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The aim of this short note to give a summary of some recent results on global
controllability of the viscous Burgers equation and mixing properties of the
associated stochastic problem. We also outline the main ideas of the proofs.
The details are given in1,2.
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1. Introduction

We consider the problem

@tu� ⌫@2
xu+ u@xu = f(t, x), (1)

u(t, 0) = u(t, 1) = 0, (2)

u(0, x) = u0(x), (3)

where x 2 I = (0, 1) and t � 0, ⌫ > 0 is a fixed parameter, u = u(t, x) is

an unknown function with range in R, u0 is a given initial condition, and f
is an external force. Let us fix a closed interval [a, b] ⇢ I and denote by E
the two-dimensional vector space spanned by the functions

e1(x) = sin

⇣

⇡
x� a

b� a

⌘

, e2(x) = sin

⇣

2⇡
x� a

b� a

⌘

, x 2 [a, b], (4)

extended to I \ [a, b] by zero. We deal with following two situations:

Control problem. The external force has the form

f(t, x) = h(x) + ⇣(t, x), (5)



May 5, 2016 12:0 WSPC Proceedings - 9in x 6in Volum˙final page 295

Global controllability and mixing for the Burgers equation 295

wherea h 2 H1
(I) is a given function and ⇣(t, x) is a control with range

in E.

Stochastic problem. The external force is stochastic and is given by

the relation

f(t, x) = h(x) + ⌘(t, x), (6)

in which h 2 H1
(I) is a deterministic function and ⌘ is an E-valued white

noise of the form

⌘(t, x) =
@

@t

2
X

j=1

bj�(t)ej(x), (7)

where bj > 0 are some numbers and {�j} are independent standard Brow-

nian motions.

In the first case, we are interested in global approximate controllabil-

ity to trajectories, while the second problem concerns the uniqueness of

a stationary distribution for the Markov process associated with (1), (6),

(7) and the large-time behaviour of its trajectories. These two questions

were intensively studied in the literature, and we now describe some results

concerning the Burgers equation.

The problem of asymptotic behaviour of trajectories for stochastic Burg-

ers equation was first studied by Sinai

3
who established the convergence

of the laws of solutions to a measure independent of the initial condition.

This result was refined and developed in a number of works, and it is now

well known that the Markov process corresponding to problem (1), (6) with

h ⌘ 0 has a unique stationary distribution, and all other solutions converge

to it weakly as t ! +1; see the paper

4
and the references therein for

the exact result and discussion. The control problem was investigated by

Fursikov and Imanuvilov

5,6
, who proved the local exact controllability to

trajectories and the absence of global approximate controllability. Agrachev

and Sarychev

7,8
(see also

9
) developed a general approach, applicable to the

Burgers equation, that enables one to study the approximate controllabil-

ity of nonlinear PDE’s by a low-dimensional control. Chapouly

10
applied

Coron’s return method to study the exact controllability of the Burgers

equation by two boundary controls combined with one distributed control.

The reader is referred to the books

11–15
for more details on these two sub-

jects and further results for other equations.

aWe refer the reader to the Notation below for the definition of functional spaces.
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The aim of this short note is to give a summary of the results estab-

lished in

1,2
. We first discuss the problem of global exponential stabilisation

of non-stationary solutions for (1), (5) by a localised control. This prop-

erty combined with the local exact controllability implies that the Burgers

equation is exactly controllable to trajectories by a control localised in the

physical space. Moreover, invoking a result of Phan and Rodrigues

16
, one

can easily deduce that the Burgers equation is approximately controllable

to trajectories by a two-dimensional localised control. We next turn to

the stochastic counterpart of these results. Namely, the contraction prop-

erty for the resolving operator of the Burgers equation combined with the

global approximate controllability to trajectories implies that problem (1),

(6), (7) has a unique stationary distribution, which is asymptotically stable

(in the weak topology of measures) as t ! +1. We confine ourselves to

giving some ideas of the proofs of these results, referring the reader to

1,2

for details.

Notation

We write I = (0, 1) and R+ = [0,+1) and denote by Lp
(I) and Hs

(I)
the usual Lebesgue and Sobolev spaces on I, endowed with the standard

norms k · kLp

and k · ks, respectively, and by Hs
0(I) the closure in Hs

(I) of
the space of infinitely smooth functions on I with compact support. Very

often, we shall omit the interval I from the notation and write Lp
, Hs

,

and Hs
0 . Given a closed interval J ⇢ R and a separable Banach space X,

let C(J,X) be the space of continuous functions from J to X and Lp
(J,X)

be the space of Borel-measurable functions f : J ! X such that

kfkpLp(J,X) :=

Z

J
kf(t)kpXdt < 1,

with obvious modification in the case p = 1.

