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Abstract

We study the motion of a particle in a random time-dependent vector
field defined by the 2D Navier–Stokes system with a noise. Under suitable
non-degeneracy hypotheses we prove that the empirical measures of the
trajectories of the pair (velocity field, particle) satisfy the LDP with a
good rate function. Moreover, we show that the law of a unique stationary
solution restricted to the particle component possesses a positive smooth
density with respect to the Lebesgue measure in any finite time. This
allows one to define a natural concept of the entropy production, and to
show that its time average is a bounded function of the trajectory. The
proofs are based on a new criterion for the validity of the level-3 LDP for
Markov processes and an application of a general result on the image of
probability measures under smooth maps to the laws associated with the
motion of the particle.
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des Etats-Unis, F-78035 Versailles, France; e-mail: Vahagn.Nersesyan@math.uvsq.fr
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0 Introduction

The theory of entropic fluctuations in deterministic and stochastic systems of
mathematical physics underwent a spectacular development in the last thirty
years. It was initiated in the middle of nineties of the last century in physics
literature (see [ECM93, ES94, GC95b, GC95a]), and was developed rapidly by
various research groups. We refer the reader to the papers [Gal95, Kur98, LS99,
Mae99, Rue99, ES02, Gas05, RM07, CG08, JPR11, CJPS17] and the references
therein for a detailed account of major achievements in the field. The viewpoints
and the frameworks adopted in these papers are not necessarily the same, and
we start by briefly describing the approach to the modern theory of entropic
fluctuations that we will adopt here, confining ourselves to the discrete-time
setting.

The starting point of the theory of entropic fluctuations is the Large Deviation
Principle (LDP) for the empirical measures associated with trajectories.1 Namely,

1All the concepts used in this introduction are defined in the main text.
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denoting by X the phase space of the system in question and by {uk}k≥0 a
random trajectory, we introduce the empirical measures by

νt = t−1
t−1∑
k=0

δuk
, t ≥ 1, (0.1)

where uk = (ul, l ≥ k). Thus, νt is a random probability measure on the product
space X = X Z+ , where Z+ is the set of non-negative integers. If the LDP holds
for the sequence {νt}t≥1, then we get an object—the rate function I—giving
a detailed information on its large-time asymptotics. Very often I does not
depend on a choice of trajectory, which makes it an important characteristic of
the system.

Suppose now that the system under study possesses a natural time reversal
operation θ that can be lifted to an involution θ in the space of probability
measures P(X) (on which I is defined). One can ask then how I transforms
under the action of θ. It was observed in [BL08, BC15, CJPS17] that, under
some additional hypotheses, there is an affine function ep : P(X)→ R such that

I(λ ◦ θ) = I(λ) + ep(λ) (0.2)

for a large class of measures λ ∈ P(X). Identity (0.2) is called level-3 fluctuation
relation, and the second term on its right-hand side is called the mean entropy
production with respect to λ. In the Markovian situation, under some regularity
hypotheses, the quantity ep(λ) is the integral of a function σ : X → R with
respect to λ (which will be denoted by 〈σ,λ〉). More generally, in practically all
cases of interest, the mean entropy production can be written in the form

ep(λ) = lim
t→∞

t−1〈σt,λ〉, (0.3)

where {σt} is a sequence of measurable functions on X. The functions σ and σt
(called entropy production functional and entropy production in time t) may be
very irregular, and their identification is often a delicate question. Furthermore,
the study of the large time behaviour of the quantities 〈σ,νt〉 or t−1σt, which
are called the time average of the entropy production, is typically a difficult
mathematical problem. Of particular importance are the convergence to a
limit and the LDP as t → ∞ because these properties are related to the
emergence of the arrow of time and its quantitative description. Namely, if
the sequence {t−1σt} has a non-vanishing deterministic limit σ̄ (called mean
entropy production rate), then the law of the process {uk} and its image under
the time reversal θ separate from each other as t→∞ and eventually become
mutually singular. Moreover, if {t−1σt} satisfies the LDP (or even local LDP
on a sufficiently large interval), then one can give a detailed description of
the above-mentioned separation of measures in terms of the Hoeffding error
exponents (see [JOPS12, CJPS17]). If, in addition, the rate function I of the
full LDP for {t−1σt} is obtained from I by the contraction relation

I(r) = inf{I(λ) : ep(λ) = r}, (0.4)
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then I has to satisfy the celebrated Gallavotti–Cohen symmetry relation

I(−r) = I(r) + r for r ∈ R. (0.5)

Finally, one can prove that the mean entropy production rate σ̄ is always non-
negative, and its strict positivity ensures the non-triviality of the error exponents
and the emergence of the arrow of time. Since mathematical justification
of the above program amounts to proving a fine form of the second law of
thermodynamics for the system under consideration, it should not come as a
surprise that for physically relevant models each step of the program is often a
formidable mathematical problem.

Summarising the above discussion, we can state the following steps in the
investigation of entropic fluctuations for a given system:

(a) LDP for the empirical measures (0.1), also called level-3 LDP.

(b) Level-3 fluctuation relation (0.2).

(c) Identification of σt, the functional of entropy production in time t, and its
relation with physical transport properties.

(d) Law of large numbers for the sequence of time averages {t−1σt}.

(e) Strict positivity of the mean entropy production rate σ̄.

(f) Local and global LDP for the sequence of time averages {t−1σt}.

We emphasise that each of these steps is essentially a separate problem, and
they do not need to be studied in the stated order.

The aim of this paper is to address questions (a) and (c) for a fluid particle
moving in a two-dimensional periodic box. Namely, we consider the ordinary
differential equation (ODE)

ẏ = u(t, y), y ∈ T2, (0.6)

where u(t, y) is a time-dependent vector field defined by the 2D Navier–Stokes
system subject to an external random forcing. The law of u is assumed to be
invariant under the time translation t 7→ t+ 1, while the process itself should
have good mixing properties. We do not give more details on the random field u,
referring the reader to Section 1.1 for the exact hypotheses. The ODE (0.6) is
supplemented with the initial condition

y(0) = p, (0.7)

where p ∈ T2 is a given point. The solution of (0.6), (0.7) defines a random
dynamical system ϕt : T2 → T2, t ≥ 0, and we are interested in the large-
time behaviour of the restriction of ϕt to the integer times. More precisely, let
T := (T2)Z+ and

λpt = t−1
t−1∑
k=0

δyk
, t ≥ 1, (0.8)
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where δy ∈ P(T ) is the Dirac mass at the point y ∈ T , and yk = (ϕt(p), t ≥ k).
For any p ∈ T2, {λpt } is a sequence of random probability measures on T . The
following theorem is a concise and informal formulation of the main results of
this paper. The exact statements and further details can be found in Section 1.1.

Main Theorem. Under suitable hypotheses on the vector field u(t, y), there
is a T2-valued random process {zt, t ≥ 0} such that its almost every trajectory
satisfies (0.6) and the following assertions hold.

Stationarity. The laws of the processes {zt}t≥0 and {z1+t}t≥0 coincide,
and the law of each component coincides with the normalised Lebesgue measure
on T2.

Convergence. For any s ≥ 1 and any initial point p ∈ T2, the law of
the vector (ϕt(p), . . . , ϕt+s(p)) converges exponentially fast in the total variation
norm, as t→∞, to that of (z0, . . . , zs).

Large deviations. For any p ∈ T2, the sequence {λpt }t≥1 satisfies the LDP
with some good rate function I : P(T )→ [0,+∞].

Entropy production. For any t ≥ 1, the law of (z1, . . . , zt) has a strictly
positive smooth density ρt(x1, . . . , xt) with respect to the Lebesgue measure on T2t.
Moreover, there is a number C > 0 such that the entropy production in time t,
defined by2

σt(y
t) = log

ρt(y1, . . . , yt)

ρt(yt, . . . , y1)
, yt := (y1, . . . , yt), (0.9)

satisfies the inequality −C ≤ t−1σ(yt) ≤ C for all yt ∈ T2t.

Let us mention that the problem of transport of particles in time-dependent
or random vector fields was studied by many authors; see, for example, the
papers [Kra70, FP94, Mol96, KPS13] and the references therein. However, most
of these works treat questions that are different from those studied here. To the
best of our knowledge, the only exception is the article [KPS13], which establishes
the law of large numbers and central limit theorem for the particle position y(t)
considered in the whole space R2 (rather than T2). This type of results is not
sufficient to get the convergence of the law of y to a limiting measure or to
study the large deviations for empirical measures. We also mention the recent
article [BBP18], which studies another aspect of chaotic behaviour of fluids—the
strict positivity of the top Lyapunov exponent for the dynamics of the Lagrangian
particle. The hypotheses imposed in [BBP18] are somewhat different from ours

2The fact that (0.9) is a “right definition” for the entropy production follows from the
observation that, in the case of models for which a natural concept of entropy exists, its
variations are given by the logarithmic density of laws for the forward and backward processes,
while its ensemble average satisfies (0.2). This is the case, for instance, for lattice spin
systems [Mae99], finite-dimensional diffusion processes [LS99, CG08], harmonic and anharmonic
networks of oscillators [MNV03, JPS17], and many other models. The other important
interpretation of the log-likelihood ratio (0.9) is information/statistical theoretical and concerns
hypothesis testing of the forward and backward process (arrow of time). This interpretation
leads to both conceptual and technical generalisation of the Gallavotti–Cohen fluctuation
relation (0.5); see [JOPS12, CJPS17].
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and require the noise to be sufficiently irregular in the space variables. On the
other hand, the theory of large deviations is well developed for various classes of
stochastic processes, including solutions of stochastic differential equations; see
Chapter 6 in [DZ98], Chapters 8–10 in [DE97], and Chapters 11–12 in [FK06].
However, none of the results presented there can be applied to our setting, since
they require a rather restrictive regularisation property that is never satisfied
for PDEs perturbed by a smooth random noise; cf. Remark 2.2.

The mathematical theory of entropic fluctuations for randomly forced PDEs
is in the beginning of its development. The only two cases for which the complete
program (a)–(f) has been carried out are the 1D Burgers equation and a nonlin-
ear reaction-diffusion system perturbed by a rough kick noise; see [JNPS15a].
However, from the physical point of view, the roughness hypothesis on the noise
is not always justified, especially in the context of the fluid motion. Although
the Navier–Stokes system perturbed by a smooth random force satisfies the
level-3 LDP (see3 [JNPS15b]), in this case the laws of the forward and backward
evolutions are typically singular with respect to each other, and the basic object
of the theory of entropic fluctuations—the entropy production in time t—is not
defined. The present paper bypasses this basic obstruction in a physically and
mathematically natural way by focusing on the motion of a particle immersed
in the fluid for which we show that all the objects of the theory of entropic
fluctuations are well defined. In particular, we establish the level-3 LDP and a
uniform bound for the mean entropy production in time t. At the same time,
the points (b), (d), (e), and (f) of the above-mentioned program are yet to be
studied. Regarding this last remark, the resolution of the points (a) and4 (c) is
technically involved and relies on two general results presented in an abstract
form in Sections 2 and 4.4. The first of them is the main novelty of the paper and
concerns a new LDP criterion for randomly forced PDEs. Its proof builds on the
results of [JNPS15b] and singles out some simple controllability properties that
are sufficient for the validity of LDP. This approach makes it possible to treat
problems with degenerate noises and is likely to have large scope of applicability,
including PDEs studied in [KNS20, Shi21]. Moreover, further development of
the techniques presented in this paper would allow one to study the case when
the Navier–Stokes system is subject to a white-in-time force; this question will be
addressed in a subsequence publication. In contrast to (a), the proof of (c) does
not require development of new techniques and is based on a direct application of
a particular case of the general theory presented in [Bog10]. One may anticipate
that a successful resolution of the remaining points will require developments of
new tools that may find applications beyond specific questions dictated by the
entropic fluctuations program.

The paper is organised as follows. In Section 1, we formulate our main results
and describe the scheme of their proof. Section 2 is devoted to the problem of
large deviations. There we establish a general criterion for the LDP in terms of

3For the Navier–Stokes system perturbed by a coloured white noise, the level-2 LDP was
established in [Ner19].

4The part of (c) concerning the relation with the physical notion of transport will be
discussed elsewhere.
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certain control properties of the system under study. In Section 3, we study the
randomly forced 2D Navier–Stokes system coupled with a Lagrangian particle.
Finally, the Appendix gathers some known results used in the main text.
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Notation

We write Zd for the integer lattice in Rd, with the convention Z = Z1, and use
the notations N = {r ∈ Z : r ≥ 1}, Z± = {r ∈ Z : ±r ≥ 0}, [[a, b]] = [a, b] ∩ Z,
and Zd∗ = Zd \ {0}. We denote by I ⊂ R a closed interval, by T2 = R2/2πZ2 the
two-dimensional torus, by X a Polish space, and by H a separable Banach space.
We shall always assume that X is endowed with the Borel σ-algebra B(X), and
we writeM(X) for the space of finite signed measures on X and P(X) ⊂M(X)
for the simplex of probability measures. We recall the standard functional spaces
of the theory of 2D Navier–Stokes equations, where s ≥ 1 is assumed to be an
integer.

H denotes the space of divergence-free vector fields on T2 with zero mean value.
It is endowed with the usual L2 norm ‖ · ‖.
Hs is the usual Sobolev space of R2-valued functions on T2 and V s = Hs ∩H.
The corresponding norm will be denoted by ‖ · ‖s.
Lp(I,H) stands for the space of Borel-measurable functions f : I → H such that

‖f‖Lp(I,H) =

(∫
I

‖f(t)‖pHdt

)1/p

<∞.

C(I,H) denotes the space of bounded continuous functions f : I → H, endowed
with the natural norm ‖f‖C(I,H) = supt∈I ‖f(t)‖H.

Xs(I) is the space of functions u ∈ L2(I, V s+1) such that ∂tu ∈ L2(I, V s−1).

Given a measure µ ∈ P(X) and a map F (·) defined on X, we denote by F∗(µ)
the image of µ under F . If F depends on an additional parameter u, then we
shall write F∗(u, µ) to denote the image of µ for a fixed value of the parameter.
For a function f : X → R and a measure µ on X, we write 〈f, µ〉 for the integral
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of f against µ. We shall also use the following notation for spaces of functions
and measures.

L∞(X) is the space of bounded measurable functions f : X → R with the
supremum norm ‖ · ‖∞.

Cb(X) is the space of bounded continuous functions f : X → R endowed with
the norm ‖ · ‖∞. For a compact space X, we shall simply write C(X).

Lb(X) is the space of Lipschitz continuous functions f ∈ Cb(X) with the norm

‖f‖L = ‖f‖∞ + sup
u 6=v

|f(u)− f(v)|
dX(u, v)

.

Cb(X,H) and Lb(X,H) are defined in a similar way.

M(X) is endowed with the weak∗ topology which is generated by the functionals
µ 7→ 〈f, µ〉 with f ∈ Cb(X). The restriction of this topology to P(X) can be
metrised by the dual-Lipschitz distance defined as

‖µ− ν‖∗L = sup
‖f‖L≤1

∣∣〈f, µ〉 − 〈f, ν〉∣∣.
For two measures µ, ν ∈ P(X), we denote by Ent(µ | ν) the relative entropy of µ
with respect to ν:

Ent(µ | ν) = sup
V ∈Cb(X)

(
〈V, µ〉 − log〈eV , ν〉

)
=

∫
X

log
dµ

dν
dµ,

where the second relation holds if µ is absolutely continuous with respect to ν.

1 Main results

1.1 Formulations

Setting of the problem and preliminaries

We consider the motion of a particle in a random time-dependent vector field
defined by the 2D Navier–Stokes system. More precisely, we study the Cauchy
problem (0.6), (0.7), in which u = (u1, u2) is a solution of the system of equations

∂tu+ 〈u,∇〉u− ν∆u+∇π = η(t, x), div u = 0, x ∈ T2, (1.1)

supplemented with the initial condition

u(0, x) = u0(x). (1.2)

Here π = π(t, x) is the pressure of the fluid, ν > 0 the kinematic viscosity, u0 is
a square-integrable divergence-free vector field on the torus, and η is a random
process of the form

η(t, x) =

∞∑
k=1

ηk(t− k + 1, x)Ik(t), (1.3)
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where Ik is the indicator function of the interval [k−1, k), and {ηk} is a sequence
of i.i.d. random variables in L2([0, 1]×T2). To simplify the formulas, we assume
(which can be done without loss of generality) that ηk’s are divergence-free. To
ensure the boundedness of the energy of solutions for t ≥ 0, we require all the
functions to have zero mean value with respect to x.

