J Stat Phys @ CrossMark
DOI 10.1007/s10955-016-1625-6

Entropic Fluctuations in Thermally Driven Harmonic
Networks

V. Jaksi¢! . C.-A. Pillet>34 . A. Shirikyan'5

Received: 23 May 2016 / Accepted: 13 September 2016
© Springer Science+Business Media New York 2016

Abstract We consider a general network of harmonic oscillators driven out of thermal
equilibrium by coupling to several heat reservoirs at different temperatures. The action of the
reservoirs is implemented by Langevin forces. Assuming the existence and uniqueness of the
steady state of the resulting process, we construct a canonical entropy production functional
S’ which satisfies the Gallavotti-Cohen fluctuation theorem. More precisely, we prove that
there exists k. > % such that the cumulant generating function of S” has a large-time limit
e(a) which is finite on a closed interval [% — K¢, % + k], infinite on its complement and
satisfies the Gallavotti-Cohen symmetry e(1 — o) = e(«) for all @ € R. Moreover, we show
that e() is essentially smooth, i.e., that ¢/(a) — Foo as a — % F k.. It follows from the
Girtner—Ellis theorem that S’ satisfies a global large deviation principle with a rate function
1 (s) obeying the Gallavotti—Cohen fluctuation relation I (—s) — I (s) = s for all s € R. We
also consider perturbations of S’ by quadratic boundary terms and prove that they satisfy
extended fluctuation relations, i.e., a global large deviation principle with a rate function that
typically differs from 7 (s) outside a finite interval. This applies to various physically relevant
functionals and, in particular, to the heat dissipation rate of the network. Our approach relies
on the properties of the maximal solution of a one-parameter family of algebraic matrix
Riccati equations. It turns out that the limiting cumulant generating functions of S’ and its
perturbations can be computed in terms of spectral data of a Hamiltonian matrix depending
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on the harmonic potential of the network and the parameters of the Langevin reservoirs. This
approach is well adapted to both analytical and numerical investigations.

Keywords Harmonic networks - Fluctuation relations - Large deviations - Entropic
functionals

1 Introduction

Boundary driven mechanical systems are paradigmatic in nonequilibrium statistical mechan-
ics. Existence and uniqueness of nonequilibrium steady states have been extensively studied
for a variety of such systems: harmonic [47] and anharmonic [5] crystals, 1-dimensional
chains of anharmonic oscillators [6,8,21-24,65], rotors [11,12] and other Hamiltonian sys-
tems [9,26,49,50]. More general Hamiltonian networks have been considered in [10,27,52].
In this paper, we shall study stochastically driven networks of harmonic oscillators which
are the simplest models in the last category. The questions of existence and uniqueness
of the steady state is well understood in such systems. Estimates of the rate of relaxation
to the steady state are also available [1,66]. The focus of this work is on the concept of
entropy production and its fluctuations, although our approach can be extended to cover the
fluctuations of energy/entropy fluxes between individual heat reservoirs and the network.
The universal fluctuation relations satisfied by the entropy production rate (or phase-space
contraction rate) in transient [20,25] and stationary [31,32] processes have been one of
the central issues in the recent developments of nonequilibrium statistical mechanics. Var-
ious approaches to these relations have been proposed in the literature and we refer the
reader to [13,14,39,40,48,51,61,69] for reviews and detailed discussions. The interested
reader should also consult [67], where fluctuation relations are derived for boundary driven
anharmonic chains, and [41] for a discussion of these topics in the framework of Gaussian
dynamical systems. For theoretical and experimental works dealing specifically with mechan-
ically driven harmonic systems we refer the reader to [36,37,44].

In this paper we follow the scheme advocated in [39,40] and fully elaborated in [38]. The
details are as follows.

Consider a probability space (€2, P, P) equipped with a measurable involution ® : Q2 —
Q. Suppose that the measures P and P = P o © are equivalent. We define the canonical
entropic functional of the quadruple (2, P, P, ®) by

S(w) =1 dP( ) (1.1)
w) = 10g —=(w), .
& aF
and denote by P the law of this random variable under P. Since
So0B(w) =1 dPO@( ) =1 dﬁ( ) S(w) (1.2)
o =log —= =log —(w) = — , .
W e T e “

the support of P is symmetric w.r.t.the origin. It reduces to {0} whenever P = P. In the
opposite case the symmetry © is broken and the well known fact that the relative entropy of
P w.r.t. P, given by

Ent(P|P) = —/ S(w)P(dw) = —/ sP(ds)
Q R

is strictly negative (it vanishes iff P = P) shows that the law P favors positive values of S.
To obtain a more quantitative statement of this fact, it is useful to consider Rényi’s relative

@ Springer



Entropic Fluctuations in Thermally Driven Harmonic. . .

a-entropy
Ent, (P|P) = log / e?S@P(dw).
Q

Note that Ent (IP’I@) = Ent, (IP’I@) = 0, and since the function R > o +— Ent, (Pl@) is convex
by Holder’s inequality, one has Ent, (P|P) < 0 for « € [0, 1]. It is straightforward to check
that Ent, (P@) is a real-analytic function of o on some open interval containing ]0, 1[ and
infinite on the (possibly empty) complement of its closure. In particular, it is strictly convex
on its analyticity interval.

From the definition of P and Relation (1.2) we deduce

~ P~
Ent, (P|P) =log / e?5°P@Pp(dw) = log / e S @P(dw) = log / e 5@ —_ ()P(dw),
Q Q Q dP
(1.3)
and the definition of S yields
P~ ~ ~
log / e 5@ —_ (w)P(dw) = log / e1=95@P(dw) = Ent|_q (P|P).
Q dP Q
It follows that Rényi’s entropy satisfies the symmetry relation
Ent|_q (P|P) = Ent, (P|P), (1.4)

which, in applications to dynamical systems, will turn into the so-called Gallavotti-Cohen
symmetry. The second equality in Eq. (1.3) allows us to express Rényi’s entropy in terms of
the law P as

Enty (P|P) = e(ar) = log / e % P(ds).
R

Note that, up to the sign of a, e(@) is the the cumulant generating function of the random
variable S. Denoting by P the law of —§ under P, the symmetry (1.4) leads to

/e‘”ﬁ(ds)=/e_‘”P(ds)=/e_(]_"‘)SP(ds) =/e°‘Se_sP(ds),
R R R R

from which we obtain

dP ,
= e™s (1.5)

on the common support of P and P. Thus, negative values of S are exponentially suppressed
by the universal weight e*. In the physics literature such an identity is called a fluctuation
relation or a fluctuation theorem for the quantity described by S. Most often S is a measure
of the power injected in a system or of the rate at which it dissipates heat in some thermostat.
The equivalent symmetry of the cumulant generating function e(cr) of S which follows from
the symmetry (1.4) of Rényi’s entropy

e(l —a) =e(a) (1.6)

is referred to as the Gallavotti—Cohen symmetry. The name symmetry function is sometimes
given to

(s) =1 dP( )
5(s) = log —=(s).
£ dp
In terms of this function, the fluctuation relation is expressed as

s(s) = s.
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Fig. 1 A parallel RC circuit is o
fed with a constant current /. The T Ip Ic T
resistor R is in contact with a |
heat bath at temperature 7. The

Johnson—-Nyquist thermal noise
in this resistor generates a I U
fluctuating electromotive force V
which contributes to the potential
difference U = RIR + V driving
the capacitor C v
O
The above-mentioned fact that
0=Emmm®=kg/eﬂpmn
R
rewritten as
/ e 'P(ds) =1, 1.7
R
constitute the associated Jarzynski identity and the strict negativity of relative entropy
0 < —Ent(P|P) = /sP(ds), (1.8)

becomes Jarzynski’s inequality.

In all known applications of the above scheme to nonequilibrium statistical mechanics,
the space (€2, P, P) describes the space-time statistics of the physical system under consid-
eration over some finite time interval [0, 7] (in the following, we shall denote by a superscript
or a subscript the dependence of various objects on the length ¢ of the considered time inter-
val). The involution ®' is related to time-reversal and the canonical entropic functional S
to entropy production or phase space contraction. The fluctuation relation (1.5) is a finger-
print of time-reversal symmetry breaking and the strict inequality in (1.8) is a signature of
nonequilibrium.

The practical implementation of our scheme to nonequilibrium statistical mechanics
requires 4 distinct steps which will structure our treatment of thermally driven harmonic
networks. In order to clearly formulate the purpose of each of these steps, we illustrate the
procedure at hand on a very simple model of electrical RC-circuit described in Fig. 1. We
shall not provide detailed proofs of our claims in this example since they all reduce to ele-
mentary calculations. We refer the reader to [74] for a detailed physical analysis and to [30]
for experimental verification of the fluctuation relations for this system.

Step 1: Construction of the canonical entropic functional
The internal energy of the circuit of Fig. 1 is stored in the electric field within the capacitor
and is given by

ZZ

E=— 1.
2C’ (1.9)

where z denotes the charge on the plate of the capacitor and C is the capacitance. The equation
of motion for z is

. t Vi
=1 — L
“ RC TR
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where [ is the constant current fed into the circuit and V; the electromotive force (emf) gen-
erated by the Johnson—-Nyquist thermal noise within the resistor R. Integrating the equation
of motion gives

1 t
2 =R 4 (1—e/ROY RCT + E/ e~ (=9/RCy 4. (1.10)
0
To simplify our discussion (and to avoid stochastic integrals and the technicalities related to
time-reversal), we shall assume that V; has the form

V o0
t
== ;skw — k1),

where 7 < 79 = RC and & denotes a sequence of i.i.d. centered Gaussian random variables
with variance o 2. Sampling the charge at times nt + O yields a sequence zg, 21, 22, - - -
satisfying the recursion relation

Zk+1 = N2k + (1 = M7 + k41,

where 7 = Itgp and n = e /0, According to (1.10), the charge between two successive
kicks is given by
Zhes =0z 4 (1 —e™/™) 7, s €0, 7[. (1.11)

Assuming zo to be independent of {&}, the sequence zg, z1, 22 . .. is a Markov chain with
transition kernel

1 / z
p(12) = ﬁe—(z = (12?207, (1.12)
o

One easily checks that the unique invariant measure for this chain has the pdf

1
Pt (z) = m

In the case I = 0 (no external forcing), according to the zero™ law of thermodynamics,
the system should relax to its thermal equilibrium at the temperature 7' of the heat bath.
Thus, in this case the invariant measure should be the equilibrium Gibbs state of the circuit
at temperature 7 which, by (1.9), has the pdf

e~ @ A=) 20? (1.13)

1 —22/2kgTC
7) = e 3 /%kBTC
Pal® = pTe
kp denoting Boltzmann’s constant. This requirement fixes the value of variance of &’s and
o2 =kpTC (1—n?).

One can show (see Sect. 8 in [3]) that, in the limit ¢ — 0, the covariance of the fluctuating
emf V; converges to

(Vs V,) = 2kpTRS(s — 1),

in accordance with the Johnson—Nyquist formula ([55], see also [73, Sect. IX.2]). For I # 0,
Eq. (1.13) describes a nonequilibrium steady state (NESS) of the system. In the following,
we shall consider the stationary Markov chain started with the invariant measure and denote
by (- )s the corresponding expectation.
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The pdf of a finite segment Z, = (2, ..., zx) € R**! of the stationary process is given
by
Pn(Zn) = p(znlzn-1) - - - p(z1lz0) Pst(20)s (1.14)
which is the Gaussian measure on R”*! with mean and covariance

(st =7, (zkz))st — (2)selz))se = kpT Ce k=ile/m0,

We chose the involution ® : R"T! — R**! to be the composition of charge conjugation
7 > —z with time-reversal of the Markov chain,

©:(z0,..-,20) = (=Zu, ..., —20)-

The time-reversed process is the Markov chain which assigns the weight (1.14) to the reversed
segment © (Z,,). Thus, the transition kernel p(z’|z) and invariant measure pg(z) of the time-
reversed process must satisfy

p(—=z0l —z1) -+ P(=zn—1l — 20) Pst(—zn) = PZnlzn—1) - - - P(z1lz0) Pst(z0)  (1.15)

foralln > 1 and Z, € R*T!. For n = 1, this equation becomes

P(=20l — z1) Pst(z1) = p(z11z0) pst(z0)- (1.16)

Integrating both sides over z; gives

Pst(—=20) = pst(z0),
from which we further deduce
Pst(20)
Pst(z1)

One then easily checks that (1.15) is indeed satisfied for all » > 1. Note that in the case
I = 0 one has

p(=z0l — z1) = p(z1lz0)

p(—Z1—2)=pE'2),  ps(2) = ps(—2),

and it follows that p(z'|z) = p(z’|z), Eq. (1.16) turning into the detailed balance condition.
In this case, the time-reversed process coincides with the direct one: in thermal equilibrium,
the time-reversal symmetry holds. However, in the nonequilibrium case / # 0, time-reversal
invariance is broken and pg(z) # pst(2).

We are now ready to describe the canonical entropic functional. Applying our general
scheme to the marginal P of the finite segment Z,, (which has the pdf p,), we can write (1.1)
as

Pn(Zy) ~ log P(znlzn—1) -+ p(z11z0) pst(z0)
pPn(©(Z,)) p(=z0l —z1) - p(=zn—1] — 20) Pst(—2n)

dIP)nT
S =log dﬁ?(Z,,) = log

—1
"Zl p(rs1lze) Psi(20)
= og lo .

= Pzl = zk) Ppst(—2zn)

Egs. (1.12) and (1.13) yield

p(|2) 1 (2’2 I - , 7)
lo = — —_— - = z+2)z2),
& (=2 = 7) BTC\2 2 T T

1 2
log pst(zo) (z,,

2

24 _
= -~ — 5 T (@o+z)z ),
put—z kgrc\2 2 T "))
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from which we deduce

§hT — L unz_izk‘i‘ Zn + 120 g
kpT | 1+n = 1+7 C
Step 2: Deriving a large deviation principle
From a more mathematical point of view, as stressed by Gallavotti-Cohen [31,32], the inter-
esting question is whether the entropic functional S’ satisfies a large deviation principle in
the limit # — o0o. More precisely, is it possible to control the large fluctuations of S’ by a
rate function R 3 s — [ (s) such that

P [lst c S] ~ eft infges I(S)’
t
as t — oo for any open set S C R ? Moreover, does this rate function satisfy the relation

I(—s) = I(s) +s, (1.17)

which is the limiting form of (1.5), for all s € R? Finally, can one relate this rate function
to the large-time asymptotics of Rényi’s entropy via a Legendre transformation

I(s) = sup (as — e(—a)),  e(a) = limsup lEnta (P'|P),
aeR t—oo I

as suggested by the theory of large deviations? To illustrate these points, we return to our

simple example.

For this very particular system, the fluctuation relation (1.5) essentially fixes the law of the
random variable $"7. Indeed, since S"* is Gaussian under the law of the stationary process (as
a linear combination of Gaussian random variables &), its pdf P"" is completely determined
by the mean s, and variance 0,12 of . A simple calculation based on (1.5) shows that
a,% = 25,, whence it follows that

e /45, (1.18)

where we set

1 [/1-— 272
Sy = (") = —( +’7n+1) =

We conclude that

ene (@) = Enta(P’”@”’) = log/ e P (s)ds = —a(l — a)s,, (1.19)
and hence
@ = lim Len@=—al—ay, o112
e(x) = lim —e, (@) = —a(l — a)s, §=———.
n—ocont ' kpT 1+nCt

A direct calculation using (1.18) implies that, for any open set S C R,

nt N —nt inf 1(s)
P eS|~e seS asn — 00,
nt

where the rate function
(s —5)*
4s

I1(s) = sup(as —e(—a)) =

@ Springer



V. Jaksic et al.

satisfies the fluctuation relation (1.17). The large-time symmetry function for S"7 is
s(s)=1(—s)—I1(s) =s5.

Step 3: Relating the canonical entropic functional to a relevant dynamical or thermo-
dynamical quantity

Denoting by U; = z;/C the voltage and using (1.10), the work performed on the system by
the external current / in the period ]k, (k + 1)t[ is equal to

T T = =2
2t Ik 4
Wy = U,ldt = —Idt=(0—-n——->U0—-1/10 —1n)—.
. /0 : /0 L= (-2 - -t -5
Thus, we can rewrite
snt 1 2 1-— 127z
_ (wy — W) +2 ”@w_i_,iz”‘“m) ’
nt kpT [1+n 14+nrt nCt 1+4n
where
wnt n—1 =2
Wn = , wht = Z(SW/(, W= (Wy)st = = = RI?
nt P Cto

W"T is the work performed by the external current during the period [0, nt]. Accordingly,
wy, is the average injected power and w is its expected stationary value. It follows from the
first law of thermodynamics that the heat dissipated by the resistor R in the thermostat during
the interval [0, nt 4 O[ is given by

2 2
nt Zn 20 nt
=—(-z-2)+wr,
¢ (ZC 2C)+

and so we may also write

snt 1 2 o l—=nmn_ 1{2%Tzi4+nz0 22—
—=— | - +2——g+ - == + -0 )
nt kpT | 1+17 l+nt n\Ct 1+n Ct(l+n)
where
an
qn = s q = {qn)st =W,
nt

denote the average dissipated power and its expected stationary value.

