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Control systems

A control system is usually a dynamical control system onclilbne can
act by using suitablecontrols.
Mathematically it often takes the form

y=f(y;u);

wherey is called thestate andu is the control. The state can be in nite
dimension (theny = f (y; u) is an ordinary di erential equation) or in
in nite dimension (exampleyy = f (y;u) is a partial di erential equation).
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The Cart-inverted pendulum: The equations

Let

Y1i= ;Y2:i= ;Y3i= $Yyai= ;U = F
The dynamics of the cart-inverted pendulum systenyis f (y;u), with
y = (y1;¥2;¥3y4)" and

0 1
Y3
Y4
- mlyZsiny, mgsiny, cosy . u
' M + msin?ys M + msin?ys
mly 2 siny, cosy, + (M + m)gsiny, u cosy,

(M + msin?y,)l (M + msin?y,)l
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The baby stroller: The model

Y1 = U1 COSY3; Yo = U1 Sinys3y3= Uy, n=3; m=2:
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The Euler/Navier-Stokes control system

(Suggested by J.-L. Lions)

Rn
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A water-tank control system

(Suggested by P. Rouchon)
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Controllability

Given two states/® andy?!, does there exist a contrdl2 [0; T] 7! u(t)
which steers the control system frogf to y?, i.e. such that

y=flyu®);y@=y") yT)=y"?
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Steady-state controllability
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Controllability of linear control systems

The control system is
y=Ay+Bu;y 2R"; u2R™;

whereA 2 R" "andB 2 R" ™M,

Theorem (Kalman's rank condition)

The linear control systeny = Ay + Bu is controllable or0; T] if and only
if
SpanfA'Bu;u2 R™; i 2f0;1;:::;n 1gg= R":

This condition does not depend oh. This is no longer true for nonlinea
systems and for systems modeled by linear partial di erah@équations.
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Small time local controllability

We assume thatye; Ue) is an equilibrium, i.e., thaf (ye; ue) = 0. Many
possible choices for natural de nitions of local contrdility. The most
popular one is Small-Time Local Controllability (STLC): @érstate remains
close toye, the control remains taue and the time is small.
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The linear test

We consider the control system= f (y;u) where the state iy 2 R" and
the control isu 2 R™. Let us assume that (ye; ue) = 0. The linearized
control system at(ye; Ue) is the linear control systemy = Ay + Bu with

et L. @f
A= @63’& Ue); B = @JYe.Ue)-

If the linearized control systeng = Ay + Bu is controllable, then
y = f (y;u) is small-time locally controllable alye; Ue).
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Application to the cart-inverted pendulum

For the cart-inverted pendulum, the linearized control &ra around
(0;0)2 R* Risy= Ay + Bu with

09 o 10 0o 1
0 0 0
A = 0 0 :i%og
" ) MI @ |
+mg
o =9 00

One easily checks that this linearized control system sasithe Kalman
rank condition and therefore is controllable. Hence thetdaverted
pendulum is small-time locally controllable &;0) 2 R* R.
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Application to the baby stroller

Let us recall that the baby stroller control system is
Y1 = U1COSYs; Y2 = UgSinys;ys = Uz; n=3; m=2:
The linearized control system g0;0) 2 R® R? is
Y1 = U1; ¥2=0;y3= uy;

which is clearly not controllable. The linearized contrgisteem gives no
information on the small-time local controllability ai0;0) 2 R® R? of
the baby stroller.
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What to do if linearized control system is not controllab

Question: What to do if
f f
y = %)sYe; Ue)y + %LSYe; Ue)u

is not controllable?
In nite dimension: one uses iterated Lie brackets.
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Lie brackets and iterated Lie brackets

De nition (Lie brackets)

XY 1Y) = YAX(y) XAy)Y(y):

Iterated Lie bracketsX; [X;Y 11, [[Y; X]; [X; [X;Y ]]] etc.
Why Lie brackets are natural objects for controllabilitysises? For
simplicity, from now on we assume that

X0
f(y;u)= fo(y)+  uifi(y):
i=1

Drift: fq. Driftless control systemsfy =0.
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Lie bracket fory = usf 1(y) + uaf 2(y)

a.
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Lie bracket fory = usf 1(y) + uaf 2(y)

y(2")
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y(*")

(up;u2) =( 1;0)
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Lie bracket fory = usf 1(y) + uaf 2(y)

y(2")

y(3")
(u;u2) = (05 2)

(upu)=( 1,0)

y(*")

(up;u2) =( 1;0)
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Lie bracket fory = usf 1(y) + uaf 2(y)

y(2")