Our aim is to study the large-time asymptotics of the pair (u, y). Recall
that the scale of spaces V s is defined at the end of the Introduction. To ensure
the existence of the dynamics for y, we assume that ηk ∈ L2(J, V 2) almost
surely, where J = [0, 1]. In this case, almost every trajectory of (1.1) with an
initial condition u0 ∈ V 3 belongs to the space C(R+, V

3), and it follows that
the Cauchy problem (0.6), (0.7) has a unique solution y ∈ C(R+,T2) for any
initial point p ∈ T2. We shall write

Υ (t) =
(
u(t), y(t)

)
, t ≥ 0, (1.4)

for the coupled trajectory and consider it as a continuous curve in V 3×T2. Under
the hypotheses imposed on η, the family of trajectories {Υ (t)} corresponding
to all possible initial conditions does not form a Markov process. However,
their restriction to integer times does, and our goal is to study the large-time
behaviour of the discrete-time process Υk = Υ (k), k ∈ Z+.

We now describe the class of random forces ηk we deal with. Denote
by {ej}j∈Z2

∗
the L2 normalised trigonometric basis in the space of divergence-free

functions with zero mean value:

ej(x) = E−1
j j⊥

{
cos〈j, x〉 for j1 > 0 or j1 = 0, j2 > 0,

sin〈j, x〉 for j1 < 0 or j1 = 0, j2 < 0,
(1.5)

where j⊥ = (−j2, j1) and Ej =
√

2π|j| (so that ‖ej‖ = 1 for any j ∈ Z2
∗).

Note that {ej} is an orthogonal basis in any of the spaces V s with respect to
the inner product (u, v)s = (u, (−∆)sv). Furthermore, we fix an orthonormal
basis {ψl}l≥1 in the space L2(J) that satisfies the following Poincaré property :
there are positive numbers Cr and θ such that

‖QNg‖L2(J) ≤ CrN−θr‖g‖Hr(J) for g ∈ Hr(J), N ≥ 1, (1.6)

where r ≥ 1 is an arbitrary integer, and QN denotes the orthogonal projection
in L2(J) onto the closed subspace spanned by ψl, l ≥ N . For instance, the
trigonometric basis {e2πi lt}l∈Z satisfies Poincaré property with θ = 1. We now
formulate our hypothesis on the noise ηk.

(N) The random variables ηk can be written as

ηk(t, x) =
∑
j∈Z2

∗

∑
l≥1

bjclξ
k
ljψl(t)ej(x), (1.7)

where ξklj are independent scalar random variables. Moreover, the law of ξklj
possesses an infinitely smooth density ρlj with support in the interval [−1, 1]
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such that, for some δ > 0 and all j, l, ρlj(r) > 0 for |r| < δ. Finally, there
are positive numbers Cm, c, and β > 1/2 such that

0 < |bj | ≤ Cm|j|−m for all m ≥ 1, (1.8)

|cl| ≥ c l−β for all l ≥ 1,
∑
l≥1

c2l <∞. (1.9)

Note that if this hypothesis is satisfied, then almost every realisation of ηk
belongs to L2(J, V s) for any s ≥ 1. It follows that, with probability 1, the
restriction to Jk = [k − 1, k] of the solution u for the Navier–Stokes system (1.1)
with C∞ initial condition belongs to C(Jk, V

s) for any s ≥ 1. Therefore, the
resolving operator for the Cauchy problem (0.6), (0.7) can be made as smooth
as we wish by choosing s sufficiently large.

Large deviations for empirical measures

Given an interval I ⊂ R, we define the spaces

Xs(I) =
{
u ∈ L2(I, V s+1) : ∂tu ∈ L2(I, V s−1)

}
, Y(I) = C(I,T2),

where s ≥ 1 is an integer, and note that Xs(I) is continuously embedded into
C(I, V s). In the case I = [0, 1], we often write Xs and Y, respectively. For any
integer s ≥ 3 we denote by

S : V s × T2 × L2([0, 1], V s)→ Xs × Y, (u0, p, η) 7→ (u, y),

the resolving operator of the set of equations (1.1), (0.6), (1.2), (0.7). It is well
known that, if s ≥ 3, then S is (s− 2)-times5 continuously differentiable in the
Fréchet sense. We denote by S(u0, p, η) the value of S(u0, p, η) at t = 1. Note
that S is a map with range in V s×T2. We write S = (Su,Sy) and S = (Su, Sy),
with a natural definition of the u- and y-components.

Our first result deals with the level-3 LDP for trajectories issued from an
initial point belonging to the domain of attainability from {0} × T2 (which
is also the support of the unique stationary distribution for (1.1), (0.6); see
the next subsection on the regularity of laws). Namely, for a fixed s ≥ 3,
let Ks ⊂ L2([0, 1], V s) be the support of the law of ηk. We define the sets

As0 = {0}, Ask = Su(Ask−1,Ks), k ≥ 1, (1.10)

and denote by As the closure of the union ∪k≥0Ask in the space V s. The following
lemma is easy to establish, and we omit its proof.

Lemma 1.1. Let Hypothesis (N) be satisfied. Then the following properties hold
for any integer s ≥ 3.

5The index s − 2 comes from the fact that u ∈ Xs is a continuous function of time with
range in Cr(T2) for any r < s− 1, and standard results from the theory of ODEs can ensure
only the existence of s− 2 continuous derivatives for Sy .
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Compactness. The set As is compact in V s and contains the point 0.

Compatibility. If r > s is another integer, then As is the closure of Ar in V s.

Invariance. The set X s := As × T2 is invariant, that is, S(X s,Ks) ⊂X s.

We now introduce the empirical measures for (1.1), (0.6) by the formula

νΥt = t−1
t−1∑
n=0

δΥn , t ≥ 1, (1.11)

where Υ = (u0, p) is an initial point, Υ n = (Υk, k ≥ n), and Υk is the value
of the solution of (1.1), (0.6), (1.2), (0.7) at t = k. Setting Xs = (X s)Z+ , it
is straightforward to see that if Υ ∈ X s, then Υ n ∈ Xs for any n ≥ 0. The
following theorem uses standard notions of the theory of large deviations.6

Theorem 1.2. Let Hypothesis (N) be fulfilled and let s ≥ 3 be an integer. Then
the family of empirical measures {νΥt , Υ ∈ X s}t≥1 satisfies the uniform LDP
with some good rate function Is : P(Xs)→ [0,+∞]. Moreover, Is is an affine
function on P(Xs) given by the Donsker–Varadhan entropy formula.

Regularity of laws for the particle and convergence

We now focus on the law of the particle in more detail. Note that, for any
s ≥ 3, the compact invariant set X s carries a stationary measure for the Markov
process associated with (1.1), (0.6). More precisely, if (1.4) is a trajectory
for (1.1), (0.6), then the vector functions Υk = Υ (k) satisfy the relations

Υk = S(Υk−1, ηk), k ≥ 1. (1.12)

Since {ηk} is a sequence of i.i.d. random variables, Eq. (1.12) defines a discrete-
time homogeneous Markov process in V s × T2 whose transition function has the
form

P1(Υ, ·) = S∗(Υ, `), (1.13)

where ` stands for the law of ηk, and the right-hand side denotes the image
of ` under the mapping ζ 7→ S(Υ, ζ). By Lemma 1.1, the set X s is invariant
in the sense that P1(Υ,X s) = 1 for any Υ ∈X s. In what follows we consider
the restriction of the Markov process defined by (1.12) to X s and denote
by Pk and P∗k the corresponding Markov operators acting on the spaces C(X s)
and P(X s), respectively. Since X s is compact, there is at least one stationary
measure M ∈ P(X s). Applying Theorem 4.1, one can prove that M is the
unique stationary measure for (1.12). Let us note that the uniqueness of a
stationary distribution was proved in [BBP18] for the coupled system (1.1), (0.6)
with a coloured white noise η; however, their approach is not applicable in our
situation since it is based on the strong Feller property and requires the noise to
be rough in the space variables.

A simple argument based on the uniqueness of the stationary measure proves
that M is independent of s. Moreover, another short computation shows that7

6For their definitions we refer the reader to Section 2.1.
7Note, however, that this product structure is not preserved on the level of path measures.
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M = µ ⊗ λ, where µ is the unique stationary measure for (1.1) and λ is the
normalised Lebesgue measure on T2. We shall denote by M ∈ P(Xs) the
corresponding path measure and by µ ∈ P(A) and λ ∈ P(T ) its projections to
the u- and y-components, where A = AZ+ and T = (T2)Z+ . Similarly, given
an initial point Υ ∈ X s, we shall denote by MΥ ∈ P(Xs) the path measure
of the trajectory for (1.1), (0.6) issued from Υ , by MΥ

t ∈ P(X s) its time t
projection, and by µΥ ∈ P(A) and λΥ ∈ P(T ) its projections to the u- and
y-components, respectively. Finally, given an integer interval I ⊂ Z+, we denote
by λΥI ∈ P(T2|I|) the projection of λΥ to I and define λI similarly. We shall
write λΥt and λt for I = [[1, t]].

Theorem 1.3. Suppose that Hypothesis (N) is satisfied. Then the following
holds for any integer t ≥ 2.

Regularity. For any Υ ∈ X 3, the measure λΥ[[2,t]] has a density ρΥ[[2,t]] that

belongs to C∞(T2(t−1)), and the function Υ 7→ ρΥ[[2,t]] is Lipschitz continuous

from X 3 to Ck(T2(t−1)) for any k ≥ 1. Moreover, the measure λt has a
density ρt ∈ C∞(T2t).

Convergence. There is γ > 0 such that, for any integer k ≥ 1, we have

sup
Υ∈X 3

∥∥ρΥ[[n+1,n+t]] − ρt
∥∥
Ck(T2t)

≤ Ctke−γn, n ≥ 1, (1.14)

where the constant Ctk > 0 does not depend on n.

Let us note that if Υ ∈X s is not infinitely smooth, there is no reason for ρΥt
to be C∞ even for t = 1. Indeed, as it was mentioned in footnote 5, the map
η 7→ Sy(Υ, η) acting from L2([0, 1], V s) to T2 possesses only finite regularity,
unless Υ ∈ X s is infinitely smooth. Therefore, without any regularisation
mechanism, the image of a measure under the action of Sy(Υ, ·) does not need
to have a smooth density. On the other hand, the following remark about finite
regularity will be important in the definition of the entropy production.

Remark 1.4. The proof of Theorem 1.3 will imply that, for any integer k ≥ 0,
there is s ≥ 3 such that, for any t ≥ 1 and Υ ∈ X s, the measure λΥt has a
density ρΥt ∈ Ck(T2t). Moreover, the mapping Υ 7→ ρΥt is Lipschitz continuous
from X s to Ck(T2t).

Strict positivity of densities

To ensure strict positivity of the densities ρt and to derive a uniform bound on
the mean entropy production in time t, we need to replace the random force on
the right-hand side of (1.1) by ηa := aη, where a > 0 is a large parameter. We
shall denote by ρat the densities corresponding to the resulting equation.

Theorem 1.5. Suppose that Hypothesis (N) is satisfied. Then there is a0 > 0
such that the following holds for any a ≥ a0.

Strict positivity. The functions ρat are bounded below by positive numbers.
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Uniform bound on the entropy production. There is C > 0 such that
the entropy production defined by (0.9) satisfies the inequality∣∣t−1σt(y1, . . . , yt)

∣∣ ≤ C for all (y1, . . . , yt) ∈ T2t, t ≥ 1. (1.15)

As we shall describe in the next section, the uniform bound on the entropy
production is an easy consequence of the strict positivity of ρΥ1 (y). The proof
given in Section 3.3 will imply that, for this theorem to be true, it suffices to
have a large parameter in front of finitely many Fourier modes in x. On the
other hand, the following simple observation shows that ρΥ1 (y) cannot be strictly
positive for any Υ ∈X s and y ∈ T2, unless the noise is sufficiently large. Indeed,
suppose that Υ = (0, p) and |y − p| is of order 1. In this case, the size of the
velocity field on the interval [0, 1] can be bounded by the norm of the noise. If
the latter is of order ε > 0, then the particle can travel a distance no larger
than Cε, and so ρΥ1 (y) = 0 for |y − p| > Cε.

1.2 Schemes of the proofs

In this subsection, we give general ideas of the proofs of Theorems 1.2, 1.3,
and 1.5 dealing with the Navier–Stokes system with an immersed particle. The
detailed proofs are presented in Section 3 and can be read independently, so
that an impatient reader may jump directly to Section 3, coming back to the
schemes of proofs only when necessary and taking for granted Theorem 1.2 on
the LDP for Markovian random dynamical systems. The proof of the latter,
which is rather involved, is not used in the justification of the results on the
Navier–Stokes system.

Theorem 1.2

In Section 2 we shall derive a sufficient condition for the validity of LDP in
the context of the Markovian RDS (1.12). Apart from the regularity of S and
a decomposability hypothesis on the law of the random noise, this criterion
requires two properties: approximate controllability of the nonlinear system by
controls belonging to the support of the law η and the density of the image of the
linearised operator; see (AC) and (ACL); see Section 2.1. The verification of these
two properties is based on essentially the same idea, which we briefly outline here,
leaving the details for Section 3.1. Note that some related problems on the control
of a particle by the vector field appeared in the papers [Ner11, Ner15, BBP18],
and our proof uses some ideas from these articles.

Suppose we wish to prove that a point Υ0 = (0, p) ∈ X s can be exactly

steered to any point Υ̂ = (0, p̂) that is sufficiently close to Υ0. Let us set

U1(x) = (cosx2, 0), U2(x) = (0, cosx1), γ(t) =
(
1− α(t)

)
p+ α(t)p̂, (1.16)

where α ∈ C∞(R) is such that α(t) = 0 for t ≤ 1/3 and α(t) = 1 for t ≥ 2/3.
Writing

γ̇(t) = α̇(t)(p̂− p) =
(
ϕ1(t), ϕ2(t)

)
, (1.17)
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we define the functions

u(t, x) = ϕ1(t)U1

(
x− γ(t)

)
+ ϕ2(t)U2

(
x− γ(t)

)
, y(t) = γ(t), (1.18)

where t ∈ [0, 1]. Then the vector function Υ = (u, y) is infinitely smooth,
coincides with (0, p) and (0, p̂) at the endpoints of the interval [0, 1], and satisfies
Eqs. (1.1), (0.6) with

η(t) = Πg(t), g(t) = ∂tu+ 〈u,∇〉u− ν∆u, (1.19)

where Π : L2(T2,R2)→ H stands for Leray’s projection. It is straightforward to
check that g can be written as

(Πg)(t, x) =
∑
j∈Λ

αj(t)ej(x), (1.20)

where Λ = {j = (j1, j2) ∈ Z2
∗ : |j1|+ |j2| ≤ 2}, the trigonometric basis {ej} is

defined by (1.5), and αj ’s are smooth functions of t ∈ [0, 1] whose Cr norms are
proportional to |p̂ − p| for any r ≥ 1. We claim that Πg is in the support Ks
of D(ηk), provided that |p̂− p| � 1. Indeed, it follows from (N) that Ks contains
any function of the form

h(t, x) =
∑
j∈Λ

∞∑
l=1

hljψl(t)ej(x), (1.21)

where the coefficients satisfy the inequality |hlj | ≤ εl−β with ε� 1. Since αj ’s are
infinitely smooth, it follows from (1.6) that the coefficients αjl of the expansion
of αj in the basis {ψl} decay faster than any negative degree of l. Since they
are bounded by a number proportional to |p̂ − p|, we conclude that Πg ∈ Ks,
provided that |p̂− p| � 1.

Theorem 1.3

In Section 4.4, we present a sufficient condition for the existence of a regular
density for the image of a probability measure under a smooth mapping; see
Theorem 4.7. Roughly speaking, it says that if a smooth map F with range in a
finite-dimensional manifold is such that its derivative is surjective everywhere,
then the image of a probability measure ` has smooth density, provided that ` is
regular in an appropriate sense. Measures satisfying Hypothesis (N) do possess
the required regularity property, and the position of the particle can be written
as a smooth function F of the noise and the initial condition of the system. The
fact that the derivative of F is surjective will follow from the density of the
image for the linearised operator. This will establish the existence of ρΥ[[2,t]].

To prove convergence (1.14), we first note that the sequence of measures
{MΥ

k }k≥1 converges, as k →∞, to M exponentially fast in the dual-Lipschitz
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norm; this is established in Theorem 4.1. Let us fix any s ≥ 3, set E = L2(J, V s),
and introduce a map

F t : X 3 × E × · · · × E︸ ︷︷ ︸
t times

→ T2t

that takes (Υ, η1, . . . , ηt) to (y1, . . . , yt), where yk is the y-component of the
trajectory Υk for (1.12). In this case, we can write

λΥ[[n+1,n+t]] = EF t∗(Υn, `⊗ · · · ⊗ `︸ ︷︷ ︸
t times

). (1.22)

Now note that ρΥt is the density of F t∗(Υ, `⊗· · ·⊗ `) with respect to the Lebesgue
measure on T2t. It follows that

ρΥ[[n+1,n+t]](y1, . . . , yt) =

∫
X s

ρυt (y1, . . . , yt)M
Υ
n (dυ). (1.23)

Since ρυt (y) is Lipschitz continuous in υ, together with all its derivatives in y,
this will imply the required convergence (1.14).