Thus, up to a multiplicative and additive constant and a “small” (i.e., formally O (n~")) cor-
rection, S* /nt is the time averaged power injected in the system by the external forcing and
the time averaged power dissipated into the heat reservoir during the time period [0, nt + O[.

Step 4: Deriving a large deviation principle for physically relevant quantities

The problem encountered here stems from the fact that the relation between S’ and a phys-
ically relevant quantity (denoted by &) typically involves some “boundary terms”, which
depend on the state of the system at the initial time O and final time 7. In cases where these
boundary terms are uniformly bounded as t — 00, one finds that &’ satisfies the same large
deviation principle as S’. This is what happens, for example, in strongly chaotic dynamical
systems over a compact phase space (e.g., under the Gallavotti-Cohen chaotic hypothesis);
we refer the reader to [40, Sect. 10] for a discussion of this case. However, unbounded bound-
ary terms can compete with the tails of the law of S’, which may lead to complications, as
our example shows.
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Given the Gaussian nature of w,,, it is an easy exercise to show that the entropic functional
directly related to work and defined by
GnT s"to1 1 2z 1 2 T
wo_ 2Z zZn +m20 _ 2 (w, 7)+2 mATIE
14+n I+nrt

nt  nt nkBTCr 1479 kBT

has a cumulant generating function which satisfies

lim - log(e ), = e(cr).

n—-oont
for all @ € R. It follows that G} satisfies the very same large deviation estimates as
S"T. However, note that unlike function (1.19), the finite-time cumulant generating func-
tion log(e~*S% )¢ does not satisfy the Gallavotti-Cohen symmetry (1.6). Only in the large
time limit do we recover this symmetry. A simple change of variable allows us to write down
the cumulant generating function of the work W"?,

. 1 _ nt 1— nz w
ework(“) B ”gnolo E 10g<e - /kBT>St - (1 e 2T/TO ) kBT ’

We conclude that the work W"T satisfies the large deviations estimate

T
piT |:L wn c W:| ~ o7 infueyy Tvork (w)
nt kBT

for all open sets W C R with the rate function

T (1) 1 w szT 21 /70
wy=-({w——|) — .
work 4 ksT) W 1—n?

The symmetry function for work is thus

2t /10
1 — nzw

Note that, as the kick period 7 approaches zero, we recover the universal fluctuation rela-
tion (1.17), i.e., Swork (W) = w.
Consider now the entropic functional

ST _ s II(ZZzn—I—nZo zﬁ—z%)

Swork (W) = Tyork (—w) — Iywork (W) =

nt nt nkgT \ Ct 1+n Ct(l+n)
1 2 2 )+2 —nT_ (1.20)
T kT 14 IO T '

related to the dissipated heat. The explicit evaluation of a Gaussian integral shows that its
cumulant generating function is given by

1 a? a,a + b, .
_aG}n]r>Sl — e(a) — % |:10g (1 — ﬁ) + %a;a?)] if |(M| < Oy,

n al‘l .
+00 otherwise;

1
— log(e
nt
where a, and b, are bounded (in fact converging) sequences and
1 149

Op = 7

21—z
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The divergence of the cumulant generating function for |«| > o, is of course due to the
competition between the tail of the Gaussian law p, and the quadratic terms in &} ° .

Note that the sequence «;, is monotone decreasing to its limit
1+

¢ 5

and it follows that

<e—(x6ﬁ1> _ [e(a) if o] < ac;
st

. 1
lim — log +oo if |a| > .

n—-oo nt
The unboundedness of the boundary terms involving z% and zﬁ in (1.20) leads to a breakdown
of the Gallavotti-Cohen symmetry for |o — %| > |oe — %|. More dramatically, the limiting
cumulant generating function is not steep, i.e., its derivative fails to diverge as o approaches
Foa.. Under such circumstances, the derivation of a global large deviation principle for
nonlinear dynamical systems is a difficult problem which remains largely open and deserves
further investigations. For linear systems, however, as shown in [41], it is sometimes possible
to exploit the Gaussian nature of the process to achieve this goal. Indeed, following the strategy
developped in Sect. 3.4, one can show that &}* satisfies a large deviation principle with rate
function

I(s_)+ (s —s_)I'(s_) fors <s_;

Ih(s) = sup (as —e(—a)) = I(s) fors € [s—, s¢];
lor| <are I(sy)+ (s —s)I'(sy) fors > sy;
where
o= —@) =15, sy =—e(—a) =2 +5.

Performing a simple change of variable, we conclude that the cumulant generating function
of the heat Q" satisfies

. 1
eheat (@) = nlggo E log(e

_D‘Qm/kBT> _ ework (o) for |o| < 1;
T 400 for || > 1.

The corresponding large deviations estimate reads

nt
piT |:LkQ - c Qj| ~ e—nrinfqeg Ineat(q)
nt Kp

for all open sets Q C R with the rate function

2
1+nQ+ 147 T kpT

2 l—t/to—ntw q
Iheat(q) = sup (@q — eheat(—)) = Iy ( — >
la|<1

which satisfies what is called in the physics literature an extended fluctuation relation [15,
16,28,29,33-35,54,72] with the symmetry function

qu fOI‘quf—qf;
4+ — 4-
Sheat () = Iheat(—q) — Iheat(q) = l]2 —2qq+ +6]E
——————— for —q- <q <q4;
9+ — 4-
g+ +q- forg > g4

@ Springer



Entropic Fluctuations in Thermally Driven Harmonic. . .

3 1 1 3
‘ ‘ ‘ ‘
/”’
-
Ld
7’
”
L d
e
-
|- s -
2 = 2
1k 1
1k 1-1
s
= ”’ -
2 - 2
pag heat
-
-
P R ettt work
’/
| | | |
3 1 1 3

Fig. 2 The symmetry functions (i.e., twice the odd part of the rate function) of work and heat for the circuit
of Fig. 1 in the limit T — O (the unit on the abscissa is Rlz/kB T)

where

RI? (1—n? RI? (1—n?
q_:——( —1), q+:—( +1).

kpT \ t/70 kpT \ t/70
Thus, the linear behavior persists for small fluctuations |g| < |g_|, but saturates to the
constant values F(g+ + g—) for |g| > g+, the crossover between these two regimes being
described by a parabolic interpolation. Note also that, as the kick period t approaches zero,
g+ — (1F2)q/kpT.Inthis limit the symmetry function speq (¢) agrees with the conclusions
of [74] (see Fig. 2). ]

As this example shows, the main problem in understanding the mathematical status and
physical implications of fluctuation relations in oscillator networks and other boundary driven
Hamiltonian systems stems from the lack of compactness of phase space and its consequence:
the unboundedness of the observable describing the energy transfers between the system and
the reservoirs [i.e., the last term in the right-hand side of Eq. (1.20)]. We will show that
one can achieve complete control of these boundary terms by an appropriate change of drift
(a Girsanov transformation) in the Langevin equation describing the dynamics of harmonic
networks. This change is parametrized by the maximal solution of a one-parameter family
of algebraic Riccati equation naturally associated to deformations of the Markov semigroup
of the system. For a network of N oscillators, our approach reduces the calculation of the
limiting cumulant generating function of the canonical functional S’ and its perturbations
by quadratic boundary terms to the determination of some spectral data of the 4N x 4N
Hamiltonian matrix of the above-mentioned Riccati equations. Combining this asymptotic
information with Gaussian estimates of the finite time cumulant generating functions, we are
able to derive a global large deviation principle for arbitrary quadratic boundary perturbations
of S’. We stress that our scheme is completely constructive and well suited to numerical
calculations.

The remaining parts of this paper are organized as follows. In Sect. 2 we introduce a gen-
eral class of harmonic networks and the stochastic processes describing their nonequilibrium
dynamics. Section 3 contains our main results. There, we consider more general framework
and study the large time asymptotics of the entropic functional S’ canonically associated
to stochastic differential equations with linear drift satisfying some structural constraints
(fluctuation—dissipation relations). We prove a global large deviation principle for this func-
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tional and show, in particular, that it satisfies the Gallavotti-Cohen fluctuation theorem. We
then consider perturbations of S’ by quadratic boundary terms and show that they also sat-
isfy a global large deviation principle. This applies, in particular, to the heat released by the
system in the reservoirs. We turn back to harmonic networks in Sect. 4 where we apply our
results to specific examples. Finally, Sect. 5 collects the proofs of our results.

2 The Model

We consider a collection of one-dimensional harmonic oscillators indexed by a finite set Z.
The configuration space R” is endowed with its Euclidean structure and the phase space
2 = RZ @ R7 is equipped with its canonical symplectic 2-form dp A dg. The Hamiltonian
is given by

23 (p.q) — hp,q) = 3|pI* + Slwg|*, 2.1

where | - | is the Euclidean norm and » : RZ — RZ is a non-singular linear map. Time-
reversal of the Hamiltonian flow of / is implemented by the anti-symplectic involution of &
given by

0:(p,q) > (—p,q). (2.2)

We consider the stochastic perturbation of the Hamiltonian flow of / obtained by coupling
a non-empty subset of the oscillators, indexed by dZ C Z, to Langevin heat reservoirs. The
reservoir coupled to the ith oscillator is characterized by two parameters: its temperature
¥; > 0 and its relaxation rate y; > 0. We encode these parameters in two linear maps: a
bijection 9 : R%Z — R7 and an injection ¢ : R¥Z — RZ = R¥ @ RZ\I7 defined by

U (ui)ieaz > (Dini)icoz,  t: (Ui)icor = (V2YViui)ieaz © 0.

The external force acting on the ith oscillator has the usual Langevin form

F:(p. @) = Qyid) T — i, 2.3)

where the uw; are independent white noises.
In mathematically more precise terms, we shall deal with the dynamics described by the
following system of stochastic differential equations

dg(t) = p(t)dt, dp(t) = — (%Ll*p(l‘) + a)*a)q(t)) dr + tﬁ%dw(t), 2.4

where * denotes conjugation w.r.t.the Euclidean inner products and w is a standard R%Z-
valued Wiener process over the canonical probability space (W, W, W). We denote by
{Wi;}:>0 the associated natural filtration.

To the Hamiltonian (2.1) we associate the graph G = (Z, £) with vertex set Z and edges

&={{i,j} CI| (0" w)ij # 0}

To avoid trivialities, we shall always assume that G is connected.

As explained in the introduction, we shall construct the canonical entropic functional of
the process (p(t), g(¢)) and relate it to the heat released by the network into the thermal
reservoir. We end this section with a calculation of the latter quantity.

Applying 1t6’s formula to the Hamiltonian & we obtain the expression

dh(p(1),q(0)) = Z yi (9 — pi@?)dt + (zyiﬁi)%l’i(t)dwi(t)
icoT
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which describes the change in energy of the system. The ith term on the right-hand side of
this identity is the work performed on the network by the ith Langevin force (2.3). Since
these Langevin forces describe the action of heat reservoirs, we shall identify

1

8Qi(t) = y; (0 — pi (%) dt + Qyi9:)2 pi(t)dw; (1) (2.5
with the heat injected in the network by the ith reservoir. A direct application of the fundamen-
tal thermodynamic relation between heat and entropy leads to consider dsS; (t) = —v;” Is Q)

as the entropy dissipated into the ith reservoir. Accordingly, the total entropy dissipated in
the reservoirs during the time interval [0, 7] is given by the functional

14Qi ! “1yd _
& = - Z/O QT(” = Z/O (—@no D pidwi(s) = 7 (1 =97 pi())ds )

iedZ i€dZ
(2.6)

For a lack of better name, we shall call the physical quantity described by this functional the
thermodynamic entropy (TDE), in order to distinguish it from various information theoretic
entropies that will be introduced latter.

3 Abstract Setup and Main Results

It turns out that a large part of the analysis of the process (2.4) and its entropic functionals
is independent of the details of the model and relies only on its few structural properties. In
this section we recast the harmonic networks in a more abstract framework, retaining only
the structural properties of the original system which are necessary for our analysis.

Notations and Conventions Let E and F be real or complex Hilbert spaces. L(E, F) denotes
the set of (continuous) linear operators A : E — Fand L(E) = L(E, E).For A € L(E, F),
A* € L(F, E) denotes the adjoint of A, ||A|| its operator norm, Ran A C F its range
and Ker A C E its kernel. We denote the spectrum of A € L(E) by sp(A). A is non-
negative (resp. positive), written A > 0 (resp. A > 0), if it is self-adjoint and sp(A) € [0, oo
(resp.sp(A) C]J0O, oco[). We write A > B whenever A — B € L(E) is non-negative. The
relation > defines a partial order on L(E). The controllable subspace of a pair (A, Q) €
L(E) x L(F, E) is the smallest A-invariant subspace of E containing Ran Q. We denote it
by C(A, Q). If C(A, Q) = E, then (A, Q) is said to be controllable. We denote by C+ the
open left/right half-plane. A € L(E) is said to be stable/anti-stable whenever sp(A) C C.

We start by rewriting the equation of motion (2.4) in a more compact form. Setting

D 1
A e N A

Equation (2.4) takes the form
dx(t) = Ax(t)dr + Qdw(?), (3.2)
and functional (2.6) becomes
t t
&' =-— / 971 0%x(s) - dw(s) + / 9710 x()Mds — 31 r(QPTION).  (33)
0 0

Note that the vector field Ax splits into a conservative (Hamiltonian) part Q2x and a
dissipative part —I"x defined by

Q:%(A-A*):[g _w*], (3.4)
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F=-tA+4n=4097'0" (3.5)
These operators satisfy the relations
Q*=60Q0 = -Q, *=0ro=r. (3.6)

The solution of the Cauchy problem associated to (3.2) with initial condition x (0) = xo can
be written explicitly as

t
x(1) = e'xp + / =94 0dw(s). (3.7
0

This relation defines a family of E-valued Markov processes indexed by the initial condition
xo € E. This family is completely characterized by the data

(A, 0,0,0) e L(E) x L(0 &, E) x L0 E) x L(8), (3.8)

where E and 0 E are finite-dimensional Euclidean vector spaces and (A, Q, ¥, 0) is subject
to the following structural constraints:

Ker (A — A*)NKer Q* = {0}, A+ A*=—-Qv7'Q0% v >0, 0*Q0 >0,

0=0*=0"1, 60 =+0, 0A0=A*, [9,0*0]=0. (3.9)

In the remaining parts of Sect. 3, we shall consider the family of processes (3.7), which are
strong solutions of SDE (3.2), associated with the data (3.8) satisfying (3.9).

Remark 3.1 The concrete models of the previous section fit into the abstract setup defined
by (3.2), (3.8), and (3.9) with Ker (A — A*) = {0} and 6 Q = — Q. We have weakened the
first condition and included the case 6 Q = +Q in (3.9) in order to encompass the quasi-
Markovian models introduced in [23,24]. There, the Langevin reservoirs are not directly
coupled to the network, but to additional degrees of freedom described by dynamical variables
r € R, where J is a finite set. The augmented phase space of the network is & = R7 @
RZ & RZ,and 9 E = R7. The equations of motion take the form (3.2) with

r —%u* —A* 0 t 1
x=|p |, A= A 0 —o*], O=1|0]|v2,
wq 0 w 0 0

where ¢ : R — RY is bijective and A : RY — RZ injective. The time reversal map in this
case is given by

1 0
6=({0 -1 O
0 1

Writing the system internal energy as H(x) = %l p|2 + %|wq|2 + %|r|2, the calculation of
the previous section yields the following formula for the total entropy dissipated into the
reservoirs
ry lig—1t 2 1,914 2
& + 3107 2r()" — 3197 2r(0)]7, (3.10)
where &' is given by (3.3).
Let P(E) be the set of Borel probability measures on E and denote by P'(x, -) € P(E)

the transition kernel of the process (3.7). For bounded or non-negative measurable functions
fon Eand v € P(E) we write

v(f)=/f(x)v(dx), f,=P’f=/P’<-,dy>f<y>, by = P! =/v(dy)P’(y, O,
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so that v(f;) = v;(f). A measure v is invariant if v, = v for all ¥ > 0. We denote the actions
of time-reversal by

f=0f=/fo0h, T=1v0=vo6,

so that v( f ) = V(f). A measure v is time-reversal invariant if V = v. The generator L of the
Markov semigroup P’ acts on smooth functions as

L=3V-BV+Ax-V, (3.11)

where

B = Q0" (3.12)

We further denote by Py, the induced probability measure on the path space C(R*, E) and
by E,, the associated expectation. Considering x¢ as a random variable, independent of the
driving Wiener process w and distributed according to v € P(E), we denote by P, and E,
the induced path space measure and expectation. In the language of statistical mechanics,
functions f on E are the observables of the system, v is its initial state, and the flow 7 — v,
describes its time evolution. Invariant measures thus correspond to steady states of the system.