(u;u2) = (05 2)

(upu)=( 1,0)

(Uu;u2) =(0; ) y(*")
y(4")
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Lie bracket fory = usf 1(y) + uaf 2(y)

y(2")

(u;u2) = (05 2)

(upu)=( 1,0)

(Uu;u2) =(0; ) y(*")
y(d") ' at+ 1 "f1;fo)(a
17 0%)

(up;u2) =( 1;0)
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Controllability of driftless control systems: Local
controllability

Theorem (P. Rashevski (1938), W.-L. Chow (1939))

Let O be a nonempty open subset &" and lety, 2 O. Let us assume
that, for somefq;:::;f,, : O! R",

X
f(y;u)=  uifi(y); 8(y;u)20  R™:
i=1

Let us also assume that

Then the control systeny = f (y; u) is small-time locally controllable at
(Ye;0)2 R" R™,
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The baby stroller system: Controllability

Y1 = U1COSys; Y2 = UgSinys;ys = Uz; n=3; m=2:
This system can be written ag = uif1(y) + uxf 2(y), with
f1(y) = (cos y3; sinys; 0)"; f2(y) = (0;0;1)":

One hag[f 1;f2](y) = (sin y3; cosys;0)". Hencef 1(0), f»(0) and
[f 1;T2](0) span all ofR3. This implies the small-time local controllability
of the baby stroller at(0;0) 2 R® R?2.



Finite dimensional control systems Iterated Lie brackets and controllability

Controllability of driftless control systems: Global
controllability

Theorem (P. Rashevski (1938), W.-L. Chow (1939))

Let O be a connected nonempty open subsetR}f. Let us assume that,
for somef 1;:::; fm:0! RM,

X0
f(y;uy=  ufi(y); 8(y;uy20 R™:
=il

Let us also assume that
h(y); h 2 Lieffy;:::;fmg = R"; 8y20:

Then, for every(y%;y!) 20 O and for everyT > 0, there existsu
belonging toL! ((0; T); R™) such that the solution of the Cauchy proble
y = f (y;u(t)), y(0) = y°, satisesy(t) 20, 8t 2 [0; T] andy(T) = y*.

1t
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Iterated Lie brackets and controllability
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The Lie algebra rank condition

P
We consider the control a ne systeny = fo(y) + 2, uifi(y) with

fo(0) = 0. One says that this control system satis es the Lie algebaak
condition at0 2 R" if

One has the following theorem

Theorem (R. Hermann (1963) and T. Nagano (1966))

If the fi's are analygc in a neighborhood &2 R" and if the control
systemy = fo(y) + 1 fi(y) is small-time locally controllable at

(0;0)2 R" RM, then thls control system satis es the Lie algebra rank
condition at02 R".
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The Kalman rank condition and iterated Lie brackets

Fork2N,X:0 R"! RTandY :O! R", one de nes
akY :0O! R" by

al Y == Y;adk Y =[X;Y];akkY =[X; [X;Y]]; etc.

Let us write I;,he linear control system = Ay + Bu as
= foy)+ [y wifi(y) with

Then
ad fi =( 1)*AkB;:

Hence the Kalman rank condition can be written in the follogiway

Spanfad fi(0); k2f0;:::;n 1g;i2f1:::;mgg= R™
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With a drift term: Not all the iterated Lie brackets are

good

We taken =2 andm = 1 and consider the control system
N .
Y1= Y2, ¥2= U
where the state ig/ := (y1;y2)" 2 R? and the control isu 2 R. This
control system can be written ag = fo(y) + uf 1(y) with

foly) = (y3;0)";f1(y) =(0;1)":

One hag[f 1;[f1;fo]] = (2;0)" and thereforef 1(0) and[f 1;[f 1; 0]](0)
span all ofR?. However is clearly not small-time locally controllable at
(0;0)2 R? R.
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References for su cient or necessary conditions for

small-time local controllability when there is a drift term

A. Agrachev (1991),

A. Agrachev and R. Gamkrelidze (1993),
R. M. Bianchini and Stefani (1986),

H. Frankowska (1987),

M. Kawski (1990),

H. Sussmann (1983, 1987),

A. Tret'yak (1990).

¢ © 6 66 ¢ ¢ ¢ ¢
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Open problem

Let k be a positive integer. LelPx be the set of vector elds irR" whose
components are polynomials of degrke Let

S:=f(fg;f1) 2 Plf; fo(0)=0;y = fo(y)+ ufy(y) is STLCg:

Open problem
Is S a semi-algebraic subset &Z2?