Theorem 1.5

As it was established in Theorem 1.3 and Remark 1.4, if an integer s ≥ 3 is
sufficiently large, then for any Υ ∈X s the projection of the transition function
P1(Υ, ·) to the y-component possesses a density ρΥ1 (y),

P y1 (Υ,dy) = ρΥ1 (y) dy, (1.24)

and the mapping (Υ, y) 7→ ρΥ1 (y) is continuous from X s to C(T2). It follows
that ρΥ1 (y) is continuous in (Υ, y) and, by the compactness of X s × T2, there is
M > 0 such that

ρΥ1 (y) ≤M for all Υ ∈X s, y ∈ T2. (1.25)

By the Kolmogorov–Chapman relation, for an arbitrary non-negative function
f : T2t → R, we have

〈f,λt〉 =

∫
X s(t+1)

f(yt)M(dΥ )P1(Υ,dΥ1) · · ·P1(Υt−1,dΥt)

=

∫
X s(t)×T2

f(yt)ρ
Υt−1

1 (yt)M(dΥ )P1(Υ,dΥ1) · · ·P1(Υt−2,dΥt−1) dyt

≤M
∫

X s(t)×T2

f(yt)M(dΥ )P1(Υ,dΥ1) · · ·P1(Υt−2,dΥt−1) dyt,
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where yt = (y1, . . . , yt) ∈ T2t, X s(t) denotes the t-fold product of the space X s,
and we used (1.24) and (1.25). Iterating this argument and using the relation
M(X ) = 1, we derive

〈f,λt〉 ≤M t

∫
T2t

f(y1, . . . , yt) dy1 . . . dyt.

Since f ≥ 0 was arbitrary, it follows that

ρt(y1, . . . , yt) ≤M t for any (y1, . . . , yt) ∈ T2t. (1.26)

Note that the upper bound for the density does not require any additional
hypothesis on the noise.

We now turn to the lower bound. Suppose we have proved that

ρΥ1 (y) > 0 for all Υ ∈X s, y ∈ T2. (1.27)

Then, by continuity and compactness, we can find m > 0 such that ρΥ1 (y) ≥ m
for Υ ∈ X s, y ∈ T2. Repeating the above argument, one gets that, for any
non-negative function f : T2t → R,

〈f,λt〉 ≥ mt

∫
T2t

f(y1, . . . , yt) dy1 . . . dyt,

and so it follows that

ρt(y1, . . . , yt) ≥ mt for any (y1, . . . , yt) ∈ T2t. (1.28)

Inequalities (1.26) and (1.28) allow to define the entropy production in time t
by relation (0.9) and to derive the estimate (1.15) for its time-average.

The above elementary argument reduces the proof of Theorem 1.5 to the
verification of (1.27). Theorem 4.8 gives a sufficient condition for the positivity
of the density for the image of a probability measure ` under a finite-dimensional
smooth map. Roughly speaking, it says that if a point p̂ has a pre-image in the
“interior” of the support of `, then the density is strictly positive at p̂. Hence, the
proof further reduces to a problem of exact controllability for the Navier–Stokes
system coupled to the Lagrangian particle. We shall show in Section 3.3 that
this can be established by modifying the above scheme used in the proof of
Theorem 1.2, provided that the noise contains a large parameter in front of
finitely many Fourier modes in the space variables.

Let us also mention that the above argument cannot be applied to the full
system since the transition functions corresponding to different initial points
Υ = (u, p) ∈X s are not equivalent. It is the integration with respect to u ∈X s

that removes this singularity and allows one to prove the equivalence of the
(projections of) transition probabilities. Moreover, we conjecture that the laws of
the forward and backward stationary processes of the full system (1.1), (0.6) are
not equivalent. Indeed, for the (linear) Stokes system perturbed by a spatially
regular white noise, after integrating out the p-variable, one gets a Gaussian
process for which there exist necessary and sufficient conditions (in terms of
the noise) for the equivalence of forward and backward laws; cf. Theorem 7.2.1
in [DZ96]. In this case, it is not difficult to construct a noise for which the two
laws are singular.
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2 Large deviations via controllability

2.1 Formulation of the result

Let H be a separable Hilbert space, let Y be a compact Riemannian manifold,
let H = H× Y be the product space with natural projections ΠH and ΠY to
its components, and let E be a separable Banach space. We fix a continuous
mapping S : H × E → H and consider the random dynamical system (1.12)
in which {ηk} is a sequence of i.i.d. random variables in E . We shall denote by
K ⊂ E the support of the law of ηk and assume that there is a compact subset
A ⊂ H such that X := A × Y is invariant for (1.12) (S(X × K) ⊂ X ). We
impose the following three hypotheses on the mapping S.

(R) There is a Banach space V compactly embedded into H such that the
image of S is contained in V := V × Y , the mapping S : H × E → V
is twice continuously differentiable, and its derivatives are bounded on
bounded subsets. Moreover, there is Υ ∈X such that S(Υ , 0) = Υ .

(AC) For any ε > 0, there is an integer n ≥ 1 such that, for any initial point

Υ ∈ X and any target Υ̂ ∈ X , one can find controls ζ1, . . . , ζn ∈ K
satisfying the inequality

dH

(
Sn(Υ ; ζ1, . . . , ζn), Υ̂

)
≤ ε, (2.1)

where Sn(Υ ; η1, . . . , ηn) stands for the vector Υn defined by relations (1.12)
with Υ0 = Υ .

(ACL) For any Υ ∈ X and η ∈ K, the derivative (DηS)(Υ, η) : E → H× TyY ,
with y = S(Υ, η), has a dense image.

In applications to randomly forced PDEs, the mapping S is the time-1 shift along
the trajectories of the system. The first part of Hypothesis (R) is a regularisation
property of the flow, and the second part asserts that the unperturbed dynamics
has at least one fixed point. Hypothesis (AC) is the standard property of global
approximate controllability, with control functions in the support of the noise,
and with no restriction imposed on the time of control. Hypothesis (ACL) is
a similar property for the linearised equation, but it allows for a larger control
space and requires the time of control to be fixed. These two properties are often
satisfied if the support of the driving noise is sufficiently large.

We shall assume, in addition, that the noise has a decomposable structure in
the following sense.

(D) The support of ` is compact, and there are two sequences of closed sub-
spaces {Fn} and {Gn} in E such that dim Fn <∞ and Fn ⊂ Fn+1 for
any n ≥ 1, the union ∪nFn is dense in E , and the following properties
hold.

• The space E is the direct sum of Fn and Gn, and the norms of the
corresponding projections Pn and Qn are bounded uniformly in n ≥ 1.
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• The measure ` is the product of its projections Pn∗` and Qn∗` for
any n ≥ 1. Moreover, Pn∗` has C1-smooth density with respect to the
Lebesgue measure on Fn.

Let us note that this condition implies, in particular, that the sequence of
projections {Pn} converges to the identity operator in E in the strong operator
topology. In what follows, we deal with the restriction of (1.12) to the invariant
set X . We introduce the empirical measures of trajectories by the formula (1.11),
in which Υ n = (Υk, k ≥ n) and Υk = Sk(Υ ; η1, . . . , ηk). Thus, for each X -valued
random variable Υ , the sequence {νΥt } consists of random probability measures
on the product space X := X Z+ .

To formulate the main result of this section, we first recall some definitions.
The spaces X and P(X) are endowed with the Tikhonov and weak∗ topologies
and the corresponding Borel σ-algebras. A mapping I : P(X) → [0,+∞] is
called a good rate function if it is convex and has compact level sets. The latter
property reduces to the lower semicontinuity of I since P(X) is a compact space.
We shall say that the sequence {νΥt } satisfies the uniform LDP with the rate
function I if

−I(Γ̇) ≤ lim inf
t→∞

t−1 log inf
Υ∈X

P{νΥt ∈ Γ}

≤ lim sup
t→∞

t−1 log sup
Υ∈X

P{νΥt ∈ Γ} ≤ −I(Γ) (2.2)

for any Borel subset Γ ⊂ P(X), where Γ̇ and Γ stand for the interior and
closure of Γ, and I(A) is the infimum of I over A. In view of the Markov
property, if {νΥt } satisfies the uniform LDP , then inequality (2.2) remains valid
if the infimum and supremum are taken over all X -valued random variables Υ
independent of the sequence {ηk}.

A measure λ ∈ P(X) is said to be shift-invariant if it is invariant under the
mapping t 7→ t+ 1. The set of all shift-invariant measures is denoted by Ps(X).
By Kolmogorov’s theorem, any shift-invariant measure can be extended in a
unique manner to a shift-invariant measure on X Z, and we use the same notation
for the extended measure. Finally, given a shift-invariant measure λ ∈ P(X),
we denote by λ− its projection to X− := X Z− , and by {λ(Υ , ·),Υ ∈ X Z−}
the projection to the first component of the regular conditional probability of λ
with respect to its projection to X−.

Theorem 2.1. Suppose that Hypotheses (R), (AC), (ACL), and (D) are fulfilled
for the random dynamical system (1.12). Then the following holds.

Uniform LDP. The empirical measures {νΥt }t≥1 satisfy the uniform LDP
with a good rate function I : P(X)→ [0,+∞]. In particular, the LDP holds for
the empirical measures of a stationary process.

Rate function. The rate function I is affine and is given by the Donsker–
Varadhan entropy formula:

I(λ) =


∫
X−

Ent
(
λ(Υ , ·) |P1(Υ0, ·)

)
λ−(dΥ ) if λ ∈ Ps(X),

+∞ otherwise,
(2.3)
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where Ent(µ | ν) is the relative entropy of µ with respect to ν, and P1(Υ, ·) is the
transition function for the Markov process defined by (1.12).

The proof of the above theorem is based on Kifer’s criterion for LDP and
a result on the asymptotoic behaviour of generalised Markov semigroups. The
scheme of the proof is presented in Section 2.2, and the details are given in
Sections 2.3–2.5.

Theorem 2.1 is applicable to various parabolic-type PDEs with a smooth
random force. In this context, the case when all the Fourier modes are forced
was studied in [JNPS15b, Ner19] (see also [Gou07, WX18] for the case of an
irregular noise). The scope of applicability of Theorem 2.1 is much larger,
allowing for treatment of PDEs with very degenerate noise, such as those
studied in [Shi15, KNS20]. Furthermore, even though the Donsker–Varadhan
formula (2.3) is by now very well known (see [DS89, Section 5.4] or [DZ98,
Section 6.5]), to the best of our knowledge, all available proofs deal with the
case when the transition function possesses rather strong regularising property
(e.g., is strong Feller). Our proof presented in Section 2.5 is valid for Markov
processes with Feller property in a compact metric space. The extension of both
the LDP and Donsker–Varadhan formula to the non-compact case requires an
additional dissipativity condition (e.g., the existence of a Lyapunov function);
however, it does not involve any conceptual difficulties and can be done with the
help of the methods developed in [JNPS18]. These questions will be addressed
in a forthcoming publication.

Remark 2.2. Let us emphasise that the approaches developed for proving LDP
for solutions of stochastic differential equations and for other processes with
essentially finite-dimensional phase space cannot be applied in the context of
Theorem 2.1. Let us consider, for instance, the sufficient condition for the LDP
given in Theorem 8.4.3 in [DE97]. In the (particular) case of a compact metric
space X , it requires the transition function Pk(u,Γ) to be Feller and to satisfy
the condition

∞∑
k=n

2−kPk(u, ·)�
∞∑
k=m

2−kPk(v, ·) for any u, v ∈X , (2.4)

where the integers m and n do not depend on u and v. Let us show that, even
in the linear case with Gaussian noise, this inequality is very restrictive in the
infinite-dimensional setting. Indeed, consider the random dynamical system

uk = Auk−1 + ηk, (2.5)

where A : H → H is a linear contraction that is diagonal in some orthonormal
basis {ej} and {ηk} is a sequence of i.i.d. centred Gaussian random variables
whose covariance operator C commutes with A. In this case, Pk(u, ·) is a
Gaussian measure with the mean value Aku and the covariance operator

Ck =

k−1∑
j=0

AjCAj .
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Suppose now that the eigenvalues of A decay monotonically to zero at an algebraic
rate, while those of C decay to zero exponentially. Let us consider the vector
v =

∑
j≥1 j

−1ej . Using the Cameron–Martin and Feldman–Hájek theorems (see
Section 1.4 in [Bog10]), it is not difficult to show that the measures Pk(0, ·)
and Pl(v, ·) are singular for any k, l ≥ 1. Hence, there are Borel subsets Γkl ⊂ H
such that

Pk(0,Γkl) = 1, Pl(v,Γkl) = 0 for any k, l ≥ 1.

Setting Γ = ∪k ∩l Γkl, we easily check that Pk(0,Γ) = 1 and Pl(v,Γ) = 0 for all
k, l ≥ 1. It follows that (2.4) is not satisfied for the pair (0, v), and the LDP
for (2.5) cannot be established with the help of Theorem 8.4.3 in [DE97].

On the other hand, in the case of Feller Markov processes with a compact
phase space, if one is interested only in the large deviation upper bound (which
is usually the simpler one of the two estimates), then Part (b) of Theorem 8.4.3
in [DE97] applies and establishes, in particular, a variational formula for the
rate function.

Remark 2.3. It is tempting to use the explicit formula (2.3) for the large deviations
rate function to derive the level-3 fluctuation relation (0.2). Namely, for an
integer k ∈ Z and a measure λ ∈ P(X Z), we denote by Zk the set of the integers
not exceeding k and by λk− the projection of λ to X Zk , so that Z0 = Z− and

λ0
− = λ−. Using the explicit formula for the relative entropy in terms of densities

and the relation λ1
−(dΥ ,dΥ1) = λ−(dΥ )λ(Υ ,dΥ1), for any λ ∈ Ps(X) we can

write8

I(λ) =

∫
X−

{∫
X

log
λ(Υ ,dΥ1)

P1(Υ0,dΥ1)
λ(Υ ,dΥ1)

}
λ−(dΥ )

=

∫
X−×X

log
λ−(dΥ )λ(Υ ,dΥ1)

λ−(dΥ )P1(Υ0,dΥ1)
λ1
−(dΥ ,dΥ1) = Ent

(
λ1
− |λ− ⊗ P1

)
,

where µ(dx)
ν(dx) denotes the density of µ with respect to ν, and λ− ⊗ P1 stands for

the measure acting on a function F by the formula

〈F,λ− ⊗ P1〉 =

∫
X−

{∫
X

F (Υ , Υ1)P1(Υ0,dΥ1)

}
λ−(dΥ ).

Now let θ : X Z → X Z be the natural time reversal taking (Υk, k ∈ Z) to
(Υ−k, k ∈ Z) and let θ : P(X Z)→ P(X Z) be the associated involution in the
space of measures. Assuming that P1(Υ0,dΥ1) has a positive density ρ(Υ0, Υ1)
with respect to a reference measure, using the above formula for I, and carrying
out some simple transformations, we get

I(λ ◦ θ)− I(λ) = Ent
(
(λ ◦ θ)1

− | (λ ◦ θ)− ⊗ P1

)
− Ent

(
λ1
− |λ− ⊗ P1

)
=

∫
X

log
ρ(Υ0, Υ1)

ρ(Υ1, Υ0)
λ(dΥ ). (2.6)

8It is easy to give a rigorous meaning to the formal expressions used in the calculations
below. Since these calculations do not play a role in this work, we omit the details.
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Hence, denoting by σ(Υ ) the integrand in (2.6), we obtain the level-3 fluctuation
relation (0.2), in which ep(λ) is the mean value of σ with respect to λ.

Unfortunately, the above argument is purely formal since the logarithmic
ratio in (2.6) may not be well defined, as is expected in the case of the Navier–
Stokes system with a smooth noise. Thus, the validity of level-3 LDP is not
sufficient for the fluctuation relation (0.2) to be true. On the other hand, the
above argument can be justified under some additional hypotheses on the map S
and the driving noise ηk; see [JNPS15a].

2.2 General scheme of the proof of Theorem 2.1

Reduction to LDP for finite segments

The first step in the proof of Theorem 2.1 consists of an application of the
Dawson–Gärtner theorem, which allows one to reduce the required result to the
LDP for the sequence

νΥt (r) =
1

t

t−1∑
k=0

δΥ r
k
, (2.7)

where Υ rk = [Υk, . . . , Υk+r−1], and {Υk} is the trajectory defined by (1.12) with
Υ0 = Υ . Thus, {νΥt (r)} is a sequence of random probability measures on the
r-fold product X (r) of the space X . In view of Theorem 4.6.1 in [DZ98], if
for all r ≥ 1 the sequence {νΥt (r)} satisfies a uniform LDP with a good rate
function Ir : P(X (r)) → [0,+∞], then so does the sequence {νΥt }, with the
rate function

I(λ) = sup
r≥1

Ir
(
Πr
∗(λ)

)
, (2.8)

where Πr : X →X (r) stands for the natural projection to the first r components.
We shall prove the uniform LDP for {νΥt (r)} with an arbitrary r ≥ 1, establish a
variational formula for the corresponding rate function Ir, and use relation (2.8)
to obtain the Donsker–Varadhan entropy formula (2.3).