The following result is well known (see Chapter 6 in the book [18] and the papers [27,52]).
For the reader convenience, we provide a sketch of its proof in Sect. 5.1.

Theorem 3.2 (1) Under the above hypotheses, the operator
e *
M = / A BesN ds
0

is well defined and non-negative, and its restriction to Ran M satisfies the inequality
Omin = minsp(?) < M|, < maxsp(¥) = Fmax. (3.13)

Moreover; the centred Gaussian measure ju with covariance M is invariant for the Markov
processes associated with (3.2).
(2) The invariant measure [ is unique iff the pair (A, Q) is controllable. In this case, the
mixing property holds in the sense that, for any f € L'(E, du), we have

. tp

where the convergence holds in L' (8, dj) and uniformly on compact subsets of 2.
(3) Let x(t) be defined by relation (3.7), in which the initial condition x is independent of w
and is distributed as jv. Then x (t) is a centred stationary Gaussian process. Moreover, its
covariance operator defined by the relation (n1, K (t, s)nz) = IEM{(x ), n)(x(s), 112)}
has the form
K(t,s) = eI™)+A e =9)-A", (3.14)

Remark 3.3 In the harmonic network setting, if & = 99/ for some ¥y €]0, oo[ (i.e., the
reservoirs are in a joint thermal equilibrium at temperature vy), then it follows from (3.13)
that M = ¢, which means that p is the Gibbs state at temperature ¥y induced by the
Hamiltonian 4.

In the sequel, we shall assume without further notice that process (3.7) has a unique
invariant measure (, i.e., that the following hypothesis holds:

Assumption (C) The pair (A, Q) is controllable.
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Remark 3.4 To make contact with [52], note that in terms of Stratonovich integral the TDE
functional (3.3) is given by

t t
&' =_/ 0‘1Q*x(s)odw(s)+%/ 97" Q%x(s)Pds.
0 0

This identity is a standard result of stochastic calculus (see, e.g., Sect. I1.7 in [58]) and is
used as a definition of the entropy current in [52].

3.1 Entropies and Entropy Production

In this section we introduce information theoretic quantities which play an important role in
our approach to fluctuation relations. We briefly discuss their basic properties and in particular
their relations with the TDE &'.

Let vy and v, be two probability measures on the same measurable space. If vy is absolutely
continuous w.r.t. v, the relative entropy of the pair (vq, v7) is defined by

dU1
Ent(vi|1n) = — [ log divz dvi.

We recall that Ent(vy|vy) € [—o00, 0], with Ent(v1|vy) = 0 iff v = 17 (see, e.g., [56]).
Suppose that v; and v, are mutually absolutely continuous. For o € R, the Rényi [60]
relative a-entropy of the pair (vq, v2) is

dl)1 «
Enty (v1|v2) = log E dv;.

The function R 5 « +— Enty(vi|v2) €] — 00, 0o] is convex. It is non-positive on [0, 1],
vanishes for o € {0, 1}, and is non-negative on R\]0, 1[. It is real analytic on ]0O, 1[ and
vanishes identically on this interval iff vi = v,. Finally,

Ent|_q(v1]v2) = Enty (v2|vy) (3.15)

for all € R.
Let v € P(E) be such that v(|x|?) < oo (recall that in our abstract framework the
Hamiltonian is h(x) = %|x|2). The Gibbs—Shannon entropy of v, = v P’ is defined by

d
Sas () = —/log (dl’) v (dx). (3.16)
x
The Gibbs—Shannon entropy is finite for all # > 0 (see Lemma 5.4 (1) below) and is a measure

of the internal entropy of the system at time ¢.
To formulate our next result (see Sect. 5.2 for its proof) we define

Po(B) = [v € P(E)

Linlx—al? -
/62’"'" "y (dx) < oo for somem > 0 and a € .:].

Note that any Gaussian measure on & belongs to P4 (E).
Proposition 3.5 Let a non-negative operator 8 € L(8) be such that'

BO =00, 080=8. 3.17)

I An operator S satisfying (3.17) always exists. For instance, one can define B by the relations Sx = Q¥ Iy
if x = Qy for some y € 9E and Bx = x if xLRan Q.
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Define the quadratic form

op(x) = 3x - Tpx, T =[Q, Bl (3.18)
and a reference measure g on & by
d 1
1B (x) = e~ 3187, (3.19)
dx

Then the following assertions hold.

(1) ug® = ug and Oog = —oyp.
(2) Let LP denote the formal adjoint of the Markov generator (3.11) w.rt. the inner product
of the Hilbert space L*(E, wug). Then

OLPO = L +0p. (3.20)
(3) The TDE (3.3) can be written as
! d d
& = —/ op(x(5))ds +log —L (x(1)) — log =2 (x(0)). (3.21)
0 dx dx
(4) Suppose that Assumption (C) holds. Then for any v € P, (E) the de Bruijn relation
d—Ent(v| y=1v, (10*VIo %V (3.22)
dr I 7Vt g i .

holds for t large enough. In particular, Ent(v;|t) is non-decreasing for large t.
(5) Under the same assumptions

< (Sas0) + BLS') = b (10" Vlog ot (3.23)
dr 2 dug
holds for t large enough.

Remark 3.6 Part (2) states that our system satisfies a generalized detailed balance condition
as defined in [24] (see also [6]).

Let us comment on the physical interpretation of Part (3) in the harmonic network setting.
Let Z = Uek Zy be a partition of the network and denote by m; the orthogonal projection
on R? with range R%*. Defining

he(p,q) = Slmepl? + Homg?,  wi(@) = 3q - (o om + me*or)g,

for k,I € K, we decompose the network into |K| clusters Ry with internal energy Ay,
interacting through the potentials vi ;. Denote by

hi(p. @) = hi(p, @) + 5 D vki(q)
15k

the total energy stored in Ry. Assume that all the reservoirs attached to Ry, if any, are at the
same temperature, i.e.,
i € NIT = Y m = Oy, (3.24)

and for k € K let B > 0 be such that g = 19171 whenever i € Z; N7 (see Fig. 3). Defining
the non-negative operator § by

3x-px =Y Bhi(p.q), (3.25)

keK
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e

Fig. 3 A partition of the network. Black disks represents heat reservoirs. In this situation one has, ﬁfl =
91 =03, B;, ' =04 =05 =6 B, =023 >0andps > 0 arbitrary

we observe that (3.17) holds as a consequence of (3.24) and the time-reversal invariance of
fzk. The corresponding reference measure (g is, up to irrelevant normalization, a local Gibbs
measure where each cluster Ry is in equilibrium at the inverse temperatures Sy.

1t6’s formula yields the local energy balance relation

dh(x(1) = =1 p(@) - (mew*o — W om)gdt + > 80;(0), (3.26)
i€ZyNdZ

where § Q; (¢) is given by (2.5). The last term on the right-hand side of this identity is the
total heat injected into subsystem R by the reservoirs attached to it. Thus, we can identify

(@) =D k10, ko) = §p) - (motom — me*em)g(),
14k

with the total flux of energy flowing out of Ry into its environment which is composed of the
other subsystems ;.. Multiplying Eq. (3.26) with B, summing over k, integrating over
[0, ¢] and comparing the result with (2.6) we obtain

g dug dug
t = — — [—
G = I;(,Bk/o jk(t)dt + log T (x(t)) — log i (x(0)).

Comparison with (3.21) yields
op(x() = D Biik(®) = 5 D (Br — Bk (1),

kek k£l
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which, according to the heat-entropy relation, is the total inter-cluster entropy flux. Two
different ways of partitioning the system and assigning reference local temperatures to each
subsystems leads to total entropy dissipation which only differs by a boundary term

d/,Lﬁ

op(x (1)) — op(x (1)) = D Biik() — D Bii's(t) = log

kekK keK’

(X(t))

provided the local inverse temperatures fy, ﬁ,/( are consistent with the temperatures of the
IeServoirs.

Equation (3.23) can be read as an entropy balance equation. Its left-hand side is the sum of
the rate of increase of the internal Gibbs—Shannon entropy of the system and of the TDE flux
leaving the system. Thus, the quantity on the right-hand side of Eq. (3.23) can be interpreted
as the total entropy production rate of the process. Using Egs. (3.16) and (3.21), we can
rewrite Eq. (3.23) as

d d dv;
TEJEp(. ] =, (—Uﬁ)-i- aEm(vfw) (IQ Vlog ﬂ|2) (327)

where the entropy production functional Ep is defined by
! dy; dv
Ep(v,1) = — [ op(x(s))ds —log —(x(1)) + log ——(x(0))
0 dup dug

. dv; dv
= 6" —log —(x(t)) + log — (x(0)). (3.28)
dx dx

In the physics literature, the quantity

dv,;
Gstoch () = —log T(x(t))’
X

is sometimes called stochastic entropy (see, e.g., [69, Sect. 2.4]). In the case v = pu, i.e., for
the stationary process, stochastic entropy does not contribute to the expectation of Ep(u, 1),
and Eq. (3.28) yields

1 1
TEulEp(u, ] = ;EM[G'] = —u(op), (3.29)

so that (3.27) reduces to
du
— uop) = 1 (IQ*V log d—ﬁ) : (3.30)
Hp

where the right-hand side is the steady state entropy production rate. In the following, we set

ep = —u(op). (3.31)

By (3.29) this quantity is independent of the choice of § € L(Z) satisfying Conditions (3.17).
The relation (3.30) shows that ep > 0. Computing the Gaussian integral on the right-hand
side of (3.30) yields

ep =L@ (MQ— 00 M (MQ— 09~y = LIM (MO - 099 23, (332)

where || - ||2 denotes the Hilbert—Schmidt norm. Thus, ep > 0 iff MQ — Q¥ # 0. By
Remark 3.3, the latter condition implies in particular that the eigenvalues of ¥ (i.e., the
temperatures 1;) are not all equal. Part (2) of the next proposition provides a converse. For
the proof see Sect. 5.3.
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Proposition3.7 (1) ep=0& MQO =00 < [Q, M]=0<x u® = 4.
In particular, the steady state entropy production rate vanishes iff the steady state | is
time-reversal invariant and invariant under the (Hamiltonian) flow e’ £

(2) Let V1, ¥y be two distinct eigenvalues of ¥ and denote by 1, my the corresponding
spectral projections. If C(2, Q1) N C(2, Qma) # {0}, thenep > O.

Remark 3.8 The time-reversal invariance ©® = p of the steady state is equivalentto O MO =
M. For Markovian harmonic networks, the latter condition is easily seen to imply

n(piqj) =0, (G, jeD),

i.e., the statistical independence of simultaneous positions and momenta. In the quasi-
Markovian case, 0 M6 = M implies

w(piq;) = u(piry) = u(qjry) =0, (G, j €L, ke ).

3.2 Path Space Time-Reversal

Given t > 0, the space-time statistics of the process (3.7) in the finite period [0, t] is
described by (X7, X7, P}), where P} is the measure induced by the initial law v € P(E)
on the path-space X* = C([0, t], E) equipped with its Borel o-algebra X*. Path space
time-reversal is given by the involution

O : x = {x(O}heo,r1 = X = {0x(T — D}ie0,7]

of X7. The time reversed path space measure @f) is defined by

ﬁfj = IP’E 0@,
Since

ES[f (x(0)] = EJ[f(6x()] = vPTO(f), (3.33)

ﬁﬁ describes the statistics of the time reversed process X started with the law vPT®. It is

therefore natural to compare it with P} .. ¢, . The following result (proved in Sect. 5.4) provides

a connection between the functional Ep( -, t) and time-reversal of the path space measure.
Set

¢ ¢

NI | vl

dx ’ dx

loc

P (E) = |¢ € P(E)

cL? (E,dx)].

Proposition 3.9 Foranyt > Oandanyv € Plloc( 8), ]I~Df, is absolutely continuous w.rt. P} p- o
and
i d d
log ——Y = Ep(v,7) 0 ®" = —&" — log %(9}((0)) +log d—U(Ox(r)). (3.34)
X by

T
dPUPT ®

Remark 3.10 The above result is a mathematical formulation of [52, Sect. 3.1] in the frame-
work of harmonic networks. Rewriting (3.34) as

dpP? . dv dv;
=Ep(v, 1) = 6" +log —(x(0)) — log —(x(7)),
T dx dx

log — Vv
S AP 0 ©

we obtain Eq. (3.12) of [52]. Proposition 3.9 is a consequence of Girsanov formula, the
generalized detailed balance condition (3.20), and the fact that the time-reversed process X
is again a diffusion. Apart from the last fact, which was proven in [57], the main technical
difficulty in its proof is to check the martingale property of the exponential of the right-hand
side of (3.34).
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Remark 3.11 1t is an immediate consequence of Eq. (5.13) below that vP* € PIIOC(E) for
any v € P(E) and t > 0.

Equipped with Eq. (3.34) it is easy to transpose the relative entropies formulas of the
previous section to path space measures. As a first application, let us compute the relative
entropy of IP’;@ w.r.t. P}

~ o~ dP? ~ dP? dPle
Ent (]P’EHP,T]@) =E} | —log—" | =E | —log —— +log T"O
dPn@ deP’@ dePT@)
~ d
=E; [—EP(V, 7) 0 ®" +log %(QX(O))} = —E} [Ep(v, 7)] + Ent(v¢|n).
T

If v € P4 (E) then (3.27) yields

_ d d
—Ent (FY|PT peg) = ET [Ep(v, 7)] = %/ v, (|Q*Vlog 01:;|2) dr,
0

which, according to the previous section, is the entropy produced by the process during the
period [0, t]. Setting v = u, we obtain

—Ent (ﬁ;ﬂl”lﬂ@) =ep(u)r.
Together with Proposition 3.7(1), this relation proves

Theorem 3.12 The following statements are equivalent:

(1) IP’/TL 0O = PL forall T > 0, i.e., the stationary process (3.7) is reversible.
2) IP)L 0O = IF’L for some T > Q.

3) ep=0.

3.3 The Canonical Entropic Functional

We are now in position to deal with the first step in our scheme: the construction of the
canonical entropic functional ST associated to (X7, X7, IP’;, ®7). By Proposition 3.9, Rényi’s
relative o-entropy per unit time of the pair (P}, PP},),

Ent, (]P’L@L) =logE, [e—aST] 7

is the cumulant generating function of

d d
ST =1log =" = &7 —log H(0x(x)) + log £ (x(0)). (3.35)
dx dx
In the following, we shall set
1 —aSt
ec(@) = ~ logE, [e™5'], (3.36)
T
which, by construction, satisfies the Gallavotti—-Cohen symmetry e; (1 — «) = e, (@).

Before formulating our main result on the large time asymptotics of e; (o), we need several
technical facts which will be proved in Sect. 5.5.

Theorem 3.13 Suppose that Assumption (C) holds.

@ Springer



V. Jaksic et al.

(1) For B € L(E) satisfying Conditions (3.17), the map
R3wr E() = Q*(A* —iw) ' T4(A +iw)~1Q (3.37)

takes values in the self-adjoint operators on the complexification of 0 E. As such, it is
continuous and independent of the choice of .
(2) Set
L 1 1
e— = minminsp(E(w)), &4 = maxmaxsp(E(w)), ke=— — =.
weR weR er 2

The following alternative holds: either k., = 0o in which case E(w) = 0 forall w € R,
or% <Kke<00,6-<0,0<ey <1, and

1 1

— 4+ —=1.
E_ E4
(3) SetTe =13 — ke, 3 + kel =155, 2L The function
oo
d
e(o) = _/ logdet (I — 0 E(a)) — (3.38)
o 4

is analytic on the cut plane €. = (C \ R) U J.. It is convex on the open interval 3. and
extends to a continuous function on the closed interval 3. It further satisfies

e(l —a) =e(a) (3.39)
foralla € €,

e(x) <0 fora €[0,1];
e(w) >0 forae jc\]O, 1[;

and in particular e(0) = e(1) = 0. Moreover
ep=—€'(0) =¢'(1),

and either ep = 0, k., = 00, and e(«) vanishes identically, or ep > 0, k., < 00, e(«) is
strictly convex on 3., and

lim ¢ (o) = —o0, lim &' (o) = +oo. (3.40)

1 1
aly—Ke atytke

(4) Ifep > O, then there exists a unique signed Borel measure ¢ on R, supported on R\J,

such that
[s|(dr)
< 00,
||
and
e(a) = —/log (1 - 7) c(dr)
(5) Fora € R define
_ _Aa QQ*
Ky = [ Co Al } (3.41)
where
Ag = (1 —a)A —aA*, Cq=oa(l —a)Qv9 20" (3.42)
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Forall w € R and a € R one has
det(Ky — iw) = | det(A + iw)|? det(I — ¢ E(w)).
Moreover, for o € 3,
1 e 1
ele) = (010" - 5 > IRei|m;, (3.43)
hesp(Ka)

where m)_denotes the algebraic multiplicity of A € sp(Ky).