Theorem (J.-J. Risler, A. Gabrielov and F. Jean (1996 to 1)999

The set of(fg;f1) 2 Plf satisfying the Lie algebra rank condition tis a
semi-algebraic subset ¢¥2.

v
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Controllability of control systems modeled by linear PDI

There are lot of powerful tools to study the controllabilityf linear control
systems in in nite dimension. The most popular ones are lthea the
duality between observability and controllability (rekd to the J.-L. Lions
Hilbert uniqueness method). This leads to try to prove obssility
inequalities. There are many methods to prove this obseititgb
inequalities. For example:

e Ingham's inequalities and harmonic analysis: D. Russéb{),

@ Multipliers method: Lop Fat Ho (1986), J.-L. Lions (1988),

@ Microlocal analysis: C. Bardos-G. Lebeau-J. Rauch (1992),

e Carleman's inequalities: A. Fursikov, O. Imanuvilov, Gbkau, L.

Robbiano (1993-1996).

However there are still plenty of open problems.
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The linear test

Of course when one wants to study the local controllabilitpand an
equilibrium of a control system in in nite dimension, the st step is to
again study the controllability of the linearized controystem. If this
linearized control system is controllable, one can usud#yuce the local
controllability of the nonlinear control system. Howevdrig might be
sometimes di cult due to some loss of derivatives issues.edreeds to
use suitable iterative schemes.

If the nonlinearity is not too big, one can get a global contability result
(E. Zuazua (1988) for a semilinear wave equation).
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The Euler control system

0

Rn
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Controllability problem

We denote by : @ ! R" the outward unit normal vector eld to . Let
T>0. Lety% y': I R" be such that

divy’=divy'=0;y° =y! =0on@ n ¢
Does there exisy : [0; T] ' R"andp:[0;T] ' R such that
ye+t(y r)y+rp=0;dvy=0;
y =00on[0T] (@ n o)
y(©; )= y% y(T; )= y'?

For the control, many choices are in fact possible. For exblanforn = 2,
one can take
@y on gwith v =0,

Q curly:= g—i g—i at the points of[0; T] o Wherey < 0.
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A case without controllability

0

RZ
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Proof of the noncontrollability

Let us give it only fom = 2. Let ¢ be a Jordan curve in . Let, for
t2 [0;T], (1) be the Jordan curve obtained, at time2 [0; T], from the
points of the uids which, at time 0, were ong. The Kelvin law tells us
that, if (t) does not intersect o,
Z | Z |

y(t ) ds=  y(0;) ds;8t2[0;T];
t)

0

(

We take ¢:= 1. Then (t)= ; for everyt 2 [0;T]. Hence, if
Z | Z |
yl'ds6  y° ds;
1 1
one cannot steer the control system frop? to y?.
More generally, for evermp 2 f 2;3g, if o does not intersect every
connected component of the bounda@® of , the Euler control system
is not controllable. This is the only obstruction to the cawnllability of the
Euler control system.
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Controllability of the Euler control system

Theorem (JMC fom =2 (1996), O. Glass fon = 3 (2000))

Assume that g intersects every connected component@f. Then the
Euler control system is globally controllable in every tink®or every
T > 0, for everyy?, y': | R" such that

divy’=divy'!=0;y° =y! =0o0on@ n o
there existy : [0; T] I R"andp:[0;T] I R such that

ye+(y r)y+rp=0;divy=0;
y =0o0on[0;T] (@ n o)
y(©; )= y% y(T; )= y:
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Sketch of the proof of the controllability result

One rst studies (as usual) the controllability of the lineaed control
system around. This linearized control system is the underdetermined
system

yi+rp=0;divy=0;y =0o0on[0;T] (@ n o):

For simplicity we assume that = 2. Taking the curl of the rst equation,

on gets, with curly := g—z g—i
(curly); =0:

Hence curly remains constant along the trajectories of the Euler cottro
system.
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Iterated Lie brackets and PDE control systems

o Euler and Navier Stokes control systems: Andrei Agraches Andrei
Sarychev (2005); Armen Shirikyan (2006, 2007),

o Schmdinger control system: Thomas Chambrion, Paolo Mas®lario
Sigalotti and Ugo Boscain (2009).