Application of Kifer’s theorem

To prove the uniform LDP for the sequence {νΥt (r)}t≥1 for a fixed r ≥ 1, we
shall apply Kifer’s theorem [Kif90], which is recalled in Section 4.2. To this end,
we define the set Θ = {θ = (t, Υ ), t ∈ N, Υ ∈X } and endow it with a preorder ≺
defined by the following rule:

(t1, Υ1) ≺ (t2, Υ2) if and only if t1 ≤ t2.

The sequence {νΥt (r)} will be regarded as a directed family indexed by θ ∈ Θ,
and in what follows we shall often write {νθ}, dropping the fixed integer r from
the notation. Let us suppose that, for any V ∈ C(X (r)), the limit

Qr(V ) = lim
θ∈Θ

t−1 logE exp
(
t〈V,νθ〉

)
(2.9)
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exists, and let Ir : M(X (r)) → [0,+∞] be its Legendre transform; see rela-
tion (4.13) for a definition. If, in addition to the existence of limit (2.9), there
exists a dense subspace V ⊂ C(X (r)) such that, for any V ∈ V, the equation9

〈V,σ〉 − Ir(σ) = Qr(V ) (2.10)

has a unique solution σ ∈ P(X (r)), then the validity of the LDP follows
immediately from Theorem 4.5. We show in the next step how to reduce the
above two properties (existence of limit (2.9) and uniqueness of a solution of
Eq. (2.10) for V in a dense subspace) to a study of the large-time asymptotics
of a Feynman–Kac semigroup.

Reduction to a study of Feynman–Kac semigroups

Let us consider the following random dynamical system in X (r):

Υ k(r) = S
(
Υ k−1(r), ηk

)
, k ≥ 1, (2.11)

where Υ k(r) = [Υ 1
k , . . . , Υ

r
k ], {ηk} is the sequence of i.i.d. random variables in E

entering (1.12), and the mapping Sr : X (r)× E →X (r) is given by

Sr(Υ 1, . . . , Υ r, η) =
[
Υ 2, . . . , Υ r, S(Υ r, η)

]
. (2.12)

Equation (2.11) is supplemented with the initial condition

Υ 0(r) = Υ (r) ∈X (r). (2.13)

Given a function V ∈ C(X (r)), we consider the operator(
PV
k (r)f

)(
Υ (r)

)
= E

(
exp
{
V (Υ 1(r)) + · · ·+ V (Υ k(r))

}
f(Υ k(r))

)
, (2.14)

acting in the space C(X (r)). The Markov property implies that the sequence
{PV

k (r)} is a semigroup in C(X (r)). A key observation is that, for V ∈ C(X (r))
and Υ (r) ∈X (r),

Qr(V ) = lim
k→∞

k−1 log
(
PV
k (r)1

)
(Υ (r)), (2.15)

provided that the limit on the right-hand side exists uniformly with respect
to the initial point Υ (r) and does not depend on it. The latter property is a
consequence of the following proposition, which is established in Section 2.3 with
the help of Theorem 4.6.

Proposition 2.4. Under the Hypotheses of Theorem 2.1, for any integer r ≥ 1
and any function V ∈ Lb(X (r)), there is a number λV > 0, a positive function
hV ∈ C(X (r)), and a measure µV ∈ P(X (r)) such that

〈hV ,µV 〉 = 1, PV
1 (r)hV = λV hV , PV

1 (r)∗µV = λV µV , (2.16)∥∥λ−kV PV
k (r)f − 〈f,µV 〉hV

∥∥
L∞(X (r))

→ 0 as k →∞, (2.17)

where f ∈ C(X (r)) is an arbitrary function.

9The lower semicontinuity of Ir and the inversion formula for the Legendre transform imply
that Eq. (2.10) has at least one solution.
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Convergence (2.17), combined with (2.15) and the inequality

t−1
∣∣logE exp

(
t〈W,νθ〉

)
− logE exp

(
t〈V,νθ〉

)∣∣ ≤ ‖W − V ‖∞,
implies that limit (2.9) exists for any V ∈ C(X (r)). Let us briefly outline the
well-known argument proving that Proposition 2.4 also implies the uniqueness of a
solution σ ∈ P(X (r)) for Eq. (2.10) with an arbitrary V in the space Lb(X (r)),
which is dense in C(X (r)); cf. [Kif90, Section 4] and [JNPS15b, Section 4].

Let us fix any V ∈ C(X (r)). For any W ∈ C(X (r)), we consider a semigroup
QW
k (r) : C(X (r))→ C(X (r)) with the generator given by

QW
1 (r)f = λ−1

V h−1
V PV

1 (r)(eWhV f) = λ−1
V h−1

V PV+W
1 (r)(hV f).

In the case W = 0, we shall write Qk(r). A straightforward calculation shows
that Qk is Markovian (that is, Qk1 = 1) and

QW
k (r)f = λ−kV h−1

V PV+W
k (r)(hV f).

It follows from Proposition 2.4 that, for any W ∈ Lb(X (r)), we have

QrV (W ) := lim
k→∞

k−1 logQW
k (r)1 = log λV+W − log λV = Qr(V +W )−Qr(V ).

By the Lipschitz continuity of Qr and QrV , the left-most and right-most terms
coincide for any W ∈ C(X (r)). Denoting by IrV : P(X (r)) → [0,+∞] the
Legendre transform of QrV , we see that

IrV (σ) = Ir(σ) +Qr(V )− 〈V,σ〉 for any σ ∈ P(X (r)). (2.18)

Thus, a measure σ ∈ P(X (r)) is a solution for (2.10) if and only if IrV (σ) = 0.
Now note that, by Proposition 2.4, the dual semigroup Q1(r)∗ has a unique
stationary measure, which is given by σV = hV µV . Hence, the required unique-
ness of solution of (2.10) will be established if we prove that any σ ∈ P(X (r))
satisfying IrV (σ) = 0 is a stationary measure for Q1(r)∗.

To this end, we repeat the argument used in the proof of Lemma 2.5 in [DV75].
Namely, as will be established in Proposition 2.5, we have

IrV (σ) = sup
g>0

∫
X (r)

log
g

Q1(r)g
dσ, (2.19)

where the supremum is taken over all positive continuous functions g : X (r)→ R.
If IrV (σ) = 0, then the supremum on the right-hand side of (2.19) is attained at
the function g ≡ 1. It follows that, for any d ∈ C(X (r)), the function

F (ε) =

∫
X (r)

log
1 + εd

Q1(r)(1 + εd)
dσ

is well defined for |ε| � 1 and has a local minimum at ε = 0. Calculating
its derivative at zero, we obtain 〈d,σ〉 − 〈Q1(r)d,σ〉 = 0. Recalling that d ∈
C(X (r)) was arbitrary, we see that σ is a stationary measure for Q1(r)∗.
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We have thus established the first part of Theorem 2.1, and we turn to the
explicit expression for the rate function. Relation (2.3) is proved in [DV83] in
the case when the process is strong Feller. We present here a different argument
applicable to our setting. To emphasise its universal character, we do it in a
more general setting, under minimal hypotheses.

Donsker–Varadhan entropy formula

The first step is the derivation of a variational formula for the level-2 rate function;
cf. [DV75, Section 2]. Let X be a compact metric space and let P1(u,Γ) be a
Feller transition function. Given V ∈ C(X), we denote by {PV

k } a semigroup
in C(X) whose generator is given by

(PV
1 f)(x) =

∫
X

eV (y)f(y)P1(x, dy), f ∈ C(X). (2.20)

In the case V ≡ 0, we shall write Pk.

Proposition 2.5. Suppose that, for any V ∈ C(X), the limit

Q(V ) = lim
k→∞

1

k
log(PV

k 1)(x)

exists uniformly in x ∈ X and does not depend on x. Then Q is a 1-Lipschitz
convex function such that

Q(V + C) = Q(V ) + C for any V ∈ C(X) and C ∈ R, (2.21)

and its Legendre transform I :M(X)→ [0,+∞] has the form

I(λ) =

 sup
g>0

∫
X

log
g

P1g
dλ for λ ∈ P(X),

+∞ otherwise,
(2.22)

where the supremum is taken over all positive functions g ∈ C(X).

Let us denote by X(r) the r-fold product of the space X and, given a function
V ∈ C(X(r)), consider a semigroup PV

k (r) on C(X(r)) with the generator 10

(
PV

1 (r)f
)
(xr) =

∫
X

eV (x2,...,xr,y)f(x2, . . . , xr, y)P1(xr,dy), (2.23)

where xr = [x1, . . . , xr] ∈ X(r). In the case V ≡ 0, we shall write Pk(r). Finally,
let us denote X = XN and X− = XZ− .

Proposition 2.6. Suppose that, for any integer r ≥ 1 and any V ∈ C(X(r)),
there is a uniform limit

Qr(V ) = lim
k→∞

1

k
log
(
PV
k (r)1

)
(xr),

10In the language Markov processes, this means that PV
k (r) is the Feynman–Kac semigroup

associated with the evolution of words of length r.
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independent of xr ∈ X(r). Let Ir : P(X(r))→ [0,+∞] be the Legendre transform
of Qr and let I : P(X) → [0,+∞) be defined by (2.8). Then, for any shift-
invariant measure λ ∈ P(X), we have

I(λ) =

∫
X−

Ent
(
λ(x, ·) |P1(x0, ·)

)
λ−(dx), (2.24)

where we use the same conventions as in (2.3).

Propositions 2.5 and 2.6 are established in Sections 2.4 and 2.5, respectively.
Going back to the proof of Theorem 2.1, we note that Proposition 2.6 implies (2.3)
for λ ∈ Ps(X). The fact that I(λ) is infinite when λ is not shift-invariant
follows from the observation that νΥt is exponentially equivalent11 to a sequence
of random probability measures concentrated on shift-invariant measures on X;
see [DV83, Section 1]. Namely, together with νΥt , let us consider the sequence

ν̃Υt = t−1
t−1∑
n=0

δΥ̃n(t),

where {Υ̃ 0(t)} is a t-periodic sequence whose first t components coincide with

those of Υ 0, and Υ̃ n(t) is obtained from Υ̃ 0(t) by deleting the first t components.
It is straightforward to check that ν̃Υt and νΥt are exponentially equivalent and
that

P
{
ν̃Υt ∈ Ps(X)

}
= 1 for any t ≥ 1, Υ ∈X .

Since exponentially equivalent sequences satisfy the same LDP, we conclude
that the rate function I is infinite on M(X) \ P(X). Finally, the proof of the
affine property of I given in [DV83, Theorem 3.5] uses only relation (2.3) and
therefore remains valid in our setting. This completes the proof of Theorem 2.1.

2.3 Proof of Proposition 2.4

We first outline the main idea of the proof, which is based on an application of
Theorem 4.6. According to that result, to prove the required claims, we need to
check the uniform Feller and uniform irreducibility properties (UF) and (UI).
The first of them will be established with the help of a coupling technique;
see Proposition 4.3. On the other hand, the uniform irreducibility is not valid
in X (r), and we have to restrict ourselves to the domain of attainability A(r),
for which the validity of (UI) follows easily from the approximate controllabil-
ity (AC). Thus, we can apply Theorem 4.6 with X = A(r). Finally, to establish

convergence (2.17), we shall prove that, for any Υ ∈ X (r), there is Υ̃ ∈ A(r)
such that∣∣log(PV

k (r)f)(Υ )− log(PV
k (r)f)(Υ̃ )

∣∣ ≤ C‖f‖∞ for all k ≥ 1, (2.25)

11See Section 4.2.10 in [DZ98] for a definition.
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where f ∈ C(X (r)) is an arbitrary function, and the constant C > 0 does not

depend on Υ , Υ̃ , and k. The details are split into three steps.

Step 1: Reduction to the domain of attainability . Let us recall that K ⊂ E
stands for the support of the law `. Setting Υ = [Υ , . . . , Υ ], where Υ ∈ X is
the point entering Hypothesis (R), we define a sequence {Ak(r)}k≥0 of compact
subsets of X (r) by the following rule:

A0(r) = {Υ }, Ak(r) = Sr(Ak−1(r),K) for k ≥ 1,

where Sr is defined by (2.12), and B stands for the closure of B ⊂X (r). Since
S(Υ , 0) = Υ , the sequence {Ak(r)}k≥0 is increasing. We denote by A(r) ⊂X (r)
the closure of the union ∪k≥1Ak(r). A simple compactness argument yields
that, for any δ > 0, there is an integer m ≥ 1 such that A(r) is a subset of the
δ-neighbourhood of Am(r).

Denoting by P : X (r)→X the projection taking [Υ 1, . . . , Υ r] to Υ r, let us
show that P(A(r)) = X . Indeed, since A(r) is compact and P is continuous, we
see that the projection P(A(r)) is closed, and so it suffices to prove that it is
dense in X . Fix Υ ∈ X and ε > 0. By (AC), there is an integer k ≥ r and
vectors η1, . . . , ηk ∈ K such that

dH

(
Sk(Υ ; η1, . . . , ηk), Υ

)
< ε. (2.26)

Let us denote by Srk(Υ ; η1, . . . , ηk) the trajectory of (2.11) issued from Υ . In-
equality (2.26) and the definition ofAk(r) imply that the vector PSrk(Υ ; η1, . . . , ηk)
belongs to the ε-neighbourhood of Υ . This proves the required density.

We now prove (2.25). Without loss of generality we may assume that
f ∈ C(X (r)) is non-negative. Let Υ ∈X (r). Since P(A(r)) = X , we can find

Υ̃ ∈ A(r) such that P(Υ ) = P(Υ̃ ). Since Srk(Υ ; η1, . . . , ηk) depends only on the
rth component of Υ for k ≥ r, we have

Srk(Υ ; η1, . . . , ηk) = Srk(Υ̃ ; η1, . . . , ηk) for k ≥ r. (2.27)

Denoting by Υ k and Υ̃ k the left- and right-hand terms in (2.27), we see that

Υ k = Υ̃ k for k ≥ r. It follows from (2.14) that(
PV
k (r)f

)
(Υ ) = E

(
exp
{
V (Υ 1) + · · ·+ V (Υ k)

}
f(Υ k)

)
≤ exp(2r‖V ‖∞)E

(
exp
{
V (Υ̃ 1) + · · ·+ V (Υ̃ k)

}
f(Υ k)

)
= exp(2r‖V ‖∞)

(
PV
k (r)f

)
(Υ̃ ).

By symmetry, we can exchange the roles of Υ and Υ̃ , and the resulting inequalities
imply (2.25) with C = 2r‖V ‖∞. Thus, we need to construct hV ∈ C(X (r)),
µV ∈ P(X (r)), and λV > 0 satisfying relations (2.16) and to establish (2.17)
with the L∞-norm on A(r). To this end, we shall prove that the hypotheses of
Theorem 4.6 are satisfied with X = A(r) and C = Lb(A(r)).

Step 2: Uniform irreducibility . Our goal is to find an integer n ≥ 1 and a
number p > 0 such that

PΥ
{
Υ n ∈ BX (r)(Υ̂ , ε)

}
≥ p for any Υ , Υ̂ ∈ A(r), (2.28)
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where the subscript Υ on the left-hand side means that we consider the trajectory
of (2.11) issued from Υ . Simple arguments based on the concepts of the support
of a measure and of compactness show that (2.28) follows if for any ε > 0 we

can find an integer n ≥ 1 such that, for arbitrary Υ , Υ̂ ∈ A(r) and some suitable
η1, . . . , ηn ∈ K,

dr
(
Υ n, Υ̂

)
< ε, (2.29)

where dr stands for the distance in X (r) defined as the maximum of the distances
between the components, and Υ k = Srk(Υ , η1, . . . , ηk) is the trajectory of (2.11)
issued from Υ ; see Section 3.3.2 in [KS12] and Section 4 in [JNPS15b].