Remark 3.14 We shall prove, in Proposition 5.5(11), that
_ 1 ﬁmax + ﬁmin
2 ﬁmax - ﬁmin .

This lower bound is sharp, i.e., there are networks for which equality holds [see Theo-
rem 4.2(3)].

Ke = Ko (3.44)

Remark 3.15 Tt follows from (3.44) that k. = oo for harmonic networks at equilibrium, i.e.,
whenever Umin = Umax = Yo > 0. Up to the controllability assumption of Proposition 3.7(2),
these are the only examples with «, = 0o (see also Remark 5.6 and Sect. 4).

Remark 3.16 Remark 2 after Theorem 2.1 in [41] applies to Part (4) of Theorem 3.13.

In the sequel it will be convenient to consider the following natural extension of the
function e(a).

Definition 3.17 The function
R> o e(x) €] — oo, +00]
is given by (3.38) for « € J. and e() = +o0 for & € R\J,.

This definition makes R 5 « +— e(«) an essentially smooth closed proper convex function
(see [62]).

The main result of this section relates the spectrum of the matrix K, through the function
e(a), to the large time asymptotics of the Rényi entropy (3.36) and the cumulant generating
function of the canonical entropic functional S".

Proposition 3.18 Under Assumption (C) and with Definition 3.17 one has
lim e; () = e(x), (3.45)
T—>00

foralla € R.

A closer look at the proof of Proposition 3.18 in Sect. 5.7 gives more. For any x € E and
a €T,

T 1
TILHgOEX [e—aS —re(a)] — fa(x) — Cae_fx'T”x,

see [53, Sect. 20.1.5] and references therein. The functions « +— ¢, € [0, oo[ and @ +—
T, € L(E) are real analytic on J,, continuous on J., ¢y > O for « € J., and T, > M1
for o € 3. Moreover, the convergence also holds in L' (Z, dut) and is exponentially fast for
o« € J..Fora € J. and as T — o0, one has

ere) = el@) + L ge(@) = ef@) + — (log () + O (7))

@ Springer



V. Jaksic et al.

where €(«) > 0 for ¢ € J.. However, ¢, vanishes on dJ. and hence the “prefactor” g, (o)
diverges as @« — 97J,.. Nevertheless, (3.45) holds because

—00 = lim lim lgr (@) # lim lim lgr(oz) =0.

T—=>00a—>07, T a—0 —>00 T
Like in our introductory example, the occurrence of singularities in the “prefactor” g, («) is
related to the tail of the law of S’. This phenomenon was observed by Cohen and van Zon in
their study of the fluctuations of the work done on a dragged Brownian particle and its heat
dissipation [15] (see also [16,72] for more detailed analysis). In their model, which is closely
related to ours, the cumulant generating function of the dissipated heat e; () diverges for
a? > (1 —e~2")~! and hence

lim e;(x) = 400 for|a| > 1.
T—>00

This leads to a breakdown of the Gallavotti-Cohen symmetry and to an extended fluctuation
relation. We will come back to this point in the next section and see that this is a general feature
of the TDE functional &' [see Eq. (3.64) below]. Proposition 3.18 and Theorem 3.13(3) show
that the canonical entropic functional §” does not suffer from this defect: its limiting cumulant
generating function e (o) satisfies Gallavotti-Cohen symmetry for all ¢ € R.

3.4 Large Deviations of the Canonical Entropic Functional

We now turn to Step 2 of our scheme. We recall some fundamental results on the large
deviations of a family (&),;>¢ of real-valued random variables (the Gértner—Ellis theorem,
see, e.g., [17, Theorem V.6]). We shall focus on the situations relevant for our discussion of
entropic fluctuations. We refer the reader to [17,19] for more general exposition.

By Holder’s inequality, the cumulant generating function

1
Roar Aa) = A log E[e%] €] — o0, 00,

is convex and vanishes at @ = 0. It is finite on some (possibly empty) open interval and takes
the value +oo on the (possibly empty) interior of its complement.

Remark 3.19 The above definition follows the convention used in the mathematical literature
on large deviations. Note, however, that in the previous section we have adopted the conven-
tion of the physics literature on entropic fluctuations where the cumulant generating function
of an entropic functional £ is defined by o — ¢~ log E[e "¢ ]. This clash of conventions is
the origin of various minus signs occurring in Theorems 3.20 and 3.28 below.

The function

R> o A(e) =limsup A; (o) = lim sup As(x) € [—00, 00]
t—00 [—>00 g>¢

is convex and vanishes at@ = 0. Let D be the interior of its effective domain {« € R | A(x) <
oo}, and assume that0 € D. Then D is a non-empty open interval, A («) > —oo foralla € R,
and the function D > o — A(w) is convex and continuous. The Legendre transform

A*(x) = sup(ax — A(a)) = suB(ozx — A(w))

aeR aeD
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is convex and lower semicontinuous, as supremum of a family of affine functions. Moreover,

A(0) = 0 implies that A* is non-negative. The large deviation upper bound
1 1
lim sup — log P |:f§, € C] < —inf A™(x) (3.46)
t xeC

t—oo I
holds for all closed sets C C R.

Assume, in addition, that on some finite open interval 0 € Dy =]a_, a4 [C D the function
Dy > o — A(wx) is real analytic and not linear. Then A is strictly convex and its derivative
A is strictly increasing on Dy. We denote by x= the (possibly infinite) right/left limits of
A (@) at o = az. By convexity,

Aer) > Alao) + (o — ag) A (o) (3.47)
for any og € Dg and o € R, and

Alax) > Ax = lim  A(x).

Doda— o+
Since A* is non-negative, it follows that A*(A’(0)) = 0. One easily shows that (3.47) also
implies

A*(x) = sup (ax — A(w))
aeDy

forx € E =]x_, x4[. If the limit
lim A/(x)
—00

exists for all @ € Dy, then it coincides with A(«), and the large deviation lower bound

1 1
liminf — log P |:,§t € 0} > — inf A*(x) (3.48)
=00 f t xeONE
holds for all open sets O C R. Note that in cases where x_ = —o0 and x; = +o0c one has

E = R and convexity implies A(«) = +oo fora € R\ [a—, o ].

We shall say that the family (&;);>0 satisfies a local LDP on E with rate function A*
if (3.46) holds for all closed sets C C R and (3.48) holds for all open sets O C R. If the
latter holds with E = R, we say that this family satisfies a global LDP with rate function A*.

By the above discussion, Proposition 3.18 and Theorem 3.13(3) immediately yield:

Theorem 3.20 Suppose that Assumption (C) holds. Then, under the law P, the family
(8")=0 satisfies a global LDP with rate function (see Fig. 4)

I(s) = sup (as —e(—w)). (3.49)

—a€ed,
It follows from the Gallavotti—Cohen symmetry (3.39) that the function R 5 s — 1(s) +
%s € [0, oo] is even, i.e., the universal fluctuation relation

s5(s) =I1(=s) —I(s) =5, (3.50)
holds for all s € R.

Remark 3.21 If ep > 0, then the strict convexity and analyticity of the function e(«) stated
in Theorem 3.13(3) imply that the rate function 7 (s) is itself real analytic and strictly convex.
Denoting by s — £(s) the inverse of the function « — —e’(—a), we derive

1(s) = s€(s) —e(=L(s)),  I'(s) = £(s),

and the Gallavotti-Cohen symmetry translates to £(—s) + €(s) = —1.
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%*K/, 1 5+he ep

1

Fig.4 The cumulant generating function e(«) and the rate function 7 (s) for the canonical entropic functional
of a harmonic network satisfying Assumption (C) and ep > 0. Notice the bias due to the symmetry / (—s) =
I(s)+s

3.5 Intermezzo: A Naive Approach to the Cumulant Generating Function of &'

Before dealing with perturbations of the functional S, we briefly digress from the main
course of our scheme in order to better motivate what will follow. We shall try to compute
the cumulant generating function of the TDE functional &’ by a simple Perron-Frobenius
type argument.

By It6 calculus, for any f € C%(E) one has

‘“G’ﬂ 1))
e [(Lo N)(x(0)dr + (Q*(V ))(x (1) +ad ™' Q" x(1) f (x(1))) - dw(®)],
where
Ly =% (V-BV+24,x -V —x-Cox +atr(Q0'0%)

is the deformation of the Fokker—Planck operator (3.11), and A, B, C, are given by (3.12),
(3.42). Note that the structural relations (3.9) imply

OL,® =L7_,, (3.51)

where L% denotes the formal adjoint of L,. Assuming L, to have a non-vanishing spectral
gap, a naive application of Girsanov formula leads to

E, [e*w’] — p(ettal) = et (M(%)/ Wy o (0)dx + 0(1)) . (> 00). (3.52)

where W, is the properly normalized eigenfunction of L, to its dominant eigenvalue A . It
follows that

1 ae
Jim oy e[ = a.

the Gallavotti-Cohen symmetry Aj_, = Ay being a direct consequence of (3.51).
Given the form of L, the Gaussian Ansatz

1
lIJOé (.X) — e_jx'XUtX
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is mandatory. Insertion into the eigenvalue equation L, WV, = Ay W, leads to the following
equation for the real symmetric matrix X,

XoBXy — XgAw — AL Xy — Cy =0, (3.53)

o
while the dominant eigenvalue is given by
Ao = % (atr(QV9 1 Q") — tr(BX,)) . (3.54)

There are two difficulties with this naive argument. The first one is that it is far from obvious
that Girsanov theorem applies here. The second one is again related to the “prefactor” prob-
lem. In fact we shall see that Eq. (3.53) does not have positive definite solutions for « < 0,
making the right-hand side of (3.52) infinite for « > 1. Nevertheless, the above calculation
reveals Eq. (3.53) and (3.54) which will play a central role in what follows.

3.6 More Entropic Functionals

In this section we deal with step 3 of our scheme. The main result, Proposition 3.22 below,
concerns the large time behavior of cumulant generating functions of the kind

R>a g@)= llog E, [e—a[s'+d>(x(z>>—w(x(0>>]] ’
t
where ® and W are quadratic forms on the phase space Z,
®(x) = 4x-Fx, V() =4x-Grx, (3.55)

and the initial measure v € P(E) is Gaussian. We then apply this result to some entropic
functionals of physical interest:

(1) The steady state TDE (recall Eq. (3.35)),
d d
&' = 8" +log H0x(t)) — log S (x(0)), (3.56)
dx dx

with v = u.
(2) The steady state TDE for quasi-Markovian networks (3.10) which we can rewrite as

Sl = 6"+ 5[0 Prox(0)* — 3197 Prpx (), (3.57)

where o denotes the orthogonal projection to Ran Q = 9 &, with v = u.

(3) Transient TDEs, i.e., the functionals & and Gan but in the transient process started
with a Dirac measure v = §y,.

(4) The steady state entropy production functional

du®
Ep(u,t) = S" +log 57()60))

with v = pu.

(5) The canonical entropic functional for the transient process, started with the non-
degenerate Gaussian measure v € P(&8),

! t

dp! dP), dp!,

dP!
~;’ =log —= +log —* —log ~t”
P, T dB, CdP, AP

; . dv dv
S, =log =S —log —(@x()) + log —(x(0)).
du du

@ Springer



V. Jaksic et al.

To formulate our general result, we need some facts about the matrix equation (3.53).
Define a map Ry : L(E) — L(E) by

Ra(X) = XBX — XAy — AXX — C. (3.58)

where Ay, B and C, are defined by (3.12) and (3.42). The equation Ry (X) = 0 is an
algebraic Riccati equation for the unknown self-adjoint X € L(E). We refer the reader to
the monographs [2,46] for an in depth discussion of such equations.

A solution X of the Riccati equation is called minimal (maximal) if it is such that X < X’
(X > X') for any other solution X’ of the equation. We shall investigate the Riccati equation
in Sect. 5.6. At this point we just mention that, under Assumption (C), it has a unique maximal
solution X, for any o € 3., with the special values

Xo=0, X;=6M6. (3.59)

Proposition 3.22 Suppose that Assumption (C) is satisfied and let v be the Gaussian measure
on E with mean a and covariance N > 0. Denote by P, the orthogonal projection on Ran N
and by N the inverse of the restriction of N to its range. Let F, G € L(E) be self-adjoint
and define ®, ¥ by (3.55).

(1) Fort > O the function
R3as ga)= llog E, [e—a@'+<I>(x<r>>—W<x(0>)>]
t

is convex. It is finite and real analytic on some open interval 3; =]a_(t), a4 (¢t)[> 0 and
infinite on its complement. Moreover, the following alternatives hold:

e Either a_(t) = —o0 or limy () g/ (at) = —00.
e Either ay(t) = 400 or limg s, (1) & (o) = +00.
(2) Set

Iy ={a €T |0X1_of +a(X; + F) > 0},
J_={a €T |N + P,(Xe — (G +6X16)[rann > O},

with the proviso that 3_ = J. whenever N = 0. Then Joo = J_ NI is a (relatively)
open subinterval of 3. containing 0.

3) If X1 + F > 0 and either N = 0 or N+ P, (X1 —0X10 — G)|[ranny > 0, then
[0, 1] C Jo-

4) For a € J one has

lim g;(a) = e(x). (3.60)
1—00
(5) Seta_ =infJx < 0and ay = supTse > 0. Then,
lim oy (t) = oy, 3.61)
—00
and for any o € R\ [o—, a4 ],
lim g,(«) = 4o00. (3.62)
[—00

Remark 3.23 The existence and value of the limit (3.60) for « € 37 is a delicate problem
whose resolution requires additional information on the two subspaces

Ker (0X1-46 + (X1 + F)),  Ker (N + Py(Xy — (G + 0X10))[Ran ¥)
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at the points « € 9J. Since, as we shall see in the next section, this question is irrelevant
for the large deviations properties of the functional S* + ®(x(r)) — W (x(0)), we shall not
discuss it further.

Remark 3.24 We shall see in Sect. 5.6 that the maximal solution X, of the Riccati equation is
linked to the function e(c) through the identity e(a) = Ay, Where A, is given by Eq. (3.54).
Thus, the large time behavior of the function o +— g;(«) is completely characterized by
the maximal solution X, through this formula and the two numbers «. Riccati equations
play an important role in various areas of engineering mathematics, e.g., control and filtering
theory. For these reasons, very efficient algorithms are available to numerically compute their
maximal/minimal solutions. Hence, our approach is well designed for numerical investigation
of concrete models.

Steady State Dissipated TDE According to Egs. (3.56) and (3.59), the case of TDE dissipation
in the stationary process corresponds to the choice
N=6X0, F=-X;, G=-6X0,
and it follows directly from Proposition 5.5(2) and (4) below that
Iy ={e €| Xi—g > 0} = [4 — ke, 1[.

Setting «_ = inf{a € J. | Xo + 60X 16 > 0}, we have either or_ e]% — k¢, O[ and

Joo =Ja_, 1],
ora_ = % — k. and

Joo = [a—, 1[.

Suppose that % —ke < —landleta € [% — k¢, —1]. From Proposition 5.5(10) we deduce
that X, < oXy. Since X| = 6M~'0 > 0, it follows that

Xo+60X10 <aX;4+60X10 =a(X]—0X10)+(1+a)0X160 <a@M~'0—M""). (3.63)

Observe that the right-hand side of this inequality is odd under conjugation by 6. Moreover,
Proposition 3.7(1) implies that it vanishes iff ep = 0. It follows that sp(Xy, + 6X16)N] —
00, 0] # @. Thus, we can conclude that one always has oy = 1 and «— > —1, with strict
inequality whenever ep > 0.

By Proposition 3.22,

e(a) fora ela_, 1]

+oo fora ¢ [a—, 1]. (3.64)

1 —a&!
eTDE st (@) = lim —log B, [e™*¥'] = [
t—oo
An explicit evaluation of the resulting Gaussian integral further shows that

BT 1 -&! _l —1 H*
erpra(l) = lim logB,[e' = ;0(09 ™' 0% > 0.

