ξ 6= ξ′} ν1, ν′ = P{ξ = ξ′}µ + P{ξ 6= ξ′} ν′
1,

where ν1 and ν′
1 are the distributions of ξ and ξ′ conditioned on {ξ 6= ξ′}. It

follows that
ν ∧ ν′ = P{ξ = ξ′}µ + P{ξ 6= ξ′} ν1 ∧ ν′

1. (5.8)

By the definition of a maximal coupling, we have

P{ξ = ξ′} = 1 − ‖ν − ν′‖var = ν ∧ ν′(X).

Combining this with (5.8), we see that ν1 ∧ ν′
1 = 0. Substitution of this relation

into (5.8) results in (5.7).
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[10] R. Z. Has’minskĭı, Stochastic Stability of Differential Equations, Sijthoff &
Noordhoff, Alphen aan den Rijn, 1980.

[11] M. Hairer, Exponential mixing properties of stochastic PDE’s through
asymptotic coupling, Probab. Theory Related Fields 124 (2002), no. 3, 345–
380.

[12] S. Kuksin, On exponential convergence to a stationary measure for non-
linear PDE’s, perturbed by random kick-forces, and the turbulence-limit,
The M. I. Vishik Moscow PDE seminar, AMS Translations, 2002.

[13] S. Kuksin, Ergodic theorems for 2D statistical hydrodynamics, Rev. Math.

Physics 14 (2002), no. 6, 585–600.

[14] S. Kuksin and A. Shirikyan, Stochastic dissipative PDE’s and Gibbs mea-
sures, Comm. Math. Phys. 213 (2000), 291–330.

[15] S. Kuksin and A. Shirikyan, Ergodicity for the randomly forced 2D Navier–
Stokes equations, Math. Phys. Anal. Geom. 4 (2001), no. 2, 147–195.

[16] S. Kuksin and A. Shirikyan, A coupling approach to randomly forced non-
linear PDE’s. I, Comm. Math. Phys. 221 (2001), no. 2, 351–366.

[17] S. Kuksin, A. Piatnitski and A. Shirikyan, A coupling approach to ran-
domly forced nonlinear PDE’s. II, Comm. Math. Phys. 230 (2002), no. 1,
81–85.

[18] S. Kuksin and A. Shirikyan, Coupling approach to white-forced nonlinear
PDE’s, J. Math. Pures Appl. 81 (2002), 567–602.

[19] N. Masmoudi and L.-S. Young, Ergodic theory of infinite dimensional
systems with applications to dissipative parabolic PDEs, Comm. Math.

Phys. 227 (2002), 461–481.

[20] J. C. Mattingly, Exponential convergence for the stochastically forced
Navier–Stokes equations and other partially dissipative dynamics, Comm.

Math. Phys. 206 (1999), no. 2, 273–288.

[21] B. Øksendal, Stochastic Differential Equations, Springer-Verlag, Berlin,
1998.

[22] D. Revuz, Markov Chains, North-Holland, Amsterdam–New York–Oxford,
1984.

[23] A. Shirikyan, Analyticity of solutions for randomly forced two-dimensional
Navier-Stokes equations, Russian Math. Surveys 57 (2002), no. 4, 785–799.

26



[24] D. W. Stroock, Probability Theory. An Analytic View, Cambridge Univer-
sity Press, Cambridge, 1993.

[25] R. Temam, Navier–Stokes Equations. Theory and Numerical Analysis,
North-Holland, Amsterdam–New York–Oxford, 1977.

[26] A. Yu. Veretennikov, Parametric and Non-Parametric Estimation of Mar-

kov Chains, Moscow State University Press, Moscow, 2000. (in Russian)

27