The construction of the controls η1, . . . , ηn is carried out in two steps: we
first steer the trajectory to a point close to Υ and then use the definition
of A(r) to steer it further to the neighbourhood of Υ̂ . More precisely, as
it was mentioned in Step 1, we can find m ≥ 1 such that A(r) is included

in the ε/2-neighbourhood of Am(r). Hence, there is Υ̂ 1 ∈ Am(r) such that

dr(Υ̂ , Υ̂ 1) < ε/2. Furthermore, by the definition of Am(r), we can find vectors

η1, . . . , ηm ∈ K such that Srm(Υ ; η1, . . . , ηm) = Υ̂ 1. By continuity, there is a
number δ > 0 such that, for any Υ ′ ∈ X (r) satisfying dr(Υ

′,Υ ) ≤ δ, we have

dr(S
r
m(Υ ′; η1, . . . , ηm), Υ̂ 1) < ε/2, so that

dr
(
Srm(Υ ′; η1, . . . , ηm), Υ̂

)
< ε. (2.30)

By (AC), there is an integer l ≥ 1 and controls ζ1, . . . , ζl ∈ K such that
dr(Sl(P(Υ ); ζ1, . . . , ζl), Υ ) < δ. This observation and the relation S(Υ , 0) = Υ
yield that

dr
(
Srl+r−1(Υ ; ζ1, . . . , ζl, 0, . . . , 0︸ ︷︷ ︸

r − 1 times

),Υ
)
< δ.

Combining this with (2.30), we derive

dr
(
Srl+m+r−1(Υ ; ζ1, . . . , ζl, 0, . . . , 0, η1, . . . , ηm), Υ̂

)
< ε.

This proves the required inequality (2.29) with the integer n = m+ l+ r− 1 not

depending on Υ and Υ̂ .

Step 3: Uniform Feller property . We shall show that, for any Υ, Υ ′ ∈X (r),
k ≥ r, and non-negative functions V, f ∈ Lb(X (r)),∣∣(PV

k (r)f
)
(Υ )−

(
PV
k (r)f

)
(Υ ′)

∣∣ ≤ C‖f‖L∥∥PV
k (r)1

∥∥
∞dr(Υ ,Υ

′), (2.31)

where C > 0 is a number not depending on k and f , and both L∞ and Lb
norms on the right-hand side are taken over X (r). This will obviously imply
the validity of (UF) with C = {f ∈ Lb(X (r)) : f ≥ 1}.

Fix the initial points Υ ,Υ ′ ∈ X (r) and denote by {Υk} and {Υ ′k} the

trajectories of (2.11) issued from them. Let {Υ̃k} and {Υ̃ ′k} be the trajectories
constructed in Corollary 4.4 for the initial points P(Υ ) = Υr and P(Υ ′) = Υ ′r,
respectively. Note that they depend on the choice of the parameter q ∈ (0, 1)
that will be specified below. We set

Υ̃k = [Υ̃k−r+1, . . . , Υ̃k], Υ̃
′
k = [Υ̃ ′k−r+1, . . . , Υ̃

′
k],
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where Υ̃j−r = Υj and Υ̃ ′j−r = Υ ′j for 2 ≤ j ≤ r. Let us define the random

variables D(j) = dr(Υ̃ j , Υ̃
′
j) and introduce the events

Gl(q) =
{
D(j) ≤ qj−r+1dr

(
Υ ,Υ ′

)
for 0 ≤ j < l,D(l) > ql−r+1dr

(
Υ ,Υ ′

)}
,

G′l(q) =
{
D(j) ≤ qj−r+1dr

(
Υ ,Υ ′

)
for 0 ≤ j ≤ l

}
,

where l ≥ 1. It follows from (4.11) that

P
(
Gl(q)

)
≤ C1q

ldr(Υ ,Υ
′) for all l ≥ 0, (2.32)

where C1 > 0 does not depend on l. Since the laws of the trajectories {Υk}
and {Υ ′k} coincide with those of {Υ̃k} and {Υ̃

′
k} respectively, we have(

PV
k (r)f

)
(Υ ) = E

(
exp{V (Υ̃ 1) + · · ·+ V (Υ̃ k)}f(Υ̃ k)

)
= E

(
Ξk(Υ )f(Υ̃ k)

)
,

where Ξk(Υ ) = exp{V (Υ̃ 1) + · · ·+ V (Υ̃ k)}, and a similar representation holds
for (PV

k (r)f)(Υ ′). Setting

I lk(Υ ,Υ ′) = E
{
IGl(q)

(
Ξk(Υ )f(Υ̃ k)− Ξk(Υ ′)f(Υ̃

′
k)
)}
,

Jk(Υ ,Υ ′) = E
{
IG′k(q)

(
Ξk(Υ )f(Υ̃ k)− Ξk(Υ ′)f(Υ̃

′
k)
)}
,

where IG stands for the indicator function of G, we can write

∆k(Υ ,Υ ′) : =
(
PV
k (r)f

)
(Υ )−

(
PV
k (r)f

)
(Υ ′)

=

k∑
l=1

I lk(Υ ,Υ ′) + Jk(Υ ,Υ ′). (2.33)

The Markov property and inequality (2.32) imply that

I lk(Υ ,Υ ′) ≤ E
{
IGl(q)Ξk(Υ )f(Υ̃ k)

}
= E

{
IGl(q) E

(
Ξk(Υ )f(Υ̃ k) | Fl

)}
≤ ‖f‖∞ exp

(
l ‖V ‖∞

)
E
{
IGl(q)

(
PV
k−l(r)1

)
(Υ̃ l)

}
≤ ‖f‖∞ exp

(
l ‖V ‖∞

) ∥∥PV
k (r)1

∥∥
∞ P

(
Gl(q)

)
≤ C1‖f‖∞ exp

(
l ‖V ‖∞ − l log q−1

) ∥∥PV
k (r)1

∥∥
∞dr(Υ ,Υ

′). (2.34)

To estimate Jk = Jk(Υ ,Υ ′), we write

Jk = E
{
IG′k(q) Ξk(Υ )(f(Υ ′k)− f(Υ k))

}
+ E

{
IG′k(q)(Ξk(Υ )− Ξk(Υ ′))f(Υ k)

}
=: J1

k (Υ ,Υ ′) + J2
k (Υ ,Υ ′). (2.35)

Using the Lipschitz continuity of f , we derive

J1
k (Υ ,Υ ′) ≤ C2 q

k‖f‖L
∥∥PV

k (r)1
∥∥
∞dr(Υ ,Υ

′). (2.36)
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Furthermore, the Lipschitz continuity of V implies that, for q ≤ 1/2,

∣∣Ξk(Υ )− Ξk(Υ ′)
∣∣ = Ξk(Υ )

{
exp

( k∑
j=1

∣∣V (Υ̃ j)− V (Υ̃
′
j

∣∣)− 1

}
≤ Ξk(Υ )

{
exp
(
2q ‖V ‖L dr(Υ ,Υ ′)

)
− 1
}

≤ C3(V ) dr(Υ ,Υ
′) Ξk(Υ ),

on the set G′k(q). It follows that

J2
k (Υ ,Υ ′) ≤ C3(V ) ‖f‖∞

∥∥PV
k (r)1

∥∥
∞dr(Υ ,Υ

′).

Combining this with (2.33)–(2.36), we derive

∣∣∆k(Υ ,Υ ′)
∣∣ ≤ C4(V )‖f‖L

∥∥PV
k (r)1

∥∥
∞dr(Υ ,Υ

′)

k∑
l=0

exp
(
l ‖V ‖∞−l log q−1

)
.

Taking q < exp(−‖V ‖∞), we arrive at (2.31).

2.4 Proof of Proposition 2.5

The fact the Q is a 1-Lipschitz convex function satisfying (2.21) is well known,
as is the relation I(λ) = +∞ for λ ∈M(X) \ P(X). We thus confine ourselves
to the proof of (2.22) for λ ∈ P(X).

Step 1. Let us denote by J(λ) the supremum on the right-hand side of (2.22).
We first prove that

I(λ) ≥ J(λ) for any λ ∈ P(X). (2.37)

To this end, fix λ ∈ P(X) and ε > 0. Let g ∈ C(X) be such that g ≥ 1 and

J(λ) <

∫
X

log
g

P1g
dλ+ ε. (2.38)

Set V = log g
P1g

. A simple calculation based on the semigroup property and the

inequality 1 ≤ P1g ≤ ‖g‖∞ shows that

‖g‖−1
∞ ≤ PV

k 1 ≤ ‖g‖∞,

and so Q(V ) = 0. Inequality (2.38) now implies that

J(λ) < 〈V, λ〉 −Q(V ) + ε ≤ I(λ) + ε.

Since ε > 0 is arbitrary, we arrive at (2.37).

Step 2. To establish the opposite inequality in (2.37), we again fix ε > 0. Let
V ∈ C(X) be such that

I(λ) < 〈V, λ〉+ ε, Q(V ) = 0. (2.39)
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The existence of such a function follows from the definition of I and the rela-
tion (2.21). We now set

gε = eV
∞∑
k=0

e−εkPV
k 1.

The second relation in (2.39) implies that the series converges uniformly in u ∈ X
and defines a continuous function on X. It is straightforward to check that

P1gε =

∞∑
k=0

e−εkPV
k+11 = eε(e−V gε − 1).

It follows that

log
gε

P1gε
≥ V − ε− log

(
1− eV g−1

ε

)
≥ V − ε. (2.40)

Integrating (2.40) with respect to λ and using (2.39), we derive∫
X

log
gε

P1gε
dλ ≥ 〈V, λ〉 − ε ≥ I(λ)− 2ε.

Since ε > 0 is arbitrary, we arrive at the required inequality.

2.5 Proof of Proposition 2.6

Step 1: A formula for I. We first note that PV
k (r) falls into the framework of

Proposition 2.5 if we define the transition function by

P r1 (xr,dyr) = δ[x2,...,xr](dy1, . . . ,dyr−1)P1(xr,dyr).

Therefore, replacing g by eV in (2.22) and using approximation of a bounded
measurable function by continuous functions, we can write

Ir(λ) = sup
V≥0

〈
V − log

(
P1(r)eV

)
, λ
〉
, λ ∈ P(X(r)),

where the supremum is taken over all non-negative bounded measurable functions
V : X(r)→ R. Combining this with (2.8), we derive

I(λ) = sup
r≥1

sup
V≥0

∫
X(r)

(
V (xr)− log

∫
X

eV (x2,...,xr,y)P1(xr,dy)
)
λr(dxr), (2.41)

where λr stands for the image of λ under the projection Πr to the first r compo-
nents. Since λ is shift-invariant, we can replace [x2, . . . , xr, y] by [x1, . . . , xr−1, y]
in the integral over X. Let us denote by λr(xr−1; · ) the regular conditional
probability of λr given the first r − 1 coordinates and let

FV (xr−1) =

∫
X

V (xr−1, y)λr(xr−1; dy)− log

∫
X

eV (xr−1,y)P1(xr−1,dy).
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We can rewrite (2.41) as

I(λ) = sup
r≥1

sup
V≥0

∫
X(r−1)

FV (xr−1)λr−1(dxr−1). (2.42)

Denoting by J(λ) the expression on the right-hand side of (2.24), we now prove
that I is bounded from above and from below by J .

Step 2: Upper bound . We recall the convention that any shift-invariant
measure λ ∈ P(X) can be extended (in a unique manner) to XZ. For any integer
r ≥ 1, we write Zr = Z ∩ (−∞, r] and, given a measure λ ∈ Ps(X), denote by
λ(z ,xr−1; · ) the regular conditional probability of the projection of λ to XZr

given [z ,xr−1] ∈ XZr−1 . Let

F̃V (z ,xr−1) =

∫
X

V (xr−1, y)λ(z ,xr−1; dy)− log

∫
X

eV (xr−1,y)P1(xr−1,dy).

It is straightforward to check that∫
X(r−1)

FV (xr−1)λr−1(dxr−1) =

∫
X−

∫
X(r−1)

F̃V (z ,xr−1)λ(dz ,dxr−1).

(2.43)
The definition of the relative entropy implies that

F̃V (z ,xr−1) ≤ Ent
(
λ(z ,xr−1; · ) |P1(xr−1, ·)

)
for any V ∈ Cb(X(r)).

Substituting this and (2.43) into (2.42), we obtain

I(λ) ≤ sup
r≥1

∫
X−

∫
X(r−1)

Ent
(
λ(z ,xr−1; ·) |P1(xr−1, ·)

)
λ(dz ,dxr−1).

In view of the stationarity of λ, the expression under the supremum on the
right-hand side of this inequality does not depend on r and coincides with J(λ).

Step 3: Lower bound. For any integer r ≥ 0, we define the space Xr = X[[−r,0]]

and denote by xr = [x−r, . . . , x0] its points. To prove that I ≥ J , we first
rewrite (2.42) in the form

I(λ) = sup
r≥0

sup
V≥0

∫
Xr

FV (xr)λr(dxr). (2.44)

Here, bounded measurable functions V depend on r + 2 variables, and with a
slight abuse of notation, we write

FV (xr) =

∫
X

V (xr, y)λ[[−r,1]](xr; dy)− log

∫
X

eV (xr,y)P1(x0,dy), (2.45)

where λ[[−r,1]](xr; · ) denotes the regular conditional probability for the projection
of λ to X[[−r,1]] given xr ∈ Xr. In what follows, it will be convenient to consider
λ[[−r,1]](xr; · ) as a function of the entire trajectory x ∈ X− depending only
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on xr, and accordingly we shall write λ[[−r,1]](x; · ). Let Πr : X− → Xr be the
projection taking x to xr and let {Fr}r≥0 be the filtration on X− generated
by the projections Πs, 0 ≤ s ≤ r. We claim that, for any bounded measurable
function f : X → R, the sequence {〈f,λ[[−r,1]](x, ·)〉}r≥0 considered on the
probability space (X−,λ−) is a martingale with respect to the filtration {Fr}.
To see this, let us consider the probability space (XZ,λ) and the bounded random
variable ξ([xj ]j∈Z) = f(x1) on it. By the definition of the regular conditional
probability, we have

〈f,λ[[−r,1]](x, ·)〉 = Eλ−(ξ | Fr),

where Eλ−(· | ·) denotes the conditional expectation with respect to λ−. This
relation immediately implies the required martingale property.

Applying Doob’s martingale convergence theorem, we see that, for any
bounded measurable function f : X→ R, the sequence 〈f,λ[[−r,1]](x, ·)〉 converges
for λ−-almost every x ∈ X−. By Theorem A.5.2 in [KS12], there is a random
probability measure µ(x, · ) such that

λ[[−r,1]](x, · ) ⇀ µ(x, · ) for λ−-a.e. x ∈ X−. (2.46)

It is straightforward to check that µ(x, · ) is the projection to the first component
of the regular conditional probability of λ given its projection x ∈ X−. By
uniqueness, it must coincide with λ(x, · ) for λ−-almost every x ∈ X−.

We now recall that

Er(xr) := Ent
(
λ[[−r,1]](xr, · ) |P1(x0, · )

)
= sup
V≥0

FV (xr), (2.47)

where the supremum is taken over all non-negative bounded measurable functions
V : Xr×X→ R. Moreover, the supremum in (2.47) is saturated by the sequence
of functions

VN (xr, y) =

{(
log

dλ[[−r,1]](xr, ·)
dP1(x0, · )

)
∧N

}
∨ (−N) +N.

Therefore, for any ε > 0 and xr ∈ Xr, we can find an integer N = Nε(xr) ≥ 1
such that

FVN
(xr) ≥

{
Er(xr)− ε if Er(xr) <∞,

ε−1 if Er(xr) =∞.
(2.48)

If Er(xr) = +∞ for some r ≥ 0 on a set of positive λr-measure, then both I(λ)
and J(λ) are equal to +∞. In the opposite case, combining (2.44), (2.47),
and (2.48), we see that

I(λ) ≥ sup
r≥0

∫
X−

Ent
(
λ[[−r,1]](x, ·) |P1(x0, · )

)
λ−(dx)− ε. (2.49)
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Since the relative entropy is lower-semicontinuous and non-negative, using (2.46)
with µ(x, ·) = λ(x, ·) and applying Fatou’s lemma, we obtain

lim inf
r→∞

∫
X−

Ent
(
λ[[−r,1]](x, ·) |P1(x0, · )

)
λ−(dx)

≥
∫
X−

Ent
(
λ(x, ·) |P1(x0, · )

)
λ−(dx).

Combining this with (2.49) and recalling that ε > 0 was arbitrary, we derive the
required inequality I(λ) ≥ J(λ). This completes the proof of Proposition 2.6.

3 Application to the 2D Navier–Stokes system
with a particle

3.1 Large Deviation Principle

In this section we prove Theorem 1.2. To this end, we shall make use of
Theorem 2.1. According to that result, it suffices to check the validity of
Hypotheses (R), (AC), (ACL), and (D). Let s ≥ 3 be an integer, set H = V s,
Y = T2, E = L2(J, V s), where J = [0, 1], and denote by A and X the
sets As and As × T2, respectively. It is straightforward to see that any point
Υ 0 = (0, p) ∈X s satisfies the relation S(Υ 0, 0) = Υ 0. Moreover, in view of the
regularising property of the Navier–Stokes system and infinite differentiability of
its resolving operator with respect to the initial condition and the right-hand
side (see Chapters I and VII in [BV92]), the regularity property (R) is satisfied
with V = V s+1. Furthermore, it is easy to see that (D) follows immediately
from (N). It remains to verify the validity of (AC) and (ACL).