The Gallavotti-Cohen symmetry is broken in the sense that it fails outside the interval 0, 1[,
in particular erpg st (0) = €¢(0) = 0 < erpg,st(1). Note also that

liminf eTpE st (@) = e(1) = 0 < epE,st(1) < limsup eTpg st (o) = +00,
a—1 a—1

i.e., the limiting cumulant generating function for TDE dissipation rate in the stationary
process is neither lower semicontinuous nor upper semicontinuous.
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Remark 3.25 We shall see in Sect. 5.6 (see Remark 5.6) that in the case of thermal equilib-
rium, i.e., ¥ = ¥yl for some ¥y €]0, co[, one has X, = ao/ and hence X_| +60X6 = 0.
Thus, in this case, «— = —1 and since e(«) vanishes identically by Proposition 3.13(3),

0 for o] < 1

eTDE,st (@) = {—e—oo for |a| > 1.

Remark 3.26 According to Eq. (3.57), for quasi-Markovian networks the steady-state TDE
dissipation corresponds to

N=6X6, F=-X+mp9 'ng, G=0(-X;+mngd 'np)b.
Since Omg = £mwp = mpb, one has
[0, 1[C T4 = {or € Te | X1—a +amod 7o > 0} C [4 — ke, 11,
provided 0 E # E. The inequality (3.63) yields
(I —70)(Xg +0X10 —amgd ‘o) — 7o) < a(l —mg)@M~'0 — M~ —7p),
for % — k. < a < —1. From the Lyapunov equation (5.4) one easily deduces that
(I —m)O@M™'0 =M™ —79) =0

iff MO = M so that the above argument still applies and (3.64) holds with &’ replaced by
GGM and o— > —1 with strict inequality whenever ep > 0.

Transient Dissipated TDE Consider now the functional &' for the process started with the
Dirac measure v = §y, for some xo € E. This corresponds to

N =0, F=-X, G =-60X,0,

and in this case

j+:[§_K671[3 3723()7
and hence Joo = [% — K¢, 1[. Proposition 3.22 yields a cumulant generating function

e(a) fora ell — k., 1]

1

+oo fora ¢ [5 — ke, 1, (3.63)

o1 _
epE,w(@) = lim " log B [e %] = [

which does not depend on the initial condition x.

Remark 3.27 For quasi-Markovian networks it may happen that Jo, =Jo—, 1[ with o >
% — k.. For later reference, let us consider the case? k. = kg (recall Remark 3.14). We deduce
from Proposition 5.5(12) that

l —«o 1
Xl—a +omQ1§‘_1nQ > I —mp)+ o — = +K0) mo > 0,

ﬁmax ﬂmin ﬁmax ( 2

fora € [% — k0, 0]. Thus, in this case we have Joo = [% — K¢, 1[ as in the Markovian case.

2 We shall see in Sect. 4.2 that this is the case for a large class of linear chains.
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Steady State Entropy Production Rate Motivated by [52], where the functional Ep(u, ) plays
a central role, we shall also investigate the large time asymptotics of its cumulant generating
function

1
eep,t(Ol) = ; IOgEM I:efaEP(ﬂql‘):I ,

in the stationary process. We observe that this function coincides with a Rényi relative entropy,
namely

eep,t () = Enty (E@HP’L) ,

so that the symmetry (3.15) yields

eeps(1 — &) = Enty (IP’L@;L@) — Ent, (%PL@) - %mg Euo [e—aEp(M@,I)] '
The large time behavior of e, ; (@) follows from Proposition 3.22 with the choice
N=6X10, F=0X0—-X,, G=0.
Thus,
I ={aeTc| Xig+aX; >0}, JT_={ael.|Xe+U—-a)pX 6 >0},

and since we can write Xy + (1 —a)0 X110 = 0(Y1—o + Wi_o)0 withY|_o = X|_o +0X,0
and Wi_q = (1 — ) X1 — X|_q, it follows from Proposition 5.5(10) that

Joo ={a €T | X|_o¢ +aX; > 0}
In particular the limit
eep(@) = lim ecp.(@),
coincides with e(«) for all @ € R iff the following condition holds:
Condition (R) X _, + o X > Oforall « € J,.

This condition involves maximal solutions of two algebraic Riccati equations. Except in
some special cases [see Proposition 5.5(12)], its validity is not ensured by general principles
(the known comparison theorems for Riccati equations do not apply) and we shall leave it as
an open question. We will come back to it in Sect. 4 in context of concrete examples.

Transient Canonical Entropic Functional Assuming for simplicity that the covariance N of
the initial condition v € P(E) is positive definite, Proposition 3.22 applies to the cumulant
generating function of S, with

N=N1! F=0Go=06N"'0-X,.
It follows that
Jeo={a €| Xa+(1—a)N~' >0and X|_o +aN"" > 0},

sothatoo_ =1 — @4 = 5 — K, for some «,, > % and

B—

e(a) for|a — l| < Ky;

1 t
= lim B, [ ] =
ev(@) tl>rgot v|® +oo for o — 5| > k.
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Note that by the construction of S, the Gallavotti-Cohen symmetry holds for all times. One
has «, = k. and hence ¢, («) = e(a) for all @ € R, provided

(ke — HXT <N<—(Kc+%)XIiK.
7 ke

‘+L

3.7 Extended Fluctuation Relations

We finally deal with the 4™ and last step of our scheme: we derive an LDP for the the entropic
functionals considered in the previous section and illustrate its use in obtaining extended
fluctuation relations for various physical quantities of interest. We start with a complement
to the discussion of Sect. 3.4.

In most cases relevant to entropic functionals of harmonic networks, the generating func-
tion A is real analytic and strictly convex on a finite interval Dy =Jo—, o [, is infinite on
R\[o—, a4 ],and theinterval E =]x_, x[isfinite. In such cases A 1 are both finite and (3.47)
implies that the Legendre transform of A is given by

_—A_ forx < x_;
A*(x) = sup(ax — A(x)) = { x€(x) — A(L(x)) forx €lx_, x4[;
acR xop — Ay for x > xy;

where £ : E — Dy is the reciprocal function to A’. Thus, A* is real analytic on E, affine on
R\ E and C' on R. The Girtner—Ellis theorem only provides a local LDP on E for which
the affine branches of A* are irrelevant. However, exploiting the Gaussian nature of the
underlying measure P, it is sometimes possible to extend this local LDP to a global one, with
the rate function A*. Inspired by the earlier work of Bryc and Dembo [4], we have recently
obtained such an extension for entropic functionals of a large class of Gaussian dynamical
systems [41]. The next result is an adaptation of the arguments in [4,41] and applies to the
functional

& =8+ D(x(1) — W (x(0)),
under the law P,,, with the hypothesis and notations of Proposition 3.22. We set (recall (3.40))
—00 ifoz+:%+lcc; +00 ifoa_ =5 — kg
n- = , . 1 n+ =
—e(ay) ifoy <5+ ke

B— Bl—

—e'(a) fa_ > 5 —ke.

Theorem 3.28 (1) IfAssumption (C)holds then, under the law P\, the family (§;);>0 satisfies
a global LDP with the rate function

I(n-) — (s —no)ay = —sog —e(ag) fors <n_;
J(s) =110 fors €ln—.nil;  (3.66)
I(ny) — (s —npa— = —sa_ —e(a-) fors >ny;

where 1(s) is given by (3.49). In particular, if ep > 0, then it follows from the strict
convexity of 1(s) that

J(=s)—J(s) < I(—s)—I(s) =3,

for s > max(—n_, n4).
(2) Under the same assumptions, the family (& );>¢ satisfies the Central Limit Theorem: For
any Borel set £ C R,
. §-Bolal ) _
Jlim P, [ ~ =n (&),
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slope —ary

slope —n4 slope —ar_

® slope —1

a 1 a n —e(0) M4

Fig. 5 The cumulant generating function g(«) = limsup,_, o, gr(«) and the rate function J(s) for the
functionals (&;);>( of Theorem 3.28

where a = €”(0) and n; denotes the centered Gaussian measure on R with variance 1.

If 3oo = J., then we are in the same situation as in Sect. 3.4 and & has the same
large fluctuations as the canonical entropic functional S’. In particular it also satisfies the
Gallavotti—-Cohen fluctuation theorem. However, in the more likely event that J is strictly
smaller than J, then (see Fig. 5) the function g(«) = lim Sup,_, o, & () only coincides with
e(a)on Ja_, a4 [ and the rate function J (s) differs from 7 (s) outside the closure of the interval
In—, n+[. Unless «— = 1 — a4 (in which case n— = —n4 and J(—s) — J(s) = s for all
s € R) the Gallavoti-Cohen symmetry is broken and the universal fluctuation relation (3.50)
fails. The symmetry function s(s) = J(—s) — J(s) then satisfies an “extended fluctuation
relation”.

Combining Theorem 3.28 with the results of Sect. 3.6 we obtain global LDPs for steady
state and transient dissipated TDE. Let us discuss their features in more detail.

Steady State Dissipated TDE Assumingep > 0, wehave —1 < atpg si— < 0and aTpg, si+ =
1, hence nrpE.st— = —€'(1) = —ep and nrpEst+ = —€'(@TDEst—) > ep. In this case, the
symmetry function is

K for0 < s <ep;
STDE,st(s) = 1 5 — I(s) forep < s < nTDE st+;
e(atpg,st—) + (1 + arpE,st—)s  fors > NTpE,st+;

and in particular sTpg st (s) < s for s > ep. The slope of the affine branch of sTpg « satisfies
stpE.«t(8) = 1 + arpEsi— €10, 1[, (s > NTDE.st4).

so that s — sTpE_ st () is strictly increasing.
In the equilibrium case (Ymin = Pmax) one has atpg stz = F1 and e(«) vanishes identi-
cally. Hence the rate function for steady state dissipated TDE is the universal function

JTDE,st(s) = [s],
and sTpEg,sc(s) = O forall s € R.

Transient Dissipated TDE Assuming again ep > 0, we have oTpg - = % — ko and

arpEw+ = L, so that npEw— = —¢/(1) = —ep and yrpE,ws = —€'(3 — k¢) = +00.
The symmetry function reads
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Fig. 6 A triangular network and a contour plot of 1/« as function of the parameters (u, v). See the text for
details

K for0 <s <ep;

STDE,uw(s) = [S — I(s) fors > ep;

which coincides with the steady state heat dissipation for 0 < s < n1pE,si+-. However, the
strict concavity of the function s — 7 (s) implies

STDE, tr(§) < STDE,st(S)

for all s > nTpE st+- By Remark 3.21,
d
— (s —I(s)=1—4(s)=0
ds

iff s = —¢’(—1) > —¢’(0) = ep. Thus, whenever % — ke < —13 the function [0, co[> s >
sTDE.«r () has a unique maximum at s = —e’(—1), and the concavity of s — I(s) implies
that sTpg, - becomes negative for large enough s. In the opposite case where % — ke > —1
the symmetry function sTpEg ¢ is strictly monotone increasing (see Fig. 7 in Sect. 4.1 for an
explicit example of this somewhat surprising fact.)

4 Examples

In this section we turn back to harmonic networks in the setup of Sect. 2. We denote by
{8i}iez the canonical basis of the configuration space RZ.

We start with two general facts which reduce the phase space controllability condition
(C) and the non-vanishing of ep to configuration space controllability (see Sect. 5.10 for a
proof).

Lemma 4.1 (1) IfKer w = {0}, then (A, Q) is controllable iff (w*w, t) is controllable.
(2) Denote by m;, i € 3Z, the orthogonal projection on Ker (¢ — 9;). Let C; = C(w*w, ;).
If there exist i, j € Oz such that ©; # ¥ and C; N Cj # {0}, then ep(u) > 0.

3 This corresponds to the near equilibrium regime.
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4.1 A Triangular Network

Consider the triangular network of Fig. 6 where 7 = Z¢ and 0Z = Z¢ \ 2Z¢ (the indices
arithmetic is modulo 6). The potential

39-0’q =% a7 +a ) qigivi+b D qiqit2,
ieT ieT iedl

is positive definite provided |a| < % and 2a® — % < b < 1 — 4a”. One easily checks that
a # 0implies Ran :vVRan w? = RZ. Thus Assumption (C) is verified under these conditions.
Noting that §, € C; N C3, we conclude that ep > 0 if ¥ # 3. By symmetry, ep > 0 iff

A = Umax — Umin > 0.
We shall fix the parameters of the model to the following values

1 1 1
azi’ bzf’ = = :1, 227 1_9',
2\/5 4 4! V3 V5 [9Z] iEEBI i

the “relative temperatures” being parametrized by
91 =00 —w), 93=0(+3u+3v), 5=0(+5u—3v).

Under these constraints, the simplex {(«, v) |0 <u < 1,0 < v < u}isafundamental domain
for the action of the symmetry group S3 of the network which corresponds to ¥y = 4,
Umax = V3. Factoring 9 = Qﬁ, one easily deduces from (3.37) that the matrix E(w) and
hence the cumulant generating function e(«) do not depend on . We have performed our
numerical calculations with ¢+ = 1. The thermodynamic drive of the system is the ratio
0=A/9=3u+v) el0,3].

Figure 6 shows the reciprocal of k. as a function of (u, v). It was obtained by numerical
calculation of the eigenvalues of the Hamiltonian matrix K, . The lower-left and upper-right
corners of the plot correspond to o = 0 and ¢ = 3 respectively. Its right edge is the singular
limit 9 pin = 0. Our results are compatible with the two limiting behaviors

limk, =oco,  lim k. = 3.

4 0 Dmin
The first limit, which corresponds to thermal equilibrium yin = Fmax = U, follows from
the lower bound (3.44). Computing the generating function e(«) from Eq. (3.43), and its
Legendre transform, we have obtained the symmetry function stpg (s) for transient TDE
dissipation at three points on the line v = 0.3(1 —u) where k. = 1.4, 1.5 and 1.6 respectively.
The result, displayed in Fig. 7 confirm our discussion in Sect. 3.7.

Solving the Riccati equation (3.58) one can investigate the validity of Condition (R).
Figure 8 shows a plot of minsp(Xi_y + aX1) as function of (u, v) and a few sections
along the lines v = 1 + m(u — 1). It appears that Condition (R) is clearly satisfied for all
temperatures.

4.2 Jacobi Chains
In our framework, a chain of L oscillators with nearest neighbour interactions coupled to

heat baths at its two ends (see Fig. 9) is described by Z = {1, ..., L}, 0Z = {1, L}, and the
potential energy

@ Springer



V. Jaksic et al.
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Fig. 7 The numerically computed rate function JTpg «(s) and the corresponding symmetry function
STDE, v (8) for the transient TDE dissipation of the triangular network (both the argument s and the value
of these functions are in the units of the corresponding steady state entropy production rate ep)

1.0
gl 020
0.18
0.16
0.6t 014
0.12

0.10

— m=1

0.4

0.21

0.0 L . ! N i
0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

Fig. 8 Contour plot of minsp(X_, + aX) as function of (u, v) and some sections along the lines v =
1 4+ m(u — 1) for the triangular network

L L—1
Sogl? =5 bigl + > aigigiti, @1
i=1 i=1

where, without loss of generality, we may assume  to be self-adjoint. We parametrize the
temperature and relaxation rates of the baths by

B> <l

= _ Y1
F=1+9), A= —-%l. V=N, 8=logy—L, Ko =
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1 2 L -
- o_a_a_ . .- ar—1 7/@

Fig. 9 A linear chain coupled to two heat baths

and introduce the parity operator

S: RT - RE
(Gi)ier > (qL+1-i)ieT-

To formulate our main result (see Sect. 5.11 for its proof) we state
Assumption (J) @ > 0anda = ajaz---ap—1 # 0.
Assumption (S) The chain is symmetric, i.e., [S, ®*]=0and § = 0.

Theorem 4.2 Under Assumption (J), the following hold for the harmonic chain with poten-
tial (4.1):

(1) Assumption (C) is satisfied.
(2) If A # O, then the covariance of the steady state | satisfies

Umin < M < Omax,

and ep > 0.
(3) If Assumption (S) also holds, then k. = ko and Condition (R) is satisfied.

Remark 4.3 For a class of symmetric quasi-Markovian anharmonic chains, Rey-Bellet and
Thomas have obtained in [67] a local LDP for various entropic functionals of the form
S'+ W (x(r)) — W (x(0)) under the law Py, xo € E. In view of their Hypothesis (H1) (more
precisely, the condition k» > k; > 2), their results should apply in particular to harmonic
chains satisfying Assumptions (J) and (S). They proved that the cumulant generating function
of these functionals are finite and satisfy the Gallavotti-Cohen symmetry on the interval
]% — K0, % ~+ kg[. The lower bound of this interval is consistent with Part (4) of Theorem 4.2
and Remark 3.27, whereas the upper bound is different from our conclusions in Sect. 3.7
on the transient TDE. There, we found that the cumulant generating function diverges for
a > 1. In view of this, it appears that the analysis of [67] does not apply to the harmonic
case.