However it does not seem to work here.
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Problems of the Lie brackets for PDE control systems

Consider the simplest PDE control system
Vi + Yx =0; x 2 [0;L]; y(t; 0) = u(t):

It is a control system where, at timg the state isy(t; ): (O;L)! R and
the control isu(t) 2 R.
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Lie bracket fory = fo(y) + uf 1(y), with fo(a) =0

y(")

y(2") ' a+ "?[fo;f1](a)

" | O+
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Problems of the Lie brackets for PDE control systems

(continued)

Let us consider, fof' > 0, the control de ned on[0; 2"] by
u(t) == fort 2 (0;"); u(t) == fort2 (";2"):
Lety: (0;2") (O;L)! R be the solution of the Cauchy problem

Y+ yx =0;t2(0;2"); x 2 (O;L);
y(t; 0) = u(t); t 2 (0;2"); y(0;x) =0; x 2 (O;L):

Then one readily gets, 2" 6 L,

y2ix)= ;x 2(0;");y@5x)= 5 x 2(%2Y);
y(2"x)=0;x2 (2" L):



Controllability of control systems modeled by PDE =~ An example: The Euler equations of incompressible uids

Problems of the Lie brackets for PDE control systems

(continued)

y(2"; )"2 y(©; ) I +1 as"! O:
L2(0iL)

For every 2 H?2(0;L), one gets after suitable computations
141
dm oz @) yO)dx= - R0):

So, in some sense, we could say tifg; f1] = J. Unfortunately it is not
clear how to use this derivative of a Dirac mass(at
How to avoid the use of iterated Lie brackets?
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The return method (JMC (1992))
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The return method (JMC (1992))

Y y(t)
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The return method: An example in nite dimension

We go back to the baby stroller control system
Y1 = U1 COSY3; Y2 = U1 SiNys; Y3 = Ua:

For everyu : [0; T]! R? such that, for everyt in [0; T],
u(T t)= u(t), every solutiony : [0;T]! RS of

Y1 = U1COSYs; Y2 = U1Sinys;ys = U;
satis esy(0) = y(T). The linearized control system aroun@; u) is
Y1 = U1y3sinys+ U1 COSYys; Y2 = U1Y3COSYy3 + U1SiNys; Y3 = Uz;

which is controllable if (and only ifu 6 O. ...

We have got the controllability of the baby stroller systenithout using
Lie brackets. We have only used controllability results lfaear control
systems.
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No loss with the return method

We consider the control system

xn
y=foy)+  uifi(y);
i=1
where the state iy 2 R" and the control isu 2 R™. We assume that
fo(0) = 0 and that thef;'s, i 2f0;1;:::;mg are of clasC! in a
neighborhood oD 2 R". One has the following proposition.

Proposition (E. Sontag (1988), JMC (1994))

Let us assume that satis es the Lie algebra rank condition &2 R"
and is STLC at(0;0) 2 R" R™. Then, for every' > 0, there exists
u2 L ((0;"); R™) satisfyingju(t)j 6 ", 8t 2 [0; T], such that, if
y:[0;"]! R"is the solution ofy = f (y;u(t)), y(0) =0, then

y(T)=0;
the linearized control system aroun(@;u) is controllable.
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The return method and the controllability of the Euler

equations

One looks for(y;p) : [0; T] I R"™ R such that

yet(y ry)+rp=0;divy=0;
y =00on[0T] (@ n o);
y(T;)=y(0;)=0;
the linearized control system aroun(@; p) is controllable.
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Construction ofy; p)

Take : ! R such that

=0in ; =0on@ n o

®|®

Take :[0;T]! Rsuchthat (0)= (T)=0. Finally, de ne
(y;p):[0;T] ! R* Rby

HOK

yt;x) = (r (x);pt;x):= _(t) (x) >

ir ()%

Then (y; p) is a trajectory of the Euler control system which goes frém
to O.
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Controllability of the linearized control system around

(y;p) ifn=2
The linearized control system aroun@; p) is

yer(y r)y+(y r)y+rp=0; dvy=0in[GT] 5
y =0on[0T] (@ n o):

Again we assume thah = 2. Taking once more the curl of the rst
eguation, one gets

(curly); +(y r )(curly)=0: (2)

This is a simple transport equation on cwl If there existsa2  such
that r (a)=0, theny(t;a) =0 and(curl y)(t;a) =0 showing that (2)
is not controllable. This is the only obstruction: tf doq§ not vanish in

, one can prove that (2) (and then (1)) is controllable n‘0 (tdt is
Iarge enough.
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Construction of a good forn =2

Rn
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Construction of a good forn =2
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From local controllability to global controllability

A simple scaling argument: {fy;p) : [0; 1] ;! R"™ R s a solution of
our control system, then, for every> 0, (y";p ) : [0;"] I R" R
de ned by

" 1 t " 1 t
y (Ex):= 3y =X 5 p(tXx)= 5p X

is also a solution of our control system.
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Return method: references

o Stabilization of driftless systems in nite dimension: JM{992).