Approximate controllability (AC)

We need to prove that any initial state Υ = (u0, p) ∈ X s can be steered to

the small neighbourhood of any target state Υ̂ = (û, p̂) ∈X s with the help of
controls belonging to the support Ks of the law ` = D(ηk). This will be done in
three steps.

Step 1: Reduction to û = 0. Suppose we can prove that, for arbitrary r > 0
and p1 ∈ T2, any point Υ = (u0, p) ∈X s can be steered to the r-neighbourhood
of (0, p1) at some time n1 ≥ 1 depending only on r. Let us fix ε > 0 and some

points Υ, Υ̂ ∈X s. Recalling the definition of the sets Ask and using the fact that
they form an increasing sequence, we can find an integer n2 ≥ 1, depending only
on ε > 0, an initial point Υ1 = (0, p1) ∈X s, and controls ζ2

1 , . . . , ζ
2
n2
∈ Ks, such

that
dX s

(
Sn2(Υ1; ζ2

1 , . . . , ζ
2
n2

), Υ̂
)
≤ ε/2.

The continuity of S implies the existence of a number r > 0 such that

dX s

(
Sn2

(Υ ′1; ζ2
1 , . . . , ζ

2
n2

), Υ̂
)
≤ ε, (3.1)
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for dX s(Υ ′1, Υ1) ≤ r. By assumption, there are controls ζ1
1 , . . . , ζ

1
n1
∈ Ks such

that
dX s

(
Sn1

(Υ ; ζ1
1 , . . . , ζ

1
n1

), Υ1

)
≤ r.

Combining this with inequality (3.1) in which Υ ′1 = Sn1(Υ ; ζ1
1 , . . . , ζ

1
n1

) and set-
ting n = n1 +n2, we see that the controls (ζ1, . . . , ζn) = (ζ1

1 , . . . , ζ
1
n1
, ζ2

1 , . . . , ζ
2
n2

)
are such that (2.1) holds.

Step 2: Reduction to u0 = 0. Suppose that, given arbitrary δ > 0 and
p̂ ∈ T2, we can steer any point Υ1 = (0, p1) ∈ X s to the δ-neighbourhood
of (0, p̂) at some time n2 ≥ 1 depending only on δ. Fix ε > 0 and Υ = (u0, p),

Υ̂ = (0, p̂) in X s. By continuity of S, we can find a number r > 0 such that,
for any point Υ ′1 = (u1, p1) ∈X s satisfying the inequality dX s(Υ ′1, Υ1) ≤ r with
Υ1 = (0, p1), there are controls ζ2

1 , . . . , ζ
2
n2
∈ Ks for which (3.1) holds. In view

of the dissipativity of the homogeneous Navier–Stokes system in the space V s,
we can find an integer n1 ≥ 1 depending only on r such that

dX s

(
Sn1

(Υ ; 0, . . . , 0), Υ1

)
≤ r,

where Υ1 = (0, p1) with some p1 ∈ T2. Combining this with (3.1), we see
that (2.1) holds for the controls (ζ1, . . . , ζn) = (0, . . . , 0, ζ2

1 , . . . , ζ
2
n2

), where
n = n1 + n2.

Step 3: Proof in the case u0 = û = 0. It suffices to prove that, for any points
p, p̂ ∈ T2 whose distance from each other is less than a fixed number κ > 0, we
can find ζ ∈ Ks satisfying S(Υ, ζ) = Υ̂ , where Υ = (0, p) and Υ̂ = (0, p̂). Indeed,

suppose this property is established and fix any points Υ, Υ̂ ∈ X s with zero
u-component. We can find an integer n ≥ 1, depending only on κ, and points
Υk = (0, pk), k = 1, . . . , n − 1, such that |pk − pk−1| ≤ κ, where p0 = p and
pn = p̂. Applying the above-mentioned exact controllability result, we can find
ζ1, . . . , ζn ∈ Ks such that S(Υk−1, ζk) = Υk for 1 ≤ k ≤ n. This implies that

Sn(Υ ; ζ1, . . . , ζn) = Υ̂ .

We now use the argument described in Section 1.2 (see the scheme of the
proof of Theorem 1.2) to establish the exact controllability for p and p̂ that
are close enough. Let us define an X s-valued curve Υ (t) = (u(t, x), y(t)) by
relations (1.18), in which U1, U2, γ, ϕ1, ϕ2 are as in (1.16) and (1.17). The

endpoints of {Υ (t), t ∈ J} coincide with Υ and Υ̂ , and Eqs. (1.1), (0.6) hold with
a right-hand side η given by (1.19). We need to prove that Πg ∈ Ks.

To establish this, we write Πg in the form (1.20) and note that

‖αj‖Cr(J) ≤Mr|p− p̂|, (3.2)

where the integer r ≥ 1 is arbitrary, and the numbers Mr do not depend p and p̂.
Expanding αj in the orthonormal basis {ψl},

αj(t) =
∑
l≥1

αjlψl(t),
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we can rewrite (1.20) in the form

(Πg)(t, x) =
∑
|j|1≤2

∑
l≥1

bjαjlψl(t)ej(x), (3.3)

where |j|1 = |j1|+ |j2|. In view of (3.2) and Poincaré’s inequality (1.6), we have

|αjl| ≤ CrMr|p− p̂| l−θr for |j|1 ≤ 2, l, r ≥ 1. (3.4)

On the other hand, it follows from (N) that if ε > 0 is sufficiently small, then any
function h of the form (1.21) (where Λ = {|j|1 ≤ 2}) belongs to the support Ks,
provided that the coefficients hlj satisfy the inequality

|hlj | ≤ εl−β for |j|1 ≤ 2, l ≥ 1. (3.5)

Choosing r ≥ 1 so large that θr > β and assuming that CrMr|p − p̂| ≤ ε, we
derive from (3.4) and (3.5) that Πg ∈ Ks. This completes the proof of (AC).

Approximate controllability of the linearisation (ACL)

We need to prove the density of the image for the linear operator

(DηS)(Υ, η) : L2(J, V s)→ V s × Ty(1)T2,

where y(1) = Sy(Υ, η). In what follows, we identify the tangent space TyT2

with R2.
We first note that, for any ζ ∈ E , the vector function (DηS)(Υ, η)ζ = (v, z)

is a solution of the equations

∂tv + Lv +Q(u)v = ζ, (3.6)

ż − v
(
t, y(t)

)
− (Dxu)

(
t, y(t)

)
z(t) = 0, (3.7)

where L = −νΠ∆, Q(u)v = Π(〈u,∇〉v + 〈v,∇〉u), and (u, y) = S(Υ, η). These
equations are supplemented with the initial conditions

v(0) = 0, z(0) = 0. (3.8)

Since s ≥ 3, it is easy to check that the regularity of u and v is sufficient to
ensure the well-posedness of (3.6), (3.7), (3.8). For given v̂ ∈ V s, q̂ ∈ R2, and
ε > 0, we need to find ζ ∈ L2(J, V s) such that

‖v(1)− v̂‖s < ε, |z(1)− q̂| < ε. (3.9)

There is no loss of generality in assuming that v̂ ∈ C∞(T2). Let γ : J → R2 be
defined by the relation

γ(t) = α(t)q̂ + β(t)
(
v̂(y(1)) + (Dxu)(1, y(1)) q̂

)
, (3.10)

where α, β ∈ C∞(J) are such that

α(t) = β(t) = 0 for t ≤ 1/3, α(t) = 1 for t ≥ 2/3, β(1) = 0, β̇(1) = 1.
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Writing (ϕ1(t), ϕ2(t)) := γ̇(t)−(Dxu)(t, y(t))γ(t) and choosing a small parameter
δ > 0, we set

vδ(t, x) = θδ(t)
(
ϕ1(t)U1(x− y(t)) + ϕ2(t)U2(x− y(t))

)
+
(
1− θδ(t)

)
v̂,

where the functions Ui are defined in (1.16), and θδ ∈ C∞(R) is such that
0 ≤ θδ ≤ 1, θδ(t) = 1 for t ≤ 1− δ and θδ(t) = 0 for t ≥ 1. Finally, we denote
by zδ(t) the solution of (3.7) with v = vδ and zero initial condition. Then the
vector function (vδ, zδ), defined on J , belongs to Xs × C1(J,R2), vanishes at
t = 0, and satisfies (3.6), (3.7) on J with ζ = ζδ ∈ C(J, V s). Moreover, we have
vδ(1) = v̂. Therefore, to complete the proof, it remains to show that the second
inequality in (3.9) holds for an appropriate choice of δ > 0.

To establish this, we first note that there is a number R1 not depending on δ
such that

sup
(t,x)∈J×T2

(∣∣vδ(t, x)
∣∣+
∣∣(Dxu)(t, x)

∣∣) ≤ R1. (3.11)

Combining this with (3.7) and applying Gronwall’s inequality, we can find R2

such that
sup
t∈J
|żδ(t)| ≤ R2. (3.12)

The choice of vδ implies that the function γ(t), vanishing at t = 0, is a solution
of (3.7) on the interval [0, 1 − δ]. By uniqueness of solutions for ODEs, we
conclude that zδ(1− δ) = γ(1− δ). Therefore, using (3.12), we derive

|zδ(1)− q̂| ≤ |zδ(1)− zδ(1− δ)|+ |zδ(1− δ)− q̂| ≤ R2δ + |γ(1− δ)− q̂|.

Since both right-most part terms of these inequalities go to zero as δ → 0, we
conclude that |zδ(1)− q̂| < ε for δ � 1. This completes the proof of (ACL) and
of Theorem 1.2.

Remark 3.1. The approximate controllability property established above shows
that the y-component of the linearised problem is exactly controllable. Namely,
for any q̂ ∈ R2 there is ζ ∈ L2(J, V s) such that (DηS

y)(Υ, η)ζ = q̂. This follows
immediately from the approximate controllability and the fact that the image of
the derivative is a linear subspace in the finite-dimensional vector space TyT2.

3.2 Regularity of laws and convergence

In this section we prove Theorem 1.3. The proof is divided into three steps.

Step 1: Reduction. Let us denote by X ∞ the intersection of the sets X s

with s ≥ 1. Consider the following two statements:

(i) For any Υ ∈X ∞, the measure λΥt has a density ρΥt ∈ C∞(T2t).

(ii) For any k ≥ 1 there is an integer s ≥ 3 such that the mapping Υ 7→ ρΥt
acting from X ∞ to Ck(T2t) is Lipschitz continuous with respect to the
norm of X s.
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Assuming that these two statements hold, the regularity part of Theorem 1.3 is
deduced as follows. The regularising property of the Navier–Stokes system implies
that, for any Υ ∈X 3, the function S(Υ, η) belongs to X ∞ with probability 1.
Recall the definition of the map F t in Section 1.2 (see the scheme of the proof of
Theorem 1.3), and note that λΥt coincides with the image of the t-fold product
of ` under the map F t(Υ, ·). The independence of the random variables η1, . . . , ηt
implies that

λΥ[[2,t]] =

∫
X∞

F t−1
∗ (υ, `⊗ · · · ⊗ `︸ ︷︷ ︸

t− 1 times

)MΥ
1 (dυ) =

∫
X∞

λυt−1 M
Υ
1 (dυ). (3.13)

Combining this with the property (i), we see that λΥ[[2,t]] has a density given by

ρΥ[[2,t]](y1, . . . , yt−1) =

∫
X∞

ρυt−1(y1, . . . , yt−1)MΥ
1 (dυ). (3.14)

Furthermore, for any integer s ≥ 3, the map S(Υ, η) is Lipschitz continuous
on X 3 × E with range in X s, where E = L2(J, V s). It follows that the same
holds for the map Υ 7→MΥ

1 acting from X 3 to the space P(X s) endowed with
the dual-Lipschitz metric. Denoting by Cs the corresponding Lipschitz constant
and using the property (ii) and relation (3.14), for any Υ1, Υ2 ∈X 3 we can write

∥∥ρΥ1

[[2,t]] − ρ
Υ2

[[2,t]]

∥∥
Ck = sup

α,y

∣∣∣∣∫
X s

(∂αρυt−1)(y)
(
MΥ1

1 −MΥ2
1

)
(dυ)

∣∣∣∣
≤ Cs

∥∥ρ·t−1

∥∥
Lb(X s,Ck)

dX 3(Υ1, Υ2),

where the supremum is taken over all y ∈ T2(t−1) and α ∈ Z2
+ with |α| ≤ k.

We have thus established the Lipschitz continuity of the function Υ 7→ ρΥ[[2,t]]
from X 3 to Ck for any k ≥ 1.

To prove that λt possesses a regular density, we note that the stationary
measure M is concentrated on X ∞. It follows that (cf. (3.14))

λt =

∫
X∞

λυt M(dυ).

In view of (i), this implies the existence of a density given by

ρt(y1, . . . , yt) =

∫
X∞

ρυt (y1, . . . , yt)M(dυ). (3.15)

The infinite smoothness of ρt follows now from the property (ii).

Step 2: Proof of (i) and (ii). Fix an integer k ≥ 1, set s = k + 3, and recall
that λΥt is the image of the t-fold product `t = `⊗ · · · ⊗ ` under the map

F t : X s × L2(J, V s)× · · · × L2(J, V s)︸ ︷︷ ︸
t times

→ T2t, (Υ, η) 7→ (y1, . . . , yt).
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We claim that the hypotheses of Theorem 4.7 are satisfied for F t. If this holds,
then the statements (i) and (ii) follow immediately from the conclusions of
Theorem 4.7.

In our setting, the manifold Y is the t-fold product T2t of the two-dimensional
torus, X = X s, and E is the t-fold product of L2(J, V s). Hence, to prove
the existence of a Ck-smooth density and its Lipschitz continuity in Υ ∈ X s,
we need to check that the law `t satisfies (P), the map F t is (k + 1)-times
continuously differentiable, and that the derivative of F t is surjective.

It is straightforward to see that if Hypothesis (N) holds for `, then so does (P)
with the orthonormal basis {ϕj}j≥1 obtained from {ψlej , l ≥ 1, j ∈ Z2

∗} by
normalisation. It follows that the product measure `t also satisfies (P). To prove
that F t is Ck+1, we recall that the resolving operator for the Navier–Stokes
system is an infinitely smooth map from V r × L2(J, V r) to Xr(J) for any r ≥ 2.
Moreover, standard results in the theory of ODEs imply that the solution of (0.6)
is Cr−2 function of the initial condition and the vector field u ∈ Xr(J), and
the Ck+1 regularity of F 1(Υ, η) = Sy(Υ, η) follows. The Ck+1 regularity of F t

follows now by recurrence.
Finally, we prove the surjectivity of the derivative (DηtF t)(Υ,ηt), where

ηt = (η1, . . . , ηt) ∈ E . We argue by induction. For t = 1, this is the claim of
Remark 3.1. Assume that the statement holds for t. Then

F t+1(Υ,ηt+1) =
(
F t(Υ,ηt), Sy(Υt, ηt+1

))
, Υt = St(Υ,η

t).

It follows that (Dηt+1F t+1)(Υ,ηt+1) can be written as(
(DηtF t)(Υ,ηt), (DΥS

y)(Υt, ηt+1) ◦ (DηtSt)(Υ,η
t) + (DηS

y)(Υt, ηt+1)
)
.

Using the induction hypothesis and Remark 3.1, we conclude that this mapping
is surjective.

Step 3: Convergence. It remains to prove the convergence part of Theorem 1.3.
Note that, by Theorem 4.1,

sup
Υ∈X 3

∥∥MΥ
n −M

∥∥∗
L
≤ C e−γn for n ≥ 1, (3.16)

where C and γ are positive numbers, and the dual-Lipschitz norm can be taken
over X s for any integer s ≥ 3. It now follows from relations (3.15) and (1.23)
that

‖ρΥ[[n+1,n+t]] − ρt‖Ck(T2t) ≤ sup
α,y

∣∣∣∣∫
X s

(∂αρυt )(y)
(
MΥ
n −M

)
(dυ)

∣∣∣∣
≤
∥∥ρ·t∥∥Lb(X s,Ck)

∥∥MΥ
n −M

∥∥∗
L

≤ Ce−γn
∥∥ρ·t∥∥Lb(X s,Ck)

,

where the supremum is taken over all y ∈ T2t and α ∈ Z2
+ such that |α| ≤ k.