Remark 4.4 We believe that Condition (S) is essential for Part (4) since the proof indicates
that for non-symmetric chains k. > ko is generic. Figure 10 shows a plot of . vs § for a
homogeneous chain with L =4, b; = 1,a; = %, y=2,0=4and A =2.
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Fig. 10 The critical value k. /kq as a function of § for an homogeneous chain

5 Proofs

Even though the processes induced by Eq. (3.2) take values in a real vector space, it will be
sometimes more convenient to work with complex vector spaces. With this in mind, we start
with some general remarks and notational conventions concerning complexifications.

Let E be areal Hilbert space with inner product ( -, - ). Wedenoteby CE = {x+iy|x,y €
E'} the complexification of E. This complex vector space inherits a natural Hilbertian structure
with inner product

(x + iy, u +iv) = (x,u) + {(y,v) +i{x, v) —i(y, u).

We denote by | - | the induced norm. Any A € L(E, F) extends to an element of L(CE, CF)
which we denote by the same symbol: A(x 4+1iy) = Ax + iAy. If A is a self-adjoint/non-
negative/positive element of L(E), then this extension is a self-adjoint/non-negative/positive
element of L(CFE). The conjugation Cg : x +1iy +— x — iy is a norm-preserving involution
of CE.Forz € CE and A € L(CF,CE) we setZ = Cpz and A = Cp ACr. We identify E
with the set {z € CE |z = z} of real elements of CE. Likewise, L(F, E) is identified with
the set {A € L(CF,CE)|A = A} of real elements of L(CF, CE). A subspace V C CE
is real if it is invariant under Cg. V is real iff there exists a subspace Vy C E such that
V =CVp.If A € L(CF, CE) is real, then Ran A and Ker A are real subspaces of CE and
CF. Finally, we note that if (A, Q) € L(E) x L(F, E), then the controllability subspace of
the corresponding pair in L(CE) x L(CF, CE) is the real subspace CC(A, Q) C CE. In
particular (A, Q) is controllable as a pair of R-linear maps iff it is controllable as a pair of
C-linear maps.

Note that .
0) =/ D4 0dw(s) (5.1)
0
is a centered Gaussian random variable with covariance
t
M, = / A0 0%t ds. (5.2)
0

The next lemma concerns some elementary properties of this operator.
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Lemma 5.1 Assume that (A, Q,9,0) € L(E) x L(OE, E) x L(0E) x L(E) satisfies the
structural relations (3.9) and let M; be given by Eq. (5.2).

(1) RanM; =C(A, Q) forallt > 0.
(2) Thesubspace C(A, Q) isinvariant for both A and A*, andsp(Alc(a,0)), sSP(A*|c(a,0)) C
C_. In particular, there exist constants C > 1 and §' > § > 0 such that

Cle x| < | x| < Ce™|x| forx € C(A, Q),

and the function t — M; converges to a limit M as t — +00.
(3) RanM =C(A, Q) = C(A*, Q).
(4) A |C(A, Q)J_ = —A* |C(A,Q)J‘ and etA |C(A, Q)J_ is unltary
(5) The following inequality holds for all t > 0 :

Vmin(l — etAetA*) <M; < Omax(I — etAetA*) =< Vmax- (5.3)
In particular,

Vmin < M|RanM < Pmax,

and if all the reservoirs are at the same temperature ¥y, then M |Ran y = Vo.
6) M — M, =e'AMe'Y" > 0and (M — M;)|Ran m > O.
(7) M satisfies the Lyapunov equation

AM + MA* + QQ* = 0. (5.4)

8) If(A, Q) iscontrollable, then Ran M = B and M is the only solution of (5.4). Moreover,
for any T > 0 there exists a constant C such that

0 < Mt_1 — M} < C,e_zat forall t>rt.

Proof (1) Fixt > 0. From the relation
t
X - M;x :/ |0*e* 4 x|2ds
0

we deduce that Ker M; = N;¢po,11Ker Q*e* A" This relation is easily seen to be equivalent

to
Ker M, = ﬂ Ker Q*A™", (5.5)
n>0
and hence to
Ran M; = \/ Ran A" Q. (5.6)
n>0

The right-hand side of the last relation is included in any A-invariant subspace containing
Ran Q, and therefore coincides with the controllability subspace C(A, Q).

(2) The invariance of the subspace C(A, Q) under A follows from the definition. To prove
its invariance under A*, it suffices to recall the relation

A+ A*=—0v 0" (5.7)

We now prove that the spectra of the restrictions of A and A* to C(A, Q) are subsets
of C_. It suffices to consider the case of A.

Pick o € sp(A) andletz € CE\ {0} be a corresponding eigenvector. It follows from (5.7)
that

2Rewlz|* = (z, (A + A%)z) = —[9 712 0%z,
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which implies Re < 0. If Reaw = 0, then Q*z = 0 and (5.7) yields A*z = —az which
further implies Q*A*z = (—a)" Q*z = Oforalln > 0.Eq. (5.5) then gives z € Ker M,
and so sp(A|ranm,) C C_. The remaining statements are elementary consequences of
this fact and the observation that M; vanishes on C(A, Q)L.

(3) The proof of the relation Ran M = C(A, Q) is exactly the same as that of (1). The
relation C(A, Q) = C(A*, Q) is a simple consequence of (5.7).

(4) Combining (5.5) with (5.7), we deduce Ker (A + A*) = Ker Q* D C(A, Q)L. Thus A
and —A* coincide on C(A, Q).

(5) From Eq. (5.7) we deduce

t t d
_ * * *
/ eSAQl? IQ*esA ds = _/ d7’:sAesA ds =1 _etAetA ,
0 o das

from which we infer

91

* —
M, < I —ee' <9l M,

min
This is equivalent to (5.3). Restricting these inequalities to C(A, Q) and taking the limit
t — oo yields the desired result.

(6) The first assertion follows directly from the definition of M and the group property of
e!'4. The second assertion is a consequence of Parts (3) and (5) which imply

tA tA* 1A tA*
(M — M;)|lRanm =€ " Me"” |Ranm = Omine "€ |Rannmr > 0.

(7) Follows from Part (6) and Eq. (5.2) by differentiation.
(8) Any solution N of (5.4) is easily seen to satisfy

N — M, = e"“Ne't" forallt > 0.

Letting  — o0 and using the exponential decay of e’4 and e’4” [see (2) in the case
C(A, Q) = E], we see that N = M. The second assertion follows from the identity

M7 M =M M — MM

and the inequalities M; > c; > O fort > 7 and |M; — M|| < Ce=? fort > 0.

5.1 Sketch of the Proof of Theorem 3.2

(1) The fact that M is well defined and satisfies (3.13) was established in Lemma 5.1. Let us
prove the invariance of u.

We fix a random variable xg that is independent of w and is distributed by the law . We
wish to show that the law of the process

x(1) = e"xg + (1), (5.8)

where £ is given by (5.1), coincides with p for all + > 0. To this end, we note that both
terms in (5.8) are centred Gaussian random variables with covariances e’4 M ¢4 and M;,
respectively. Since they are independent, x(¢) is also a centred Gaussian random variable
with covariance e’ Me'A" + M. This operator coincides with M in view of Lemma 5.1(6).
Hence, the law of x (#) coincides with L.

(2) If the pair (A, Q) is controllable, then for any initial condition xg independent of w the
corresponding solution (5.8) converges in law to p. It follows that w is the only invariant
measure. On the other hand, if the pair (A, Q) is not controllable, then, by Lemma 5.1, the
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subspace Ker M = C(A, Q) # {0} is invariant for the group {e/4}, whose restriction to it
is a unitary. The latter has infinitely many invariant measures (e.g., the normalized Lebesgue
measure on any sphere {x € C(A, Q)T | |x| = R} is invariant).

To prove the mixing property, we write

Pl () = Ef(ex + £()) = / FOIeCx. ) dy,

where n;(x, y) denotes the density of the Gaussian measure with mean value ¢’4x and
covariance M;:

1
n(x,y) = det(27'rM,)7l/2 exp{—i (y — e’Ax, Mfl(y —e )}

The required convergence follows now from assertions (6) and (8) of Lemma 5.1 and the
Lebesgue theorem on dominated convergence.

(3) The fact that process (3.7) is centred and Gaussian follows from linearity of the equation.
Letus calculate its covariance operator K (t, s). Itis a straightforward to check that a stationary
solution of (3.2) defined on the whole real line can be written as

t
Er) = / "4 0dw(r),

where w(¢) stands for a two-sided R?Z-valued Brownian motion. Assuming without loss of
generality that ¢ > s, for any 11, n2 € E we write

(m, K@, 9)m) =E{E@®), m)(Es), m)}
t s
= IE{/ ("4 0dw(r), n) / (e84 0dw(r), 7]2)]

s
=/ ( *e(t—r)A 0. Q*e(s—r)A 7’]2)dr
—00

+o00
=/ (1, e TA0 0% A ) du = (1. " Mp).
0

This implies the required relation (3.14) and completes the proof of Theorem 3.2. O
For later use, we now formulate and prove two other auxiliary results. We start with a few
technical facts. Consider the scale of spaces

HrCTHCH-,

where = L%(R) ® CE, $. is the Sobolev space H'(R) @ CE,and H_ = H~'(R) @ CE
is its dual w.r.t. the duality induced by the inner product of ). To simplify notations, we shall
also use the symbols $), $H+ to denote the corresponding real Hilbert spaces (the meaning
should remain clear from the context). For x € ), we denote by

F(w) = / x(s)e % ds

its Fourier transform. Since, under Assumption (C), A is stable, we can use

Ixlle = (/ (A — iw)i‘z%(w)ﬂd—‘”y
27
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as norms on $H4. For t > 0, we denote by Il; the operator of multiplication with the
characteristic function of the interval [0, t]. Thus, I1; is an orthogonal projection in $) whose
range 9, will be identified with the Hilbert space L2([O, 7]) ® CE.

Lemma 5.2 Under Assumption (C) the following hold.

(1) The Volterra integral operator

(Rx)(s) = /S eG4 (s")ds’

—00

maps isometrically $_ onto $ and $) onto 9. By duality, its adjoint
o ’ *
(R*x)(s) = / e I x(s")ds’,
s

has the same properties.
(2) TI; R is Hilbert—Schmidt, with norm

1

00 . 5
ITI:R|> = (r/ tr(e' e“‘)dt) )
0

(3) Forty € [0, t], the Hilbert—Schmidt norm of the map Ry, : $ — & defined by R;yx =
(Rx)(tp) is given by

0] " 2
IRoll2 = ( / tr(e e’A>dr)
0

Proof (1) Follows from our choice of the norms on )1 and the fact that (Rx)A(w) = (iw —
A7z (w).

(2) TI;R is an integral operator with kernel 1(¢ ](s)6 (s — s’)e(“’s/)A, where 19 ] denotes
the characteristic function of the interval [0, t] and 6 the Heaviside step function. Its
Hilbert—Schmidt norm is given by

T N o0
2 _ / (s—sA* (s—s)A\ __ tA* tA
T - - .
T R|I5 / ds/ ds tr(e e ) r/ drtr(e’” ')
0 —00 0

(3) Follows from a simple calculation.
O

Given t > 0, consider the process {x(?)}c[0,7] started with a Gaussian measure v € P(&).
Let a € E be the mean of v and 0 < N € L(E) its covariance. Denote by (- |-) the inner
product of ;.

Lemma5.3 LetT; : 23 v+ v € §; and define
Dy = [TTN% HTRQ] LE®0H — 9,

where 35 = L2(R) ® 9 E, and the operator Q acts on 35 by the relation (Qy)(1) = Qy(t)
fort € R. Then, under Assumption (C), the following properties hold for any v > 0:

(1) Dy is Hilbert—Schmidt and has a unique continuous extension to & @ $)_.
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(2) K¢ = DD} is a non-negative trace class operator on ). with integral kernel
Ke(s,s') = e0™)+A@ENDANEADAT Ly )els=s)-4" (5.9)
and there exists a constant C.,, depending on A, B and N but not on t, and such that
K =Cy, K =Cor,

where || - |1 denotes the trace norm.
(3) The process {x(t)}ie[0,7] is Gaussian with mean Tra and covariance K, i.e.,

Ev[ei(xlu)] — ei(Tra\u)*%(ulKrM) (5.10)
forallu € $.

Proof (1) T is clearly finite rank and it follows from Lemma 5.2(2) that the operator Dy is
Hilbert—Schmidt. Lemma 5.2(1) further implies that it extends by continuity to E @ $_.
(2) It follows immediately that

Ky =D;D* = T,NT* + I, RQQ*R*II, |, (5.11)

is non-negative and trace class. Formula (5.9) can be checked by an explicit calculation.
Defining the function u € $. to be zero outside [0, 7], we can invoke Plancherel’s
theorem to translate (5.11) into

2 %)
d
+/ |0*(A* + i) a(w) P2,
00 2w

‘/OO 1 * . 1A dCU
(u|Kru) = N2Z(A™ +iw)” u(w)—
—oo 2

By Lemma 5.1, Assumption (C) implies sp(A) N iR = @ and we conclude that

R R X k4% o =112
K < IN2 (A" +iw)” | 7+SUP||Q(A +iw) " |7 < o0.

—00 weR

Finally, it is well known [70, Theorem 3.9] that the trace norm of a non-negative trace
class integral operator with continuous kernel K, (s, s”) is given by

1K N = (Cy) = /r tr(KC; (s, s))ds = /T tr(e A Ne'r" + My)ds < T (Ctr(N) + tr(M)),
0 0

where C depends only on A.
(3) By Eq. (3.7) we have, for u € $,

(sh) = (FxO)) + | ' [ / t e<’—S>Ade<s>] u(oydr
=x(0) - Tju+ /Ot O*(R*u)(s) - dw(s)
so that
]Ev[ei("'")] _ W[ei Jo Q*(R*u)(s)-dw(s)]/eix-T,*uV(dx).
Evaluating Gaussian integrals we get

/eix.TT*uv(dx) — el Tu=5Tru-NT u _ ei(TTalu)—%(u\T,NTr*u)’
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and

W[ei-for Q*(R*u)(s)dw(s)] — ef%(u\RQQ*R*u)’

which provide the desired identity.

[}
5.2 Proof of Proposition 3.5
We start with some results on the Markov semigroup
(P00 = [ Fe 4 M na). (5.12)

For a multi-index o = (o1, a2, ...) € N4 E apg p € [1, oo] set
ol = D> e, 0¥ =]]ox.
i i

and define

AP = (w € C®(B)

[0%y| € LP(E,du) forall a € Ndims] .

Lemma 5.4 Suppose that Assumption (C) holds.

(1) Foranyv € P(E) andt > 0, v, is absolutely continuous w.r.t. Lebesgue measure. Its
Radon-Nikodym derivative

d _L
d—”’(x) = det(2r M)~ * / e bIM, P el g ) (5.13)
X

is strictly positive and Sgs(v;) > —00. Moreover, if v(|x|?) < oo, then Sgs(v;) < 0.
(2) Foranyv € P(E), anyt > 0, and any multi-index «,

d
a“d—”’ e LY(2.dx) N L®(E, dx).
X
() Fort >0, M, =M — A Ml A S 0, and
M7 =M e M e (5.14)

(4) P! is a contraction semigroup on LP(Z,du) for any p € [1, oo). Its adjoint w.r.t. the
duality (f1g), = n(fg) is given by

- 1
(P*y)(x) = / ¥ x + M2 y)n(dy). (5.15)
In particular, P'* is positivity improving.
(5) Forallt >0, P*L®(ZE,du) C A%,

(6) For p € [1, 00, AP is a core of the generator of P'™ on LP(E, du) and this generator
actsonyy € AP as

LYy = %v -BVY + Ax - V. (5.16)

(7) Forv € PL(B)and p € [1, oo there exists t,, , > 0 such that%’ € AP forallt > t, ).
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(8) Forv € Py (E) there existt, o > 0, Cy, and 8, > 0 such that

< Ce (14 |x?)

dv,
log —~
og i (x)
fort > t, .

Proof (1) We deduce from Eq. (5.12) that for any bounded measurable function f on E one
has

v (f) = v(P'f) = / F@x + MEyondy)

_1
= det(ZJTMz)*%/f(y)e*%'Mf P00 (dx)dy,

from which we conclude that v; is absolutely continuous w.r.t. Lebesgue measure with
Radon-Nikodym derivative given by Eq. (5.13). It follows immediately that

dv; L
—(x) < detQmM,)”2,
dx
which implies the lower bound
1
Sas(vr) = Elogdet(ZnM,) > —0o0.