2. Controllability to trajectories

In this section, we consider problem (1)–(3), in which u0 2 L2
, and the

external force f has the form (5). We shall always assume that h 2 H1
is

a fixed function, and ⇣ is a control taking values in the closed subspace

F = {v 2 H1
0 (I) : supp v ⇢ [a, b]},

where [a, b] ⇢ I is an interval. Let us recall that the initial-boundary value

problem (1)–(3) is well posed in the spaceH := L2
. Namely, for any u0 2 H
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and f 2 L1
loc(R+, H), there is a unique function

u 2 L2
loc(R+, H

1
0 ) \W 2

loc(R+, H
�1

)

satisfying (1) and (3). We denote by Rt(u0, f) the mapping that takes the

pair (u0, f) to u(t). The following theorem is the main result of

2
.

Theorem 2.1. Let ⌫ > 0, [a, b] ⇢ I, and h 2 H1 be given. Then there
are positive numbers C and � such that the following property holds: for
arbitrary u0, û0 2 H there is a piecewise continuous function ⇣ : R+ ! F
such that

kRt(u0, h+⇣)�Rt(û0, h)kH1
+k⇣(t)kH1  Ce��t

min

�

ku0�û0k2/5L1 , 1
�

, (8)

where t � 1.

In other words, any solution of (1), (2) corresponding to the zero control

⇣ ⌘ 0 can be exponentially stabilized by an H1
-smooth control localized in

a given interval [a, b]. Before giving some ideas of the proof of this result,

we state two corollaries. The first one concerns the exact controllability to

trajectories for problem (1), (2).

Corollary 2.1. Under the hypotheses of Theorem 2.1, there is T > 0

such that, given initial conditions u0, û0 2 H, one can find a control
⇣ 2 L2

([0, T ], F ) for which

RT (u0, h+ ⇣) = RT (û0, h).

To prove this property, it su�ces to use the control constructed in The-

orem 2.1 to steer a solution of (1), (2) su�ciently close to the reference

trajectory û(t) = Rt(û0, h) and then to apply the Fursikov–Imanuvilov

result about local exact controllability to trajectories; see Section I.6 in

6
.

The second corollary concerns the global approximate controllability to

trajectories for the Burgers equation by a localised control of low dimension.

Recall that we denote by E the vector span of the functions e1, e2 2 H1
0

defined by (4) on [a, b] and extended by zero outside [a, b].

Corollary 2.2. Under the hypotheses of Theorem 2.1, there is T > 0 such
that, given u0, û0 2 H and " > 0, one can find a control ⇣ 2 C1

([0, T ], E)

for which

kRT (u0, h+ ⇣)�RT (û0, h)kL2  ".

Thus, the global approximate controllability to trajectories holds, provided

that the time of control is su�ciently large. To establish this property, it

su�ces to combine Corollary 2.1 with the results of Section 5 in

16
.
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Scheme of the proof of Theorem 2.1. We begin with two remarks:

Regularisation. The Burgers equation is a globally well-posed nonlin-

ear parabolic PDE and, hence, possesses a regularising property. Namely,

if f(t, x) is a bounded function of time with range in H1
, then for any initial

condition u0 2 H the corresponding solution u(t, x) of (1)–(3) is bounded

in H2
on the half-line [1,+1) by universal constant R not depending on u0.

Thus, there is no loss of generality in assuming that both initial functions u0

and û0 belong to the ball of radius R centred at zero in the space H1
0 \H2

.

Interpolation. The following inequality is well known:

kvkH1  Ckvk2/5L1 kvk3/5H2 for any v 2 H2.

Therefore, if we construct a bounded control ⇣ : R+ ! F such that

kRt(u0, h+ ⇣)�Rt(û0, h)kL1  C1e
��1tku0 � û0kL1 , t � 0, (9)

then the required estimate for the di↵erence between two solutions will

follow from the above interpolation inequality and the boundedness of the

H2
-norms.

A key for the proof of (9) is the following result about the linear PDE

@tw � ⌫@2
xw + @x(a(t, x)w) = 0, (10)

where a(t, x) is a given su�ciently regular function.