@ Euler equations of incompressible uids: JMC (1993,1996), Glass
(1997,2000).

o Control of driftless systems in nite dimension: E.D. Sogt#1995).

o Navier-Stokes equations: JMC (1996), JMC and A. Fursiko@$6),
A. Fursikov and O. Imanuvilov (1999), S. Guerrero, O. Imaihow and
J.-P. Puel (2006), JMC and S. Guerrero (2009), M. Chapoulyd(®).

@ Burgers equation: Th. Horsin (1998), M. Chapouly (2006), O.
Imanuvilov and J.-P. Puel (2009).

@ Saint-Venant equations: JMC (2002).
o Vlasov Poisson: O. Glass (2003).
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Return method: references (continued)

o Isentropic Euler equations: O. Glass (2006).

e Schredinger equation: K. Beauchard (2005), K. BeauchanddaJMC
(2006).

Korteweg de Vries equation: M. Chapouly (2008).
Hyperbolic equations: JMC, O. Glass and Z. Wang (2009).

Ensemble controllability of Bloch equations: K. BeauchadC and
P. Rouchon (2009).

Parabolic systems: JMC, S. Guerrero, L. Rosier (2010).
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Return method: Commercial break

JMC, Control and nonlinearity,
Mathematical Surveys and
Monographs, 136, 2007, 427 pp.
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The stabilizability problem

We consider the control system= f (y;u) where the state ig in R" and
the control isu in R™. We assume thaf (0;0) = 0.

Problem

Does there existi : R" I R™ vanishing atO such that0 2 R" is (locally)
asymptotically stable foy = f (y;u(y))? (If the answer is yes, one says
that the control system is locally asymptotically stabdizle.)

Remark

The mapu:y 2 R" 7! R™ is called a feedback (or feedback law). The
dynamical systeny = f (y; u(y)) is called the closed loop system.

| A\

Remark
The regularity ofu is an important point. Here, we assume that the
feedback laws are continuous.
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Obstruction to the stabilizability

Theorem (R. Brockett (1983))

If the control systemy = f (y;u) can be locally asymptotically stabilized

then

(B) the image byf of every neighborhood dD;0) 2 R" R™ is a
neighborhood oD 2 R".

Example: The baby stroller. The baby stroller control system
Y1 = U1COSys; Y2 = U1Sinys;ys = Uz

is small-time locally controllable &i0; 0). However(B) does not hold for
the baby stroller control system. Hence the baby strollenttol system
cannot be locally asymptotically stabilized.
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A solution: Time-varying feedback laws

Instead ofu(y), useu(t;y): E. Sontag and H. Sussmann (1980) for= 1,
C. Samson (1990) for the baby stroller. Note that asymptositability for
time-varying feedback laws is also robust (there existsiagastrict

Lyapunov function).
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Time-varying feedback laws for driftless control system:

Theorem (JMC (1992))

Assume that

Then, for everyT > 0, there existsu in C! (R R";R™) such that

u(t;0)=0; 8t 2 R;
u(t+ T;y)= u(ty); 8y 2 R"; 8t 2 R;

xn
0 is globally asymptotically stable for = ui (t YOfi(y):
i=1
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Sketch of proof

y = f(y;u(t;y))

—~
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Sketch of proof

y = f(y;u(t;y))

i

y = f(y;u(ty)+ v(ty))
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Sketch of proof

y = f(y;u(t;y))

c
Wbc

y = f(y;u(ty)+ v(ty))
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Construction ofu

In order to get periodic trajectories, one just imposes withe condition
uty)= u(™ ty);8(ty)2R R";

which implies thaty(t) = y(T t); 8t 2 [0; T], for every solution of

y = f (y;u(t;y)), and therefore giveg(0) = y(T).

Finally, one proves that for \genericl's the linearized control systems
around all the trajectories of = f (y; u(t;y)) except the one starting from
0 are controllable or[0; T] (this is the di cult part of the proof).
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The Navier-Stokes control system

The Navier-Stokes control system is deduced from the Eutgragions by
adding the linear term y: the equation is now

Yt y+(y r)y+rp=0;divy=0:
For the boundary condition, one requires now that
y=0o0n[0;T] (@ n o):

For the control, one can take, for examplg,on [0; T]
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Smoothing e ects and a new notion of (global)

controllability: A. Fursikov and O. Imanuvilov (1995)
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Local controllability

Theorem (A. Fursikov and O. Imanuvilov (1994), O. Imanuvilo
(1998, 2001), E. Fernandez-Cara, S. Guerrero, O. Imanusid
J.-P. Puel (2004))

The Navier-Stokes control system is locally controllable.