To derive an upper bound, let  be such that B, = {x € E | |x| < r} satisfies v(B,) > %
Then one has

_1
Dy > L det@nmyd ing e M wmetor
dx 2 Z€B,
o L Get@n M)~ e HIM Isupicp, la—e40)P?
=2
> ldet(zﬂMt)—%e—%an'||<\x|+Rue’An>2
> > :

from which we conclude that
dy
log — (x) = —Cy(1 + |x[?)
dx
for some constant C; > 0, and hence
Ses(vr) < Cr(1 + v(jx[?)).
(2) From Eq. (5.13) we deduce that

s

dx
where p, ; denotes a polynomial whose coefficients are continuous functions of ¢ €
10, ool. It follows that

_1
9L (x) = / P (x — A y)em2IM: TG0, gy

1

_Liy2
< Sup | pas(z)le2!M 72
ZEE

‘2
sup

xXex

/

d
a“d—”’(x) < o0,
X

and
1

d —_—a
3a£(x) dx < / s @) 2™ 73 dz < oo,
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(3) From Lemma 5.1(5) we get
etA*M_]etA =M +e—tAMte—tA*)—l < M_l.
The strict positivity of M, follows from
M,=M—-ME*M ' YM>M—-MM'M=0.

Using again Lemma 5.1(5), it is straightforward to check the last statement of Part (3).
(4) For f € L'(E, du) we have

1P fllLza = #UP f1) < w(PIfD = n(fD = 1F11 g

The representation (5.12) shows that P’ is a contraction on L>°(E, du). The Riesz-
Thorin interpolation theorem yields that P’ is a contraction on L”(E,du) for all
p € [1, 00]. To get a representation of the adjoint semigroup P'*, we start again with
Eq. (5.12),

WIP ) = / YO £y + MExn@oedy)

) o b e 2y
=/w(y>f<e’ ¥+ : 1
det(2wr M;)?2 det(Qr M)2

dxdy

_1 1
—5IM, 2 (x—e Ay o= IM 2y

= [vore dxdy

det@rM,)?  det(2mM)?

1
1 2 1A )2

i L7 P C o U N R

e2 (M 2x|"=IM "2y ),u(dx)dy,

- / OIS 1
det(Qm M;)2

to conclude that
(P = dexrty [0y ay,
where, taking (5.14) into account,
¢i(x,y) = %x . (Mf1 - Mﬁl)x + %y . A’/V[fly - e’A*Mflx -y,

Using Lemma 5.1(5) and (5.14) one shows that

¢ix, e 42y = 2 M7z, (5.17)
which leads to

(PP ) (x) = det@ M;) "2 / 45y Ry 2y,

Noticing that M, = (I — e’Ae’X)M and M, = (I — e’ge’A)M we conclude that

det(M;) = det(]\71,) and Eq. (5.15) follows.
(5) Rewriting Eq. (5.15) as

(P™*y)(x) = det(2m M,) "2 / 31, P e t0Py (g, (5.18)
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we derive that for any multi-index «,

tAx)‘Z

N 1
(0% Py (x) = / Pas(z — eAxye 210 7 =P y (),

where p, ; is a polynomial whose coefficients are continuous functions of ¢ €]0, ool.
For ¢ € L*°(E, du) this yields

1
_Liy 22
10 P™ Y | oo gy < ¥ lILocEam / | Pai(2)|e” 2™ "2 dz,

where the integral on the right-hand side is finite for all + > 0.
(6) AP isdensein LP(E,du) for p € [1, oo[. For ¢ € A?, Eq. (5.15) yields

, ~ 1
@ P ) = D Cawl®) / @ Y x + M y)n(dy)

o/ |=le|

= D Caw P y)(x),

o/ |=le|

where the C, , are continuous functions of ¢. As a consequence of Part (4), A? invariant
under the semigroup P’* and Part (6) follows from the core theorem (Theorem X.49 in
[64]) and a simple calculation.

(7) Assuming v(em‘)‘_“‘z/z) < 00, we deduce from Eq. (5.13) that for any m" < m

%Z(x) = det(M—le)_% /e_¢t(x,y)v/(dy)7
where
Gr(x,y) = % (|Mt_%(x — A2 oy —aft — |M_%x|2) |
and v s such that v/(eelx_a‘z) < oo for € > 0 small enough. It follows that
8&%()6) :/pa,t(x,y)e_d’t(x,y)v/(dy),

where p, ; is a polynomial of degree || whose coefficients are continuous functions of
t €]0, oo[. An elementary calculation shows that

_1 2 2
¢ (x) = inf ¢ (x,y) = ’M, ‘x| - ‘M’%x‘ +m'lal?
ye&

’

_1 2
— ‘(m/ +e’A*M,_le’A) : (m/a +e’A*M,_1x)

and since [ |pq,;(x, y)|V'(dy) < Ca (1 + |x[*%]) for some constant Cy,; we have

aa d\)t( )
—(x
du

< Coy (1 + |x|2‘“‘) e h ()

This gives the estimate

1
P P —p(:ﬁ <x)+i|M*7x\2)
< C(f;,t/ (1 + lez‘a‘) e T dx,
LP(,dp)

g 4
du
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®)

where the last integral is finite provided the quadratic form

_1 2 1 2 * -1 *
‘Mz 3 (1 _pfl) ‘Mﬁfx‘ _ ‘(m/+e”‘ M;letA) 7 otA M;lx

is positive definite. Since M;”! — M~! > 0, this holds if

* —1 * 1
M,_le“‘ (m’+e’A Mt—letA) ol A M[—l <M,
14

Finally, the last inequality holds for large ¢ since the left-hand side is exponentially small
ast — oo.

By Lemma 5.1(1), le4)l = O ast — oo. Repeating the previous analysis with
m' = e~ we get, for large enough ¢ > 0,

d\)[ 1 lm’lx—a|2
log @(X) < Etr(logM —logM;) +1log [ e2 v(dx) — ¢ (x).

One easily shows that tr(log M —log M;) = O™y and |¢; (x)| = O ™) (L +|x[?).
Finally, since

/e%m"x—alzv(dx) —1+0m")
as m’" — 0, we derive the upper bound
dv
log —(x) < O ™)1 + [x[?).
du

To get alower bound we set m’ = 0 and note that the ball B; = {x € E | m|x —al? < 8t}
satisfies

1 —v(By) =/ v(dx) 5/ e_mlx_“lzemlx_“lzv(dx) < e_‘”/emlx_“'Zv(dx)
E\B, E\B,
= 0.

Since log M > log M; we get

dv,
log X (x) = = sup ¢u(x. ) + log(v(By)).
1% yEB;

It is straightforward to check that

sup ¢y (x, y) = O )1 + 0@ 1))(1 + |x ).
YEB;

and therefore
d
—log S (x) < O (1 + [x]?)
du

for any € < 4.
]

We are now ready to prove Proposition 3.5. Writing the polar decomposition Q = V(Q* Q) 3 ,
the existence of § € L(E) satisfying (3.17) easily follows from the structural relations

[9, 0*Q]l =0and 60 = +Q.
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(1) Follows from Condition (3.17) and Eq. (3.6).
(2) FromEq. (3.11) we deduce that the formal adjoint of L w.r.t. the inner product of L? (B, dx)
is
r 1
L ZEV-BV—V~Ax.
It follows from the structural relations (3.9) and Condition (3.17) that
B MBTaP T - diptxp _ ]
LP =e2 Le 2 :E(V—,Bx)-B(V—ﬂx)—(V—,Bx)-Ax
_ L1y pvo (A+ Q007 '0%x -V — 1tr(Qﬁ—l 0" + A+ A¥)
2 2
l —2 Ak *
+2x-(Q19 Q"+ BA+ A*B)x
1
= 5V “BV + A*x -V — og(x).

The desired identity thus follows from (3.9) and Part (1).
(3) The It6 formula gives

d(Ax@) - Cx()) = x(t) - Cdx (1) + Sr(CB)dt
= %x(t) (CA+ A*C)x(t)dt + %tr(CB)dt + x(t) - CQOdw(z).

. d
Therefore, since log %(x) = —%x - Bx, we have

d
dlog g(x,) = —%x(t) (BA+ A*B)x(t)dr — %tr(ﬂQQ*)dt —x(t) - BOdw(2).
Using (3.17) and the decomposition A = Q — %Q*ﬁ"] Q, we deduce
dluﬁ 1 1 * 2
dlog T(Xr) = sx(1) - (2B — BQ)x(1)dr + S [Q"Bx (1) dt
X 2 2
- %tr(er1 0")dt — Q*Bx(1) - dw(t),

and, observing that V log dd%(x) = —pfx, the result follows from Eq. (3.3) and Condi-
tion (3.17).

(4) Let v € P4 (E) and denote by ¥, the density of v; w.r.t. u. By Lemma 5.4, v, is a strictly
positive element of A for large enough 7. Fore > 0 we havelog e < log(y;+€) < ¥, +€—1,
and hence log(y; + €) € L3(E, dw). Thus, sc(Y;) = —y; log(Yy +€) € LI(E, du), and
the monotone convergence theorem yields

Ent(vs ) = leif{)l u(se(Yrr)).

From

t
Se (Y1 (X)) = se (Y5 (x)) = / Se(Yu () (L™ ) (x)du

A

we infer

t
n(se (Vi) — p(se(¥s)) =/ (sc () IL™Yr) pdu.
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Since ¥, and 5. (Y,) = —1 —log(Y, +€) + €Yy +¢)~ ! are elements of .42 we can integrate
by parts, using Eq. (5.16), to get

(SLIL* Y = {Fe DI Q*Vul*)  + (2e (W) (A — A)x - Vi),
where

11//-{-26 €2
2 (Y +e)?’ 8<(¥) = 2(w+>2

Since fe > 0 and decreases as a function of €, the monotone convergence theorem yields

fe() =

t 1 t
tim [ e P = 5 [0 11w P

1 ! * 2
5 v, (|Q™V log ¥, |*)du.
s
Since 0 < g¢ 5 , the dominated convergence theorem gives
tim [ (e IE = A Ty =0
€l0 Jg
We conclude that for s sufficiently large and t > s

1 t
Ent(v; i) — Ent(vg|p) = leif(}(“(SE(w’)) — (e () = 5/ v, (1Q*V log ¥, |*)du,

and Eq. (3.22) follows.
(5) Equation (3.3) gives

1 du
E,[&'] = 3, vs(‘Q Viog-= )ds — fttr(Qﬁ_lQ ).
Since Sgs(vr) = Ent(v,|w) + v, (¢), where
du 21
0(x) = —log X (x) = ‘M Zx‘ + = log det(2 M),
dx 2
Equation (3.22) implies

d
E(SGS(W) +E,[6'])

1 dy
=V (2 ‘Q*V lOg d7t

A simple calculation yields Ly = —llQ*V log d“ 1> + tr(Qﬁ 1'0*) and hence

1 d e : 1 —1 %
+L<p—|— —| —=tr(QVv Q0 ).
dx 2

9 (Sasv) + B[S = +|orviog 28] _| grv10g %[
— v v = —V o )
dr oSt 2 gd &ax
2
t dy; du
— Vlog — - BVlog —
vt( ° dug )+w( 8 dx gdﬂﬂ)

An integration by parts shows that

d d
vy (Vlogd—‘; BV log —M) =—y (V - BV log ;7’;) =t (B(M~' —p)).
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and, since BM~' — BB = —A — MAM~' + A + A*, we have tr(B(M~! — 8)) = 0. The
result follows.

5.3 Proof of Proposition 3.7

(1) Since the first equivalence is provided by (3.32), it suffices to show the sequence of
implications

MQO=00=[Q M =0=u® =p=ep=0. (5.19)
Writing Q = A+ %Qﬁ‘_l Q* and invoking Lemma 5.1(6) (the covariance of the steady state
satisfies the Lyapunov equation B + AM + M A* = 0) one easily derives

1
(2, M] = (MQ — 00~ '0* + 09~ (MO — 0)*),

which proves the first implication in (5.19). The last identity, rewritten as [A — A*, M] = 0,
further implies that

0=AM + MA*+ B = A*M + MA + B = 0AOM + MOA*0 + 0 BO
= 0(AOMO + OMOA* + B)D,

from which we deduce that 6 M6 is also solution of the Lyapunov equation. Lemma 5.1(7)
allows us to conclude that M6 = M which is clearly equivalent to u® = u and proves the
second implication in (5.19). Finally, from (3.29) we deduce that if u® = p, then

1 1
ep = —plop) = —5(M[Q. f]) = Str(B[2. M])
= %tr(@ﬁ[ﬂ, M16) = %tr(ﬂ[@ﬂ@, OM0]) = —%tr(ﬂ[Q, 6M6]) = —ep,

which gives the last implication.

(2) Let 91, ¥2 € sp(?) be such that 1 # ¥, and Cy, NCy, > u # 0. Assume thatep = 0. By
Part (1) this implies M Q = Q¢ and [2, M] = 0. By construction, there exist polynomials
f1, f2 and vectors vy, v € E such that

f1(2)Omy vi =u = () Qmy,v3.
The first equality in the above formula yields
Mu = Mf1(Q)Qmy,v1 = f1(QQMQmy v = f1(R) QP my, v = P f1() Oy, v = Dqu.

Similarly, the second one yields Mu = 9,u. Since u # 0, this contradicts the assumption
91 #£ V.

5.4 Proof of Proposition 3.9

Lett >0,v € PIIOC(E), set

dvy
Ve = ix

’

and note that since V; + |Vi;| € LIZOC(E, dx), it follows from Lemma 5.4 that

/0 (1Y l3 + 1Lf Vi 1I3) df < o0 (5.20)
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for all f € C§°(E). We consider the process x = {x(¢)}¢[0,z] Which is the solution of the
SDE (3.2) with initial law v. By Theorem 2.1 in [57], the estimate (5.20) implies that the
process X = {X;}s¢[0,7] With X; = x;_; is a diffusion satisfying the SDE

dx(t) = b(x(r), 1)dr + Qdw(r)

with initial law v P, drift b(x, t) = —Ax + BV log ¥, (x), and a standard 0 E-valued Wiener
process w(t). Since #Q = FQ, the time-reversed process X = OF(x) = {6x ()} re10.71
satisfies

dx(t) = b(X (1), t)dt + Qd ()

with initial law vPT®,drift5(x, 1) = 0b(0x, t), and standard Wiener process i (1) = Fw(z).
Using the structural relations (3.9) and A + A* = —Q Q*B we derive

~ . d,LLﬁ -1
b(x,1) = Ax+ QQ*"Vlioge(x), ¢ =0 o Vi,
and conclude that we can rewrite the original SDE (3.2) as
dx(t) = b(x(r), ndr + Q(dw(r) — Q*Vlog ¢, (x(1))dr). (5.21)

Set
t
00 = [ 0V Ioggutx(s) - ducs)
0
and let Z(t) = £(n)(t) denote its stochastic exponential. We claim that

ElpeolZ(t)] = 1 (5.22)

forall¢ € [0, T]. Delaying the proof of this claim and applying Girsanov theorem we conclude
that

t
w(e) - / 0"V log ¢ (x(5))ds
0

is a standard Wiener process under the law IE‘,E prolZ(7) -], so that Eq. (5.21) implies

dp?
Y — 7Z(7). 2
s = A0 (5.23)

Using It6 calculus, one derives from Eq. (3.2) that
0*Vlog ¢; (x (1)) - dw(r) = dlog ¢s (x(1)) — (3 + L) log ¢r)(x(1))dt

0 L
= dlog ¢ (x(1)) — ((’fp%w)) = %IQ*VIOgdn(X(t))IZ) d,

from which we obtain

(05 + L)¢s

n(r)—%[n](t)=log¢,(x(t))—1og¢0(x(o))_/0( .

) (x(s))ds.
The generalized detailed balance condition (3.20) further yields

(05 + L)gps = —opPs,
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so that

d t

n() — *[ 1(r) = log i (GX(I)) —lo / op(x(s))ds,
from which we conclude that
dv-[ -1 d\)l—ff !
() = exp [n() — Snlo)] = ( ) ( | (x(s))ds) |
[ 2 ] d/lﬁ d/”fﬁ 0 B
(5.24)
and in particular that Z(t) = exp(Ep(v, 7)) o ®F. From (5.23) we finally get
d T
= exp[Ep(v, 7)] 0 OF.
d]P)lr)PT()

It remains to prove the claim (5.22). Set { = vP’® and observe that it suffices to show
that E;[Z(¢)] > 1fort € [0, t]since E;[Z(#)] < 1is a well known property of the stochastic
exponential. The proof of this fact relies on a sequence of approximations.