This completes the proof of Theorem 1.3.
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3.3 Strict positivity of densities

This section is devoted to the proof of Theorem 1.5, which was reduced to
deriving inequality (1.27). To this end, we shall apply Theorem 4.8. As it was
established in the proof of Theorem 1.3, if we take s = 3, then the map Sy(u0, η)
acting from E := L2(J, V 3) to T2 satisfies the hypotheses of Theorem 4.7 with
k = 1, so that the measure Sy∗ (Υ, `) = P1(Υ, ·) has a C1-smooth density ρΥ1 (y)
with respect to the Lebesgue measure on T2. Let us denote by {ϕlj(t, x)} the
orthonormal basis in E formed of the normalised orthogonal functions ψl(t)ej(x),
where l ≥ 1 and j ∈ Z2

∗. To establish the strict positivity of ρΥ1 , it suffices to
prove that, for any Υ = (u0, p0) ∈X s and p̂ ∈ T2, there is η̂ ∈ K such that

Sy(Υ, η̂) = p̂, (3.17)

ρlj
(
〈η̂, ϕlj〉E

)
> 0 for all l ≥ 1, j ∈ Z2

∗. (3.18)

This is done in three steps. We first describe explicitly a subset K0 in the
support K of the measure ` such that (3.18) holds for any η̂ ∈ K0. We next
combine a result from the control theory of the Navier–Stokes equations (see
Theorem 4.9) with the argument used in the verification of (AC) to construct a
time-regular finite-dimensional control for which (3.17) holds. And, finally, we
prove that the resulting control belongs to K0.

Step 1: Description of K0. Recall that the noise in (1.1) is now replaced
by ηa, so that its restriction to the interval Jk = [k − 1, k] has the form (if we
replace t by t+ k − 1)

ηak = a

∞∑
l=1

∑
j∈Z2

∗

bjdjclξ
k
jlϕlj(t, x), (3.19)

where dj = ‖ej‖−1
s . Let us denote by `a the law of ηak and by ρalj the density of

its projection to the one-dimensional space spanned by ϕlj . Since the density
of ξklj is positive on the interval (−δ, δ), we have

ρalj(r) > 0 for |r| < δlj := abjdjclδ. (3.20)

Thus, defining K0 as the set of functions ψ ∈ E such that |〈ψ,ϕlj〉E | < δlj , we
see that any element of K0 satisfies (3.18).

Step 2: Construction of the control . We first reduce the problem to a result
on approximate controllability of the Lagrangian component. Namely, let us fix
a number τ > 0 such that, for any p̂ ∈ T2, the ball BT2(p̂, τ) is homeomorphic
to the unit disc in R2, and suppose that we have proved the following property
for any Υ = (u0, p0) ∈X s:

(C) There is a continuous map ΦΥ : BT2(p̂, τ)→ E whose image is contained
in K0 such that

sup
p∈BT2 (p̂,τ)

∣∣Sy(Υ, ΦΥ (p))− p
∣∣ ≤ τ. (3.21)
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In this case, for any p̂ ∈ T2, the map

Φ1 : BT2(p̂, τ)→ BT2(p̂, τ), Φ1(p) = p− Sy(Υ, ΦΥ (p)) + p̂,

is well defined and continuous. By Brouwer’s theorem, there is a fixed point
p̄ ∈ BT2(p̂, τ) for Φ1, and it is easy to see that the function η̂ = ΦΥ (p̄) belongs
to K0 and satisfies (3.17).

The proof of Property (C), with an arbitrary τ > 0, is based on the Agrachev–
Sarychev theorem (see Theorem 4.9 in Section 4.5) and a modification of the
construction used in Section 3.1 to establish (AC). Let us fix a small parameter
κ > 0 that will be chosen below and define the space H1 = span{ej : |j|1 ≤ 2}.
By the Agrachev–Sarychev theorem, there is a number δ1 > 0 and a continuous
mapping Ψ1 : X s → C∞([0, 1/2],H1) such that

suppΨ1(Υ ) ⊂ [δ1, 1/2− δ1], (3.22)

sup
Υ∈X s

‖Su1/2
(
Υ, Ψ1(Υ )

)
‖s ≤ κ. (3.23)

We now set p1 = Sy1/2(Υ, Ψ1(Υ )) and note that p1 = p1(Υ ) is a continuous

T2-valued function of Υ ∈X s. We define a map γ : [1/2, 1]→ T2 by

γ(t) = γ(t;Υ, p) =
(
1− α(t)

)
p1(Υ ) + α(t)p, (3.24)

where α ∈ C∞(R), α(t) = 0 for t ≤ 2/3 and α(t) = 1 for t ≥ 5/6, so that
γ(1/2) = p1(Υ ) and γ(1) = p. Recalling that U1 and U2 were introduced
in (1.16) and defining ϕ = (ϕ1, ϕ2) as the time-derivative of γ, for 1/2 ≤ t ≤ 1
we set (cf. (1.17) and (1.18))

ū(t, x) = ϕ1(t)U1

(
x− γ(t)

)
+ ϕ2(t)U2

(
x− γ(t)

)
, ȳ(t) = γ(t;Υ, p).

It is straightforward to check that the pair (ū(t, x), ȳ(t)) defined on the time
interval [1/2, 1] is a solution of (1.1), (0.6) with the right-hand side

η(t) = Ψ2(Υ, p)(t) := Πg(t), g(t) = ∂tū+ 〈ū,∇〉ū− ν∆ū. (3.25)

Moreover, the construction implies that Ψ2 is continuous in (Υ, p) ∈ X s × T2

with range in C∞([1/2, 1]), and that

ū(t) = 0 for 1/2 ≤ t ≤ 2/3, ȳ(1/2) = p1(Υ ), ȳ(1) = p. (3.26)

By continuity, we can find κ > 0 such that, if Υ1 = (u1, p1(Υ )) ∈X s satisfies the
inequality ‖u1‖s ≤ κ, then the solution (u, y) of (1.1), (0.6) issued from Υ1 at
time t = 1/2 satisfies the inequality |y(1)− p| ≤ τ . Thus, defining ΦΥ : X s → E
by the relation

ΦΥ (p) =

{
Ψ1(Υ )(t) for 0 ≤ t ≤ 1/2,

Ψ2(Υ, p)(t) for 1/2 ≤ t ≤ 1,
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we see that (3.21) holds. Moreover, the construction implies that the image
of ΦΥ (p) is an H1-valued function of t that vanishes in the neighbourhood of
t = 1/2 and whose restrictions to the intervals [0, 1/2] and [1/2, 1] are infinitely
smooth, so that ΦΥ (p) ∈ C∞(J, V s). Finally, the continuity properties of Ψ1

and Ψ2 imply that ΦΥ (p) is a continuous function of (Υ, p) ∈X s×T2 with range
in C∞(J, V s). Thus, it remains to prove that its image is contained in K0.

Step 3: Description of the image. Let us take an arbitrary (Υ, p) ∈X s × T2

and consider the function ψ = ΦΥ (p). Writing it in the form

ψ(t, x) =

∞∑
l=1

∑
j∈Z2

∗

ψljϕlj(t, x), (3.27)

where ψlj = ψlj(Υ, p) := 〈ψ,ϕlj〉E , and recalling the definition of K0, we see that
it suffices to prove the inequalities

|ψlj | < δlj for all l ≥ 1 and j ∈ Z2
∗, (3.28)

where δlj is defined in (3.20). Note that the function ψ takes values in H1, so that
ψlj = 0 for |j|1 > 2. On the other hand, in view of Poincaré’s inequality (1.6),
for |j|1 ≤ 2 we have

|ψlj | ≤ Crl−θr, l, r ≥ 1,

where the numbers Cr do not depend on (Υ, p) ∈ X s × T2. Thus, the coeffi-
cient ψlj will satisfy (3.28) if

Crl
−θr < abjdjclδ for |j|1 ≤ 2, l ≥ 1. (3.29)

Since r ≥ 1 can be chosen arbitrarily large, recalling (1.9), we see that (3.29)
is certainly satisfied if a > 0 is sufficiently large. This completes the proof of
Theorem 1.5.

Remark 3.2. The above proof gives that the conclusions of Theorem 1.5 remain
valid if only the Fourier components ej with |j|1 ≤ 2 are multiplied by a large
parameter.

Remark 3.3. Since the control function η entering (1.1) has full range, we could
have avoided use of the Agrachev–Sarychev theorem by connecting a given initial
function u0 with zero and defining the corresponding control by relation (3.25).
However, with this construction, the control Ψ1(Υ ) on the interval [0, 1/2] would
have much larger dimension, and Remark 3.2 would not be valid.

4 Appendix

In this section, we recall various results used in the main text. Section 4.1
deals with the property of exponential mixing and construction of coupling
operators. In Section 4.2, we formulate Kifer’s criterion for the validity of LDP.
In Section 4.3, we discuss the large-time asymptotics of generalised Markov
semigroups. Section 4.4 is devoted to some results on the image of probability
measures under smooth maps. Finally, in Section 4.5, we recall the Agrachev–
Sarychev theorem on controllability of the Navier–Stokes system.
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4.1 Exponential mixing and coupling operators

In this section, we discuss the problem of uniqueness of stationary measure
and exponential mixing for the RDS (1.12) in the phase space X = A × Y ,
where A is a compact subset of a separable Hilbert space and Y is a compact
manifold (without boundary). We denote by P1(Υ,Γ) the transition function
for (1.12), and by Pk and P∗k the corresponding Markov operators acting in the
spaces C(X ) and P(X ), respectively. The following result has been essentially
established in [KNS20, Shi21]; however, since our setting here is slightly different,
we give a short proof.

Theorem 4.1. Assume that Hypotheses (R), (AC), (ACL), and (D) are satis-
fied. Then the discrete-time Markov process associated with (1.12) has a unique
stationary measure µ ∈ P(X ). Moreover, there are positive numbers γ and C
such that

‖P∗kν − µ‖∗L ≤ Ce−γk for ν ∈ P(X ), k ≥ 0. (4.1)

Proof. Set Dδ = {(Υ, Υ ′) ∈ X ×X : dX (Υ, Υ ′) ≤ δ}. In view of Theorem 1.1
in [Shi21], it suffices to prove that the following local stabilisation property holds:

(LS) For any R > 0 and any compact set K ⊂ E there is a finite-dimensional
subspace E ⊂ E , positive numbers C, δ, and q < 1, and a continuous
mapping

Φ : Dδ ×BE (R)→ E , (Υ, Υ ′, η) 7→ η′,

which is continuously differentiable in η and satisfies the following inequal-
ities for any (Υ, Υ ′) ∈Dδ :

sup
η∈BE (R)

(
‖Φ(Υ, Υ ′, η)‖E + ‖DηΦ(Υ, Υ ′, η)‖L(E )

)
≤ C dX (Υ, Υ ′), (4.2)

sup
η∈K

dX

(
S(Υ, η), S(Υ ′, η + Φ(Υ, Υ ′, η))

)
≤ q dX (Υ, Υ ′). (4.3)

We shall show that Hypotheses (R) and (ACL) imply (LS). Let us recall that,
given a separable Hilbert space H and a continuous linear operator A : E → H
with a dense range, we can construct an approximate inverse for A in the
following way. Setting G = AA∗, it is easy to check that

G(G+ γI)−1f → f as γ → 0+ for any f ∈ H,

so that A∗(G + γI)−1 is an approximate right inverse of A. Moreover, if Pn
are finite-dimensional projections converging to the identity in E for the strong
operator topology (see (D)), then considering the operators PMA

∗(G+ γI)−1,
we obtain a family of continuous finite-dimensional operators Rε : H → E such
that ARε → I in the strong operator topology.

We now apply this procedure to the derivatives A(Υ, η) := (DηS)(Υ, η) acting
continuously from E to H× TyY , where y = ΠY S(Υ, η). Set

G(Υ, η) = A(Υ, η)A(Υ, η)∗, RM,γ(Υ, η) = PMA(Υ, η)∗(G(Υ, η) + γI)−1.
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Repeating the compactness argument used in the proof of Proposition 2.3
in [KNS20], it is not difficult to show that, for any ε > 0, there are Mε ≥ 1 and
γε > 0 such that the operator Rε(Υ, η) = RMε,γε(Υ, η) (which acts continuously
from Hy := H × TyY to E and has a finite-dimensional range) satisfies the
following inequalities for any Υ ∈X , η ∈ K, and f ∈ V × TyY :∥∥(DηS)(Υ, η)Rε(Υ, η)f − f

∥∥
Hy
≤ ε

∥∥f∥∥V×TyY
, (4.4)∥∥Rε(Υ, η)

∥∥
L(Hy,E )

+
∥∥(DηRε)(Υ, η)

∥∥
L(Hy×E ,E )

≤ C1(ε), (4.5)

where C1(ε) does not depend on (Υ, η), and the tangent space TyY is endowed
with the norm induced by the Riemannian metric of Y . We now fix points
Υ = (u, y) ∈X and η ∈ BE (R), together with some local charts around y and
ΠY S(Υ, η), and use Taylor’s formula to write

S(Υ ′, η′)−S(Υ, η) = (DΥS)(Υ, η)(Υ ′−Υ ) + (DηS)(Υ, η)(η′− η) + r(Υ, Υ ′, η, η′).
(4.6)

Here Υ ′ and η′ are sufficiently close to Υ and η, respectively, so that ΠY Υ
and ΠY S(Υ ′, η′) belong to the above-mentioned local charts12, and the remainder
term r satisfies the inequality∥∥r(Υ, Υ ′, η, η′)∥∥

H
≤ C2(R)

(∥∥Υ − Υ ′∥∥2

H
+
∥∥η − η′∥∥2

E

)
, (4.7)

where Υ ∈X and η ∈ BE (R). Define

Φ(Υ, Υ ′, η) = −Rε(Υ, η)(DΥS)(Υ, η)(Υ ′ − Υ ), (4.8)

and note that∥∥(DΥS)(Υ, η)(Υ ′ − Υ )
∥∥
V×TyY

≤ C3(R)
∥∥Υ ′ − Υ∥∥H×TyY

. (4.9)

Combining this inequality with (4.5) and Hypothesis (R), we see that (4.2) holds.
Furthermore, it follows from (4.4)–(4.9) that∥∥S(Υ, η)− S(Υ ′, η + Φ(Υ, Υ ′, η))

∥∥
H

≤ ε
∥∥(DΥS)(Υ, η)(Υ ′ − Υ )

∥∥
V×TyY

+
∥∥r(Υ, Υ ′, η, η + Φ(Υ, Υ ′, η))

∥∥
H

≤
(
C3(R)ε+ C4(R) ‖Υ ′ − Υ‖H

)∥∥Υ ′ − Υ∥∥
H
≤ q

∥∥Υ ′ − Υ∥∥
H
,

where Υ, Υ ′ ∈Dδ and η ∈ BE (R), the number q > 0 is arbitrary, and the positive
numbers ε and δ are sufficiently small. This gives inequality (4.3) and proves
the local stabilisability.

Remark 4.2. The above proof gives that Hypothesis (AC) in Theorem 4.1
can be replaced by the following weaker variant which requires approximate
controllability to some fixed point Υ̂ ∈X :

12This enables one to write the differences Υ ′ − Υ and S(Υ ′, η′)− S(Υ, η) and to consider
them as elements of H×Rd. In particular, we shall write ‖Υ ′−Υ‖H for the distance between Υ
and Υ ′.
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(ACP) For any ε > 0, there is an integer n ≥ 1 such that, for any initial point
Υ ∈X , one can find controls ζ1, . . . , ζn ∈ K satisfying inequality (2.1).

In the proof of the LDP, we also needed the existence of coupled trajectories
that converge to each other exponentially fast. Their existence is established
with the help of the following coupling construction.

Proposition 4.3. Under the hypotheses of Theorem 4.1, for any q ∈ (0, 1),
there is a number C > 0, a probability space (Ω,F ,P), and measurable mappings

R,R′ : X ×X × Ω→X

such that, for any Υ, Υ ′ ∈X , the pair (R(Υ, Υ ′, ·),R′(Υ, Υ ′, ·)) is a coupling for
(P1(Υ, ·), P1(Υ ′, ·)), and

P
{
‖R(Υ, Υ ′, ·)−R′(Υ, Υ ′, ·)‖H > q ‖Υ − Υ ′‖H

}
≤ C ‖Υ − Υ ′‖H . (4.10)

This result has been proved in [Shi21] (see Step 3 of the proof of Theorem 1.1),
provided that Hypotheses (R), (LS), and (D) are satisfied. As was established
in the proof of Theorem 4.1, under Hypotheses (R) and (ACL) property (LS)
holds with any q < 1, so that Proposition 4.3 also holds.

We now describe the construction of coupled trajectories. Let (Ω̃, F̃ , P̃) be
the product of countably many copies of the probability space constructed in
Proposition 4.3. For Υ, Υ ′ ∈X and ω = (ω1, ω2, . . . ) ∈ Ω̃, we set

Υ̃0 = Υ, Υ̃ ′0 = Υ ′,

Υ̃k = R(Υ̃k−1, Υ̃
′
k−1, ω

k), Υ̃ ′k = R′(Υ̃k−1, Υ̃
′
k−1, ω

k),

where k ≥ 1. For any q ∈ (0, 1) and k ≥ 1, define the event

Gk(q, Υ, Υ ′) :=
{
dX (Υk, Υ

′
k) > q dX (Υk−1, Υ

′
k−1)

}
.