The proof relies on the the controllability of the linearizeontrol system
aroundy (which is obtained by Carleman inequalities).
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Global controllability

Theorem (JMC (1996), JMC and A. Fursikov (1996))
The Navier-Stokes control system is globally controllabileg = @ .

Open problem
Does the above global controllability result hold even §6 @ ?
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Sketch of the proof of the global result
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Sketch of the proof of the global result
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Sketch of the proof of the global result
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Main di culty for the return method

It is often easy to leave the initial state and get a trajectasuch that
linearized control system around it is controllable. Howe\t is then often
di cult to return to the initial state.

To overcome this di culty in some cases: Quasi-static defoations (JMC

(2002)).
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A water-tank control system
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Saint-Venant equations: Notations
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The model: Saint-Venant equations

Hi+(Hv)x =0;t2[0;T]; x 2 [O;L];
Vi + gH+V—22 = u();t2[0;T]; x2[0L];
v(t;0) = v(t;L)=0;t2[0;T];
s(t)=u(t);t2[0;T]

D(t)=s(t);t2][0;TI:

o u(t) is the horizontal acceleration of the tank in the absolute
referential,

@ g is the gravity constant,
@ s is the horizontal velocity of the tank,
e D is the horizontal displacement of the tank.
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State space

Z

o , H (t;x)dx =0;

Hy(t; 0) = Hx(t;iL) (= u(t)=9):

The state space (denoted) is the set of
Y =(H;v;s;D) 2 C}(0;L]) C(0;L]) R R satisfying
z L
v(0) = v(L) =0; Hx(0) = Hx(L);  H(x)dx = LHe!
0
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Main result

Theorem (JMC, (2002))

For T > 0 large enough the water-tank control system is locally
controllable in timeT around(Ye; Ue) := (( He; 0; 0; 0); 0).

Prior work: F. Dubois, N. Petit and P. Rouchon (1999): Steadiate
controllability of the linearized control system.
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The linearized control system

Without loss of generalit. = He = g=1. The linearized control system
around(Ye; Ue) :=((1;0;0;0);0) is
hi+vy=0;t2][0;T]; x2[O;L];
vi+he= u();t2[0T] x2[0L];
v(t0)=v(tL)=0;t2[0;T];
S(t)=u(t);t2[0;T[;
D(t)=S(@);t2[0T]:
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The linearized control system is not controllable

For a functionw : [0;1]! R, we denote byw®' \the even part"of w and
by w°? the odd part ofw:

weY(x) := %(W(X)+ w(l  x)); wod(x) := %(W(X) w(l  x)):

8
< hod+ v&v=0;
1o V= u(y);
TOVEV(L;0) = vEY(1; 1) =0; S(t) = u(t); D(t) = S(t);
8

< h&V+ v =0;
2. v+ hgY=0;
©vod(t; 0) = vod(t; 1) = 0;
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Water tank control system: Towards a toy model

fh:=H 1,
8
< htOd + V§V= (hevvev+ hOdVOd)X;
v hed=u(n)  (vewd)y

1.

N O

VEY(t; 0) = veY(t; 1) =0; s(t) = u(t); D(t) = s(t);

h?v+ V)(()d - (hevvod + hOdVev)X;
V(X)) + hY = ((v®)? + (Vo))
vod(t; 0) = vod(t; 1) = O:
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Toy model (continued)

8

<o WiEYav= yituy
T ' s=ulDh=s

T2 Y3= Y4 Ya=  Yy3t+2y1ya;

where the state is/ = (y1;Y2;Y3;Y4;s;D)" 2 R® and the control isu 2 R.
The linearized control system o around (Ye; Ue) := (0 ;0) is

YIS Y1=Y2;¥2= Y1t U S= U DL=5S/y3=Yya¥s= Vs

which is not controllable.
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Controllability of the toy model

If y(0)=0,
z T
ya(T) = y3(t)cos(T  t)dt;
0
Zy
ya(T) = y3(T) ) yi(t)sin(T  t)dt:

HenceT is not controllable in timeT 6 . Using explicit computations
one can show thafl is (locally) controllable in timeT >

For linear systems in nite dimension, the controllability large time
implies the controllability in small time. This is no longér linear PDE.
This is also no longer true for nonlinear systems in nite @insion.
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How to recover the large time local controllabilityTof

We forget aboutS and D for simplicity and try to use the return method.
The rst point is at least to nd a trajectory such that the lirarized
control system around it is controllable. We try the simpigmssible
trajectories, namely equilibrium points. Let2 R and de ne