The inequality E.[Z(#)] < 1 gives that for s, s’,t € [0, 7] and bounded measurable f, g
one has

IEc[Z(1) f (x()g (SN = 11 flloollg lloo- (5.25)

Here and in the following we denote by || - ||, the norm of L?(E, dx). The duality between
LP(E,dx) and L(E, dx) will be written (- | - ). Next, we note that Eq. (5.24) implies

E [Z(1)g(x(0)) f(x(1))]
—1 '
) (/ op (x(s))ds):|
0

d
—E, [(d:

= [ stoxcoe, [x(x(t))‘lwz(Gx(t))f(x(t))ev(’)] dx = (lx Pax Vi),

where we have set

t d -
V() = / opesNds,  x =L J =eu,
0 X

and
(Py f)(x) = Exle¥? fox()].
It follows from the estimate (5.25) that ||)(P(§)(_1 J,f”l < || flloo- For n, m > 0 we define

—n if og(x) < —n;
Gam(0) =1 0p(x) if —n<op0) <m:  ow(x) = [
m if og(x) > m;

op(x) if og(x) < m;
m if og(x) > m;

and set
t

t
Vn,m(t) =/ Gn,m(x(s))dS, Vi (t) =/ o (x(s))ds.
0 0

Since
lim Gll,m(x) = Gm(x)a O~n,m(x) <m
n—0o0
lim o, (x) = op(x), om(x) < op(x),
m—0Q
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for all x € B, we have

lim e"nm® — V(@ eVnm(® < gmt
n—oo

lim eVm(I) = eV(t) eVm(t) < eV(l)
m— 00 —_ ’

PP, -almost surely. Hence, the dominated convergence theorem yields
(8lx Pox " 1)
= B¢ [ O)Fox(O) ™ g x x0T (1) f (x|
= lim_fim B,,_, [xxO0)T0O0) " gxO)x ()™ T (x(0) f(x(1)e* O]

= lim_1im (glxPs, , x "'V f).

m—00 n— 00

where, by the Feynman—Kac formula,
(Pr,,. ) @) = Ex [ @ pxn)] = (&4 1) ()
defines a quasi-bounded semigroup on L?(Z, dx). In the following, we assume that f €

Cg°(8) is non-negative. It follows from Eq. (5.13) that x ! J,f € CP(E) C Dom (L) =
Dom (L + 0,,,) and we can write

(s1xPs, XD f) = (glTu ) + /’(g|x<L+anm> 5 X VS ) ds.

Denote by L7 the adjointof L on L?(E, dx) whichactson C{°(E) as LT = %V BV —V-Ax.
Assuming g € C3°, we get

<g|x g,mx”%f) = vr7z®(gf)+/0 < - (LT + oy m) xglx onmx’l%f>ds
The generalized detailed balance condition (3.20) yields
X 'L xg = O(L +0p)Og = (OLO — 0p)g,
and it follows that
< - (LT +0n m) xelx mx”%f) = <(®L® + 0nm — 0p)ElX g,lmx‘I%f>-

Since g is compactly supported, if #n and m are sufficiently large we have (0, , —o)g =0
and so

(elxPh,, x 7 Tif) = vt ©e) +/t (OLOglx P, , x ™"V f ) ds
0

Taking the limits n — oo and m — oo we get that

(gleéx_I%f)=vf-t®(fg)+/0 (OLOglx Psx ", f)ds

holds for all f, g € C§°(8). For k > 0 set
-1
gk(x) = (1 +e‘x'2/2k)
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and let p € Cg°(R) be such that 0 < p < 1, o' <0,p(x)=1forx <0and p(x) = 0 for
x > 1. Define gi, € C§°(E) by gr,r(x) = gk (x)p({x) — r). One easily checks that

Jim llgkr — klloo + I1L(8k.r — 8K lloo = 0,

and noticing that g; and g , are ®-invariant, it follows that
13
(el P s ) = ves@ () + [ (OLasl P ).
Using the fact that
1

L > ——1tr(B),

(Lgi)(x) = 7 1(B)
and the monotone convergence theorem we conclude that

(UxPyx ™ f) = Jim (gilxPox ™ i f)
. 1 ! i~
> lim v O )~ et ®) [ (1P Tufids = v (),
k— 00 8k 0
Finally, letting f converge to 1 monotonically, we deduce
Ec[Z(1)] = lim E[Z(2) f(x(0))] = lim (1]} Pl x "' f) > lim ve— (f) = ve—y (1) = 1.
¢ [Z(D)] Jimy [Z(0) f(x(@)] f/l( |x Py x 1/ftf>_f/] =1 (f) = ve— (D)

This completes the proof of the claim (5.22).

5.5 Proof of Theorem 3.13

(1) We start with some algebraic preliminaries. For w € R, set
R@) =07'0*A+i)"'Q, U) =1+ R(w),

and note that since the matrices A, Q and % are real one has

CR(w)C = R(—w), CU(w)C =U(—w), (5.26)
where C denotes complex conjugation on C9d E. Further note that
det(U (@) = det(] + (A +iw) ! o1 ) = LA 1)
w = @ = —
det(A + iw)
from which we deduce that
|det(U(w))| = 1. 5.27)

From the relations

(I+97'0* (A —ie) ™' Q) =1 - (I+97'0*"(A—iw)'Q) ' 970" (A —iw) ' Q
=1-97'0 (I +(A—iw) 000" (A—iw) 0
=1-97'0"(A—iw+ 000" 0
=1+07 10" A" +io)'Q
=1+ 0% (A" +iw)" 100
=I1+9'0*(A+iw) 'Q0 =1+ R(w)
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we also get
U(—0) ' = U(w). (5.28)

Writing
E(w) = Q" (A* — iw)~! ((—A* - %Qﬁ_l 0" +iw)B + B(—A — %Qﬁ_] o* — ia)))
x (A +iw)~'Q
= 0" (-(A* —iw) "B - B(A+in) ' — (A* —iw) ' Q0TI 0M (A +iw) ") 0
= —R() — R(®)* — R@)*R(w) = I — (I + R))*(I + R(w))
=1 -U)"U(w),

shows that E(w) is indeed independent of the choice of 8. The continuity of w +— E(w)
follows from Assumption (C) and Lemma 5.1(1) which ensures that iR N sp(A) = @.
(2) Invoking Relation (5.28) we infer

E(w)=1-U)'U(w) =U()" (U(—w)'U(-w) = DU (w) = —U(®)"E(-0)U (w),
and

I —aE) =U()" (U(-0)'U(-w) + ¢E(-w)) U()
=U)*(I — (1 —a)E(—0))U (w).

Combining the last identity with Eq. (5.26) and (5.27) yields

det(I — aE(w)) =det(I — (1 —@)E(w)). (5.29)
The simple estimate ||(A + iw) o <e + wz)*% implies

IE@]h € L'® d),  lim [E@)] =0. (5.30)

Thus, the eigenvalues of E (w), which are continuous functions of w, tend to zero as w — 00.
Since (5.29) implies that / — E(w) is unimodular, 1 ¢ sp(E(w)) for any @ € R and we
conclude that E(w) < 1 for all w € R. From (5.29) we further deduce that the elements of
sp(E(w)) \ {0} can be paired as (¢, &’) with0 < ¢ < l and ¢’ = —¢/(1 — ¢) < 0. Moreover,
since the function ]0, 1[3 ¢ > —¢&/(1 — ¢) is monotone decreasing, one has

e+ (w)

e_(w) = minsp(E (w)) = _?_‘_(cof

8+(a)) = max Sp(E(a))).
T]luS, the 1011()W1’]lg alte] llati ve ll()ldS: eitlle]
. i
E_ = glll‘l E_ (6{)) = () = Ial;lax 8+(Cl)) = 8+

and hence E(w) = 0 forall w € R, or

&+
1—8+

ey €10,1[, &_=-— €10, —ool,

and hence

This proves Part (2).
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(3) By Part (2), det(I — aE(w)) # 0 for @ € €. and hence the function
¢ > a > logdet(l —aE(w))

is analytic. Moreover, an elementary analysis shows that for any compact subset K C €,
there is a constant Cg such that
sup || E(@)(I —aE@) Il = CkIE@)]1.

aek

For any o € €. one has

logdet(/ — ¢ E(w)) = _/a tr(E(w)(I — yE(a)))fl)dy,
0

and since the integration path from O to « lies in €. there is a constant C,, < 0o such that
[logdet(] — aE(w))| = Co | E(@)]]1-
By (5.30) and Fubini’s theorem

o0 dw o o _1.dw
e(a):—/ logdet([—aE(a)))E:/o / r(E@)(I —yE@)™H ) dy.

It follows that €. > o +— e(«) is analytic and that

/ * _q.dw
e(a):/ tr(E(@)(I — aE(w)) ™) —,
4

—0o0

7 _ /-oo —1 -1 do
() = tr(E(w)(I —aE(w))” E(w)(I —aE()) " )—.
oo 4
Since I — aE(w) > 0 for a € T, the last formula shows in particular that ¢”(a) > 0 for
o € J., and so the function J. > @ +— e(w) is convex. Going back to the alternative of
Part (2), we conclude that either e(«) vanishes identically, or is strictly convex on J.. The
symmetry e(l — o) = e(a) follows from Eq. (5.29) and, since e(0) = e(1) = 0, convexity
implies that e(a) < 0 for @ € [0, 1] and e(e) > O for @ € J. \ [0, 1]. By Plancherel’s
theorem

* | o pdo * ia tA*
/ (A+iw)” QO"(A™ —iw) 7:/ eQQ%e dt =M,
—00 2 0
and so

’ ’ o RN | ¥ oop % o y—1 do
e(O):—em:/ tr (Bp(A +iw) "' QO (A" ~iw) ")

1
= Etr(EﬁM) = u(og) = —ep.

Assume that e > 0. By Lemma 5.1(1), A is stable and hence E(w) is an analytic function
of w in a strip [Imw| < §. By (5.30) there is a compact subset K of this strip such that
e+(w) < e for all w € R\ K. By regular perturbation theory the eigenvalues of E(w)
are analytic in K, except for possibly finitely many exceptional points where some of these
eigenvalues cross. Thus, there is a strip S = {w | |Im (w)| < 8’} such that all exceptional
points of E(w) in S N K are real. Since E (w) is self-adjoint for w € R, its eigenvalues are
analytic at these exceptional points (see, €.g., [43, Theorem 1.10]). We conclude that the
eigenvalues of E(w) are analytic in S N K. It follows that the function R > @ — &4 (w)
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reaches its maximum ¢ on a finite subset M C K N R. To each m € M let us associate
dm > 0, to be chosen later, in such a way that the intervals Oy, =]m — 8y, m + 5[ are
pairwise disjoint. Setting

dw dw

em(@) = — / logdet(/ —aE (@) = - Z / log(1 — aej (@), (5.31)
Om J Om

where the sum runs over all repeated eigenvalues of E(w), we can decompose

el@)= D em(@) + ergl@),

meM

where the function o > epeg () is analytic ator = % +k..Since J. 3 o — e(w) is convex, to
prove that it has a continuous extension to o = % + k. and that its derivative diverges to +00

asa P % + K¢, it suffices to show that for all m € M the function ey, (o) remains bounded
and its derivative diverges to +oo in this limit. The same argument links the behavior of
e(a) and €'(a) as « |, % — Kk to the minima of ¢_ (), and we shall only consider the case
ot % + K.

Let m € M and consider an eigenvalue ¢(w) of E(w) which takes the maximal value ¢ at
o = m. There is an integer n > 1 and a function f, analytic at m, such that f(m) > 0 and

(@) = — (@ —m)”" f (o).
Moreover, we can chose &y, > 0 such that f is analytic in Oy, and

inf f(w) >0, sup f(w) < oo, inf e(w) > 0.
€O 0€Om w€0m

Setting

1 €
1 o %-}—KC—O[ 2n
n=\-—-e) ={=5—"7"7) .
a (j‘f‘Kc)O{

sothatn | 0 & o 1 % + k¢, we can write

2n 2n
1 — ae(w) = an™ (1 + (m) f(w)) = a(w — m)? ((") + f(w))
n w—m

and since
©—m 2n
log [anz” (1 - (—) f(w))} dw = O(nlogn),
n

2n
log |:a(a) —m)>" ((wim) + f(w))] dw = 0O(1),

|o—m[<n

n=<lo—m|<5m

as n | 0, it follows that

/ log(1 — ae(w))dw = O(1)

Om
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as o 1 % + k.. Since the contributions to the sum on the right-hand side of Eq. (5.31)
arising from eigenvalues of E(w) that do not reach the maximal value ¢ at m are analytic
ata = % + K¢, it follows that ey, (o) remains bounded as o 1 % + K.

Let us now consider the derivative e}, («). Setting = % + k. — a, we can write

e(w) B f@ 5\
/71—a8(w)dw_/(n+s(a))8+(w m) ) dow.
O

m m

Since
D= su f(w)
weOm e(w)et

> 0,

we get

g(w) Sm dw A

————dw >2 ————>Cnp "2t > o0,
1 —ae(w) 0o n+aw?D

as n | 0. Since again the contributions of the eigenvalues of E(w) which do not reach the

maximal value ¢ at m are analytic at o = % + k¢, it follows that e}, () — coas 1 % + K.

(4) For any bounded continuous function f : [¢_, ;] — C one has

o0 d
< ||f||oo/ ||E(w>||1ﬁ.

—0oQ

o0 dw
‘/ tr(E(a))f(E(a))))E

Hence, by the Riesz-Markov representation theorem there is a regular signed Borel measure
o on [e_, e4] such that

o0 d
/ (B @) f(E@)) 2 = / F©)o(de),

and

o d
/|g|(de> 5/ IE@I 2 < oo.
o0 T

For @ € €, the function
1
Joile—, 64l e~ ——log(l —we)
&
is continuous and we can write

e d
e(a) = —/ tr(E(w)fa(E(w)))ﬁ Z/fa(S)dQ(S)- (5.32)

We can now proceeds as the proof of Theorem 2.4(2) in [41].

(5) We start with some simple consequences of Assumption (C). The reader is referred to
Sect. 4 of [46] for a short introduction to the necessary background material. Since A, =
A+a Q0! Q*, the pair (A4, Q) is controllable for all «. The relation AX = —Aj_y shows
that the same is true for the pair (A}, Q). Thus, one has

() Ker (Q*A}) = (] Ker (Q*A}") = {0} (5.33)

n>0 n>0

for all . This implies that if Q*u = 0 and (Aq — z2)u = 0 or (A} —z)u = 0, thenu = 0,
i.e., no eigenvector of A, or A is contained in Ker Q*.
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Assume that z € sp(Ay) and let u # 0 be a corresponding eigenvector. Since
Ag + AL =2(a — H0v 7' 0%,

taking the real part of (u, (A, — 2)u) = 0 yields
(@ — H9~7 0% ul* = Rezjul.

Thus, controllability of (Ay, Q) implies sp(Ay) C C4 for (o — %) > 0.
Fora e R\ {%} and w € R, Schur’s complement formula yields

det (7 + a(l —a)Q* (A% —iw) "1 Q92 0*(Ay +iw) 1 Q)

det(Ky —iw) = det ((Aa 4 jw)—l) det ((Af; - iw)_l)

)

and using the relations
(Ag +i0) ' = A+iw) ' +a09 10 (A +iw)~H 7!,
(A —iw) ' = (I + a(A* —iw) Qo1 0" (A" —iw) 7!,

one easily derives

det(Ky — iw) = | det(A + iw)|? det(] — ¢ E(w)). (5.34)
Writing Eq. (3.41) as
K _[—4 oo N —a Qv Q" 0
*~ 10 Ar a(l —a) Q020" aQv~lQ* |’

one derives that the identity (5.34), as the equality between two polynomials, extends to all
o eC.

By Part (2), we conclude that sp(K,) NiR = @ for « € €. It follows from the regular
perturbation theory that the spectral projection P, of K, for the part of its spectrum in the
open right half-plane is an analytic function of « in the cut plane €. (see, e.g., [43, Sect. II.1]).
For o € R, K, is R-linear on the real vector space & @ E. Thus, its spectrum is symmetric
w.r.t. the real axis. Observing that J K, + K J = 0, where J is the unitary operator

0 I
=[5 o)

we conclude that the spectrum of K, is also symmetric w.r.t. the imaginary axis. It follows
that for o € 7,

1

3 > [Reilm; = tr(PyKa). (5.35)

resp(Kq)
Denoting the resolvent of K by T, (z) = (z — Ko) ™!, we have
dz

Py = f To(2) =,
r, 2mwi

where I'; C C; is a Jordan contour enclosing sp(Ky) N C4 which can be chosen so that it
also encloses sp(—A) = sp(