The following result is a straightforward consequence of Proposition 4.3, and its
proof, based on an application of the Markov property, can be carried out by
repeating the argument in [KS12, Section 3.2.2] (see also [Shi15, Section 4.4]).

Corollary 4.4. Under the hypotheses of Theorem 4.1, the trajectories {Υ̃k}
and {Υ̃ ′k} constructed above have the following properties.

Coupling. The laws of the processes {Υ̃k}k≥0 and {Υ̃ ′k}k≥0 regarded as random
variables with range in X = X Z+ coincide with those of the trajectories
for (1.12) issued from the initial points Υ and Υ ′, respectively.

Estimate. There is a number C > 0 depending on q ∈ (0, 1) such that, for any
integer k ≥ 1 and any points Υ, Υ ′ ∈X , we have

P̃
(
Gk(q, Υ, Υ ′)

)
≤ C E dX (Υk−1, Υ

′
k−1). (4.11)
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4.2 Kifer’s criterion

Let X be a compact metric space, let Θ be a directed set, let {rθ}θ∈Θ be a
non-decreasing net of positive numbers converging to +∞, and let {µθ}θ∈Θ be a
net of random probability measures on X with an underlying space (Ω,F ,P).
We assume that, for any V ∈ C(X), the following limit exists:

Q(V ) = lim
θ∈Θ

r−1
θ logE exp

(
rθ〈V, µθ〉

)
. (4.12)

This is a 1-Lipschitz function on C(X) such that Q(V +C) = Q(V ) +C for any
V ∈ C(X) and C ∈ R. Let I : M(X) → [0,+∞] be the Legendre transform
of Q:

I(σ) =

{
sup

V ∈C(X)

(
〈V, µ〉 −Q(V )

)
for σ ∈ P(X),

+∞ otherwise.
(4.13)

It is easy to see that I is a good rate function (see Section 2.1 for a definition).
Recall that σ ∈ P(X) is called an equilibrium state for V ∈ C(X) if

Q(V ) = 〈V, σ〉 − I(σ).

The following theorem is due to Kifer [Kif90].

Theorem 4.5. In addition to the existence of limit (4.12), suppose that there
exists a dense vector space V ⊂ C(X) such that for any V ∈ V there is a unique
equilibrium state σ ∈ P(X). Then the LDP holds for {µθ} with the speed {rθ}
and the rate function I.

4.3 Asymptotics of Feynman–Kac semigroups

Let X be a compact metric space, let M+(X) be the set of non-negative Borel
measures on X, and let {P (x, ·), x ∈ X} ⊂ M+(X) be a family such that
P (x,X) > 0 for any x ∈ X, and the mapping x 7→ P (x, ·) is continuous from X
to the space M+(X) endowed with the weak∗ topology. We denote by Pk(x, ·)
the k-fold iteration of P (x, ·), and by

Pk : C(X)→ C(X), P∗k :M(X)→M(X)

the semigroups with the generators P and P∗ defined by

(Pf)(x) =

∫
X

P (x, dy)f(y), (P∗σ)(Γ) =

∫
X

P (x,Γ)σ(dx),

where f ∈ C(X), σ ∈M(X), and Γ ∈ B(X). Note that Pk(x, ·) is the kernel of
the operator Pk. Recall that a family C ⊂ C(X) is said to be determining if, for
any two measures µ, ν ∈M+(X), the validity of the relation 〈f, µ〉 = 〈f, ν〉 for
all f ∈ C implies that µ = ν. In addition to the above hypotheses, let us assume
that the following two properties hold.
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(UI) Uniform irreducibility. For any ε > 0 there is an integer n ≥ 1 and a
number p > 0 such that

Pn
(
x,BX(x̂, ε)

)
≥ p for all x, x̂ ∈ X. (4.14)

(UF) Uniform Feller property. There is a determining family C ⊂ C(X)
such that, for any f ∈ C, the sequence {‖Pk1‖−1

∞ Pkf, k ≥ 0} is uniformly
equicontinuous.

The following theorem is established in [JNPS15b, Section 2].

Theorem 4.6. Under the above hypotheses, there is a number λ > 0, a measure
µ ∈ P(X), and a positive function h ∈ C(X) such that 〈h, µ〉 = 1 and

P1h = λh, P∗1µ = λµ, (4.15)

λ−kPkf → 〈f, µ〉h in C(X) as k →∞, (4.16)

λ−kP∗kσ → 〈h, σ〉µ in M+(X) as k →∞, (4.17)

where f ∈ C(X) and σ ∈M+(X) are arbitrary.

4.4 Image of measures under non-degenerate maps

In this subsection, we discuss some general results on the absolute continuity
of the images of measures under finite-dimensional smooth maps. This type
of properties are well known, and a comprehensive presentation can be found
in [Bog10]. Here we only derive a sufficient condition for the existence, regularity,
positivity and Lipschitz dependence on the parameter of the density for the
image measure.

Let E be a separable Hilbert space, let X be a compact subset in a separable
Hilbert13 manifold H with a metric d (see Section II.1 in [Lan85]), and let Y be a
Riemannian manifold without boundary. We consider a function F : X ×E → Y
satisfying the following hypothesis for an integer k ≥ 0.

(F) For any Υ ∈ X , the mapping η 7→ F (Υ, η) is (k + 1)-times continuously
differentiable, and the derivative ∂k+1

η F is a Lipschitz-continuous function
of (Υ, η) on bounded subsets of X × E .

Our aim is to study the image of signed measures on E under maps with
the above property. Namely, given Υ ∈ X and ` ∈ M(E ), we denote by
λΥ = F∗(Υ, `) the image of ` under the map η 7→ F (Υ, η). We impose the
following hypothesis on `.

(P) The support of ` is a compact subset of E , and there is an orthonor-
mal basis {ϕj} in E such that ` can be written as the product of its
one-dimensional projections `j onto the vector spaces Ej spanned by ϕj .
Moreover, for any j ≥ 1, the measure `j has a density ρj ∈ Ck(Ej).

13The reader not willing to deal with infinite-dimensional manifolds may assume that H
has the same structure as in Section 2.
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Theorem 4.7. Let us assume that a function F and a measure ` ∈ P(E ) satisfy
Hypotheses (F) and (P) with some integer k ≥ 0, and for any Υ ∈ X and
η ∈ supp ` we have

Image
(
∂ηF (Υ, η)

)
= TyY , (4.18)

where TyY stands for the tangent space of Y at y = F (Υ, η). Then, for any
Υ ∈ X , the measure λΥ is absolutely continuous with respect to the volume
measure on Y , and the corresponding density ρ(Υ, y), defined for Υ ∈ X and
y ∈ Y , is continuous in (Υ, y) and Ck-smooth in y. Moreover, there is C > 0
such that

‖ρ(Υ1, ·)− ρ(Υ2, ·)‖Ck(Y ) ≤ C dX (Υ1, Υ2) for all Υ1, Υ2 ∈X . (4.19)

Proof. We follow the arguments in [AKSS07] and [Bog10, Section 9.6]. The
proof in our case is simpler since the derivative of F has full rank everywhere.

Step 1: Localisation in Υ . We first prove that it suffices to establish the
result in the neighbourhood of each point Υ ∈ X . Namely, suppose that for
any Υ ∈X there is δ = δΥ > 0 such that, for any Υ ′ ∈ BH (Υ, δ), the measure
F∗(Υ

′, `) has a Ck-smooth density ρ(Υ ′, y) that satisfies the inequality in (4.19)
for Υ1, Υ2 ∈ BH (Υ, δ). In this case, the existence and regularity of the density for
F∗(Υ, `) with Υ ∈X is trivial. To prove inequality (4.19), we consider the open
cover {ḂH (Υ, δΥ /2)}Υ∈X of the compact set X and select a finite sub-cover
{Om, 1 ≤ m ≤M}, where Om = ḂH (Υm, δm/2) for some Υm ∈X and δm > 0.
Denoting by δ the minimum of the numbers δm, 1 ≤ m ≤ M , we note that it
suffices to establish (4.19) for points Υ1, Υ2 satisfying d(Υ1, Υ2) < δ. For any such
pair, we can find m ∈ [[1,M ]] such that Υ1, Υ2 ∈ BH (Υm, δm), so that (4.19)
holds by assumption.

Step 2: Localisation in η. Let us fix any Υ ∈ X and assume that for
any point η ∈ K we can find positive numbers δη and γη such that, if a mea-
sure ` ∈ M(E ) satisfies (P), and ψ : E → R is a C∞-function with a support
contained in BE (η, γη), then F∗(Υ

′, ψ`) has a Ck-smooth density ρψ(Υ ′, ·) for
Υ ′ ∈ BH (Υ, δη), and inequality (4.19) holds for Υ1, Υ2 ∈ BH (Υ, δη). In this

case, we consider the open cover {ḂE (η, γη)}η∈K of the compact set K and

choose a finite sub-cover {Um, 1 ≤ m ≤M}, where Um = ḂE (ηm, γm) for some
ηm ∈ K and γm > 0. Let {ψm} be an infinitely smooth partition of unity on K
subordinate to {Um}; see [Lan85, Section II.3]. Then we can write

λΥ ′ = F∗(Υ
′, `) =

M∑
m=1

F∗(Υ
′, ψm`). (4.20)

Setting δ = min{δm, 1 ≤ m ≤M}, where δm > 0 is the number corresponding
to ηm, we see that, for any Υ ′ ∈ BH (Υ, δ), each term of the sum in (4.20) pos-
sesses a Ck-smooth density ρm(Υ ′, y) that satisfies (4.19) for Υ1, Υ2 ∈ BH (Υ, δ).
This proves the required property.

Step 3: Proof in the localised case. It remains to establish the property
described in the beginning of Step 2. Let us fix any Υ̂ ∈ X and η̂ ∈ K and
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choose a local chart in the neighbourhood of ŷ = F (Υ̂ , η̂), so that F can be
written as (F1, . . . , Fd). By (4.18), we can find vectors g1, . . . , gd ∈ {ϕj}j≥1 such
that

D(Υ̂ , η̂) :=
∣∣det

(
DgiFj(Υ̂ , η̂)

)∣∣ > 0. (4.21)

Let us denote by E1 the vector span of g1, . . . , gd and by E2 its orthogonal
complement, so that we can write η = η1 + η2 with ηi ∈ Ei. By the implicit
function theorem, there are δ, γ1, γ2 > 0 such that, for any vectors Υ ∈ BH (Υ̂ , δ)
and η2 ∈ BE2(η̂2, γ2), the mapping η1 7→ F (Υ, η1 + η2) is a Ck+1-smooth
diffeomorphism of the open ball ḂE1

(η̂1, 2γ1) onto its image W (Υ, η2, 2γ1), and
the determinant D(Υ, η1 + η2) is separated from zero by a number c > 0. Let
us denote by G(Υ, η2; ·) : W (Υ, η2, 2γ1) → ḂE 1(η1, 2γ1) the inverse function.
Decreasing, if necessary, the numbers δ and γ2, we can assume that the closure
of W (Υ, η2, γ1) is included in B := W (Υ̂ , η̂2, 2γ1), so that the map G(Υ, η2; y) is

well defined on the product set BH (Υ̂ , δ)×BE2
(η̂2, γ2)×B whose last component

is independent of Υ and η2.
Now let γ = min(γ1, γ2) and let ψ : E → R be a smooth function with

support in BE (η̂, γ). Then the support of F∗(Υ, ψ`) is contained in B. Set
B1 = BE (η̂1, γ) and B2 = BE (η̂2, γ), and denote by `i the projection of ` to E i.
Hypothesis (P) implies that `1 has a smooth density ρ1(η1) with respect to the
Lebesgue measure. Hence, for any function f ∈ C(Y ) supported in B, Fubini’s
theorem gives

〈f, F∗(Υ, ψ`)〉 =

∫
E

f
(
F (Υ, η)

)
ψ(η)`(dη)

=

∫
B2

{∫
B1

f
(
F (Υ, η1 + η2)

)
ψ(η1 + η2)ρ1(η1)dη1

}
`2(dη2)

=

∫
B2

{∫
B

f(y)
ψ(η1 + η2)ρ1(η1)

D(Υ, η1 + η2)
dy

}
`2(dη2),

where we performed the change of variable y = F (Υ, η1 + η2) to derive the last

line, in which η1 = G(Υ, η2; y). This relation implies that, for Υ ∈ BH (Υ̂ , δ),
the measure F∗(Υ, ψ`) (which is supported in B) has a density given by

ρψ(Υ, y) =

∫
B2

ψ(G(Υ, η2; y) + η2)ρ1(G(Υ, η2; y))

D(Υ,G(Υ, η2; y) + η2)
`2(dη2), (4.22)

where the denominator satisfies the following inequality in the support of the
numerator:

D(Υ,G(Υ, η2; y) + η2) ≥ c. (4.23)

Relations (4.22) and (4.23) show that ρψ is Ck-smooth and satisfies (4.19) for

Υ1, Υ2 ∈ BH (Υ̂ , δ). This completes the proof of the theorem.

Theorem 4.8. Suppose that the hypotheses of Theorem 4.7 are satisfied with
some integer k ≥ 0, and let points Υ̂ ∈X , η̂ ∈ E , ŷ ∈ Y be such that F (Υ̂ , η̂) = ŷ
and

ρj(η̂j) > 0 for all j ≥ 1, (4.24)

48



where η̂j = 〈η̂, ϕj〉E . Then ρ(Υ̂ , ŷ) > 0.

Proof. Let ψ : E → R be any C∞-function with support in a small ball BE (η̂, γ)
such that 0 ≤ ψ ≤ 1 and ψ(η̂) > 0. In this case, F∗(Υ, `) is minorised by
the measure F∗(Υ, ψ`). As was established in the proof of Theorem 4.7, the

latter has a density ρψ(Υ, y) given by (4.22). Taking Υ = Υ̂ and noting that

G(Υ̂ , η̂2, ŷ) = η̂1, we can write

ρ(Υ̂ , ŷ) ≥ ρψ(Υ̂ , ŷ) =

∫
B2

(
ψ(η̂)ρ1(η̂1)

D(Υ̂ , η̂)
+ g(η2)

)
`2(dη2), (4.25)

where g(η2) is a continuous function vanishing at η̂2. Now note that, in view
of (4.24), the first term in the brackets under the integral is positive, so that
the integrand (which is a non-negative function) is strictly positive in the
neighbourhood of η̂2. Moreover, it follows from (4.24) that η̂2 is in the support
of `2. We thus conclude that the integral in (4.25) is positive.

4.5 Agrachev–Sarychev theorem

Let us consider the Navier–Stokes system on T2 controlled by a finite-dimensional
external force. After projecting to the space H of square-integrable divergence-
free vector fields with zero mean value, we write it in the form

∂tu+ νLu+B(u) = η(t, x), (4.26)

where L = −Π∆, B(u) = Π(〈u,∇〉u), and Π : L2(T2,R2) → H stands for
Leray’s projection. We consider the problem on some interval JT = [0, T ] and
denote by SuT (u0, η) the map that takes functions u0 ∈ H and η ∈ L2(JT , H)
to u(T ), where u(t, x) is the solution of (4.26) issued from u0. The control
force η is assumed to have the form

η(t, x) =
∑
j∈Λ

ηj(t)ej(x), (4.27)

where Λ = {(1, 0), (1, 1), (−1, 0), (−1,−1)}, {ej} is the trigonometric basis in H
(see (1.5)), and ηj are smooth real-valued functions on JT . We denote by H1

the four-dimensional vector space spanned by {ej , j ∈ Λ} and endow the
space C∞(JT ,H1) with the usual Fréchet topology. The following result is
established in [AS06, Sections 4,6] (see also [Shi07, Theorem 2.5] for a more
explicit statement in the 3D case).14

Theorem 4.9. Let s ≥ 0 be an integer and let C0, C ⊂ V s be compact subsets.
Then, for any ε > 0, there is a number δ ∈ (0, T/2) and a continuous function
ΨT : C0 × C → C∞(JT ,H1) such that the following properties hold.

14The papers [AS06, Shi07] deal with the case when the initial point is fixed and the target
varies in a compact subset. However, exactly the same arguments enable one to handle the
situation in which both the initial and target states vary in compact subsets.
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Support. For any u0 ∈ C0 and û ∈ C, the support of ΨT (u0, û) is contained in
the interval [δ, T − δ].

Approximation. We have the inequality

sup
u0∈C0,û∈C

∥∥SuT (u0, ΨT (u0, û)
)
− û
∥∥
s
≤ ε. (4.28)
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