((Y1:¥2:Ya:¥a) ' 5u ) =(( ; 0;0,0)"; ):

Then ((Y1;Y2:Y3:Y4)";u ) is an equilibrium ofT . The linearized control
system ofT at this equilibrium is

YiI=VYi=Y2 ¥o= VYit U Y3=VYaYa= Y3t+t2VYo

which is controllable if (and only if) 6 0.
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Construction of the blue trajectory

One uses quasi-static deformations. L@ C2([0; 1];R) be such that
9(0)=0;9g(1) = 1:
Letu:[0;1="]! R be de ned by
t(t) = g("t); t2 [0;1="]:
Let y:= (Y1, ¥2: ¥2: ¥2)" 1 [0;1="]! R* be de ned by requiring

V=¥ ¥ = YitH ¥8=¥a Y= Y3+2¥iyo;
w0)=0:

One easily checks that

W1=")! (;0,0;0)" as"! O:
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(y ;u ) for the water-tank




Controllability of control systems modeled by PDE = Quasi-static deformations

Di culties

Loss of derivatives. Solution: one uses the iterative scheme inspired by
the usual one to prove the existence ¥+ A(Y)yx = 0; y(0;x) = ' (X),
namely

ninear - Y1 T+ A(y")yRtt =0; y"(0;x) = 1 (x):

However, | have only been able to prove that the control sgste
corresponding to pjinear IS controllable for(h";v") satisfying some
resonance conditions. Hence one has also to insure ¢(hat!;v"*1)

satis es these resonance conditions. This turns out to besgible. (For
control system, resonance is good: when there is a resonanmitie a small
action we get a strong e ect).
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An open problem

What is the minimal time for the local controllability?

@ A simple observation on the speed of propagation shows thattime
for local controllability is at least 1.

@ For the linearized control system arouid= ((1=2) x);v=0
the minimal time for controllability tends t®2 as ! O.

© For our toy model, there is no minimal time for the controliéity
around(( ; 0;0;0)"; ). However for the local the controllability of
the nonlinear system the minimal time is> 0.

© For a related problem (a quantum particle in a moving box)etle is
again no minimal time for the controllability of the lineaed control
system around the analogue ¢f ; 0;0;0); ) and there is a minimal
time for the local controllability of the nonlinear systendNIC
(2006)). Again the optimal time for the local controllabiji is not
known.
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Other references for quasi-static deformations

@ Semilinear heat equations: JMC and E. Telat (2004),

@ Navier-Stokes equations for incompressible uids: by Mh8gdt and
E. Telat (2006),

© A quantum particle in a moving box: K. Beauchard (2005), K.
Beauchard and JMC (2006),

© Semilinear wave equations: JMC and E. Telat (2006).
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Power series expansions: The KdV control system

Vet Vet Yo T YYx =012 [0;T]; x 2 [O;L];
y(t;0) = y(t; L) =0; yu(t;L) = u(t); t 2 [O; T]:

where, at timet 2 [0; T], the control isu 2 R and the state is
y(t ) 2 L3(0;L).

Prior pioneer work on the controllability of the Kortewegdvries equatio
(with periodic boundary conditions and internal contraldp. Russell and
B.-Y. Zhang (1996).
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Controllability of the linearized control system

The linearized control system (arour@) is
Vet Yx+ Yox =012 [0;T]; x 2 [OL];
y(t;0) = y(tL) =05 yx(t;L) = ut); t 2 [O;T]:

where, at timet 2 [0; T], the control isu 2 R and the state is
y(t; ) 2 L%(O;L).
Theorem (L. Rosier (1997))

For everyT > 0, the linearized control system is controllable in tinfeif
and only

r )
2 2
L62N= 2 %;kzN;lzN
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Application to the nonlinear system

Theorem (L. Rosier (1997))

For everyT > 0, the KdV control system is locally controllable (arour®)
intimeT if L 62 N

Question: Does one have controllabilitylif2 N ?
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Controllability wherl. 2 N

Theorem (JMC and E. Cepeau (2004))

IfL=2 (whichisinN: takek =1=1), for everyT > 0 the KdV
control system is locally controllable (arour@ in time T.

Theorem (E. Cerpa (2007), E. Cerpa and E. Cepeau (2008))

For everyL 2 N , there existsT > 0 such that the KdV control system is
locally controllable (around) in time T.
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Strategy of the proof. power series expansion.