Proposition 2.1. For any closed interval I 0 ⇢ I, one can find positive
numbers " and q < 1 such that any solution w(t, x) of (10) satisfies one of
the inequalites

kw(1)kL1  qkw(0)kL1 or kw(1)kL1(I0) � "kw(0)kL1 . (11)

In other words, either the L1
-norm w contracts by a factor strictly less

than 1, or a nontrivial mass is concentrated on I 0. Now note that if v and û
are two solutions of (1), (2) with ⇣ ⌘ 0, then their di↵erence w = v � û
satisfies Eq. (10) and, hence, one of the inequalities in (11). In both cases,

we can modify v(t, x) on the domain [0, 1] ⇥ [a, b] so that the resulting

function u(t, x) satisfies the inequality

ku(1)� û(1)kL1  ✓ ku(0)� û(0)kL1 , (12)

where ✓ < 1 depends only on the size of initial conditions. Since v and u
coincide on [0, 1]⇥(I\[a, b]), we see that u(t, x) is a solution of the controlled

equation (1) in which supp⇣(t, ·) ⇢ [a, b]. Iteration of (12) gives the required

inequality (9).
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3. Mixing of the stochastic flow

In this section, we consider problem (1)–(3), in which the right-hand side is

a stochastic process of the form (6), (7). The existence and uniqueness of a

solution is well known, and our goal is to study the large-time behaviour of

trajectories. The family of all solutions for (1), (2) form a Markov process

in the phase space H = L2
(I), and we denote by Pt(u,�) its transition

function and by

Pt : Cb(H) ! Cb(H), P⇤
t : P(H) ! P(H)

the corresponding Markov operators. Here Cb(H) stands for the space of

bounded continuous functions g : H ! R, endowed with the L1
-norm,

and P(H) denotes the set of all probability Borel measures on H. The

latter is endowed with the topology of weak convergence, which is denotes

by *; see Chapter 1 in

15
for the definition of all these concepts.

Theorem 3.1. Let ⌫ > 0, [a, b] ⇢ I, and h 2 H1 be given and let the
coe�cients bj defining the random force (7) be positive. Then there is a
unique measure µ 2 P(H) such that P⇤

tµ = µ for all t � 0. Moreover, µ is
asymptotically stable in the sense that, for any g 2 Cb(H) and � 2 P(H),
we have

Ptg ! (g, µ) in Cb(H) as t ! +1, (13)

P⇤
t� * µ in P(H) as t ! +1, (14)

where (g, µ) stands for the integral of g over H against the measure µ.

Scheme of the proof. The existence of a stationary measure is a simple

consequence of the Bogolyubov–Krylov argument (e.g., see Section 14 in

11
),

and therefore we confine ourselves to outlining the proof of uniqueness and

asymptotic stability. To this end, let us recall a su�cient condition for the

validity of these properties. Namely, as is proved in Section 3.1 of

15
, the

uniqueness of a stationary measure µ and the convergence relations (13)

and (14) are valid if the following two properties hold:

Stability. There is a function �(r) � 0 going to zero as r ! 0 such

that, for any 1-Lipschitz function g 2 Cb(H) satisfying kgkL1  1, we have

sup

t�1

�

�

�

g, Pt(u, ·)
�

�
�

g, Pt(v, ·)
�

�

�  �(r) for ku� vkH  r. (15)

Given an initial condition u0 2 H and a closed ball B ⇢ H, let ⌧u0(B)

be the first instant of time when the trajectory Rt(u0, h+ ⌘) hits B.
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Recurrence. There is a sequence of balls Bm ⇢ H, whose diameters

go zero as m ! 1, and functions pm(t), going to zero as t ! +1, such

that

P{⌧v(Bm) > t}  pm(t) for any v 2 H, m � 1, t > 0. (16)

The stability is a straightforward consequence of the regularisation for

the viscous Burgers equation and the following contraction property :

kRt(u0, h+⌘)�Rt(v0, h+⌘)kL1  ku0�v0kL1
for t � 0, u0, v0 2 H. (17)

Let us consider the recurrence. A regularisation property for the stochastic

Burgers equation enables one to find positive numbers s 2 (1, 2), T1, R,

and p such that

P
�

�

�RT1(u0, h+ ⌘)kHs  R
 

� p for any u0 2 H.

Furthermore, the controllability property established in Corollary 2.2 im-

plies that, if û 2 H1
0 \H2

is a time-independent solution of (1) with f = h,
then there is T2 > 0 such that, for any u0 2 H1

0 \Hs
satisfying ku0ks  R,

we have

P
�

�

�RT2(u0, h+ ⌘)� ûkL2  1/m
 

� "m for m � 1,

where "m > 0 are some numbers not depending on u0. The above two

inequalities imply the required estimate (16), in which Bm ⇢ H is the ball

of radius 1/m centred at û; e.g., see the proof of Proposition 3.3.6 in

15
.
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