Example withL =2 . For every trajectory(y; u) of the linearized control
system around

d 2

— (1 cosk)y(t;x)dx =0:

dt o

This is is the only \obstacle" to the controllability of theinearized control
system:
Proposition (L. Rosier (1997))

LetH := fy 2 L2(0;L); 0" (2 cosk))y(x)dx =0g. For every
(y%yH 2 H H, there existsu 2 L?(0; T) such that the solution to the
Cauchy problem

Vit Yx+ Yox =05 y(t0) = y(tL) =05 ye(t;L) = u(t); t 2 [0;TT;
y(0;x) = y°(x); x 2 [O;L];

satis esy(T; x) = y1(x), x 2 [0;L].




Controllability of control systems modeled by PDE = Quasi-static deformations

We explain the method on the control system of nite dimensio

y = f(y;u);

where the state iy 2 R" and the control isu 2 R™. We assume that
(0;0) 2 R™ R™ is an equilibrium of the control system= f (y;u), i.e.
that f (0;0) =0. Let

H = SpaaniBu;UZRm;iZfO;:::;n 1gg

with of of
A = —(0;0); B := —(0;0):
@y B = @l®?
If H = R", the linearized control system arour(@; 0) is controllable and

therefore the nonlinear control systegn= f (y; u) is small-time locally
controllable at(0;0) 2 R" R™.



Controllability of control systems modeled by PDE = Quasi-static deformations

Let us look at the case where the dimensionHbfisn 1. Let us make a
(formal) power series expansion of the control systgm f (y;u) in (y; u)
around0. We write

y=yr+y?+ u= v v

The order 1 is given byy*;v1); the order 2 is given byy?;v?) and so on.
The dynamics of these di erent orders are given by

@f . @f . .
= @)go,O)yH @So,O)vl,

2 _ @f . 2 @f . 2 1@
y©= @50, O)y“ + @50, O)ve + 2@‘}(0 o)y yh

, O 1@f
@ Livh) + 5@(0 0)(vi;vh);

and so on.



Controllability of control systems modeled by PDE = Quasi-static deformations

Lete; 2 H?. Let T > 0. Let us assume that there are controld and
v2, both in Lt ((0; T); R™), such that, ify? andy? are solutions of

1_@f. 1 @f. 1.
y = @§0.O)y + @LgO.O)v ;

yl(@©=0
@f 1@f .
y? 350 oy + Llo;0p2 + 5@—9(0,0)(y1,y1)

af 1 @f ul:

* ay@dOu’ i)+ 5 GEO 0t ut);
y2(0)=0

then

y'(T)=0

y2(T)= ev
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Let (&)i2f 2;::ng b€ @ basis oH. By the de nition of H, there are

..........

= @00y + ooy
%= GO+ g 00

yi(0) =0;
then, for everyi 2 f 2;:::;ngq,
yi(T) = &
Now let
X
b= he
i=1

be a point inR". Let v! andv?, both inL! ((0;T); R™), be de ned by
the following

- If by > 0, thenv! := vi andv? := V2.
- If by < 0, thenvl:= vl andv?:= v2.



Letu:(0;T)! R™ be de ned by

xo
u(t) := jh v + jbvAt) +  bui(t):

i=2
Lety:[0;T]! R" be the solution of
y = f(y;u(t)); y(0) =0:
Then one has, ag! 0,
y(T) = b+ o(b):

Hence, using the Brouwer xed-point theorem and standardiresites on
ordinary di erential equations, one gets the local contiadbility of

y = f(y;u) (around(0;0) 2 R" R™)in time T, that is, for every" > 0,
there exists > 0 such that, for every(a;b 2 R" R" with jaj< and
jb < , there exists a trajectoryy;u) : [0; T]! R"™ R™ of the control
systemy = f (y;u) such that

y(0) = a; y(T) = b;
ju)je "t 2(0;T):
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Bad and good news fdar = 2

Bad news: The order 2 is not su cient. One needs to go to the erd
3

Good news: the fact that the order is odd allows to get the Ibca
controllability in arbitrary small time. The reason: If or@an move in
the direction 2 H? one can move in the direction . Hence it

su ces to argue by contradiction (assume that it is imposs$ibto
enter inH? in small time etc.)
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Open problems
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Open problems

@ Is there a minimal time for local controllability for some luas ofL ?

© Do we have global controllability? This is open even withdar
boundary controls:

Vit Yx T Yoxx + YYx =0;
y(t; 0) = ug(t); y(t; L) = uz(t); yx(t;L) = us(t):

Note that one has global controllability for

Vit Yx + Yaxx + YYx = ua(t);
y(t; 0) = ug(t); y(t; L) = u2(t); yx(t; L) = ua(t):

(M. Chapouly (2009)). The proof uses the return method as the
Navier-Stokes control system.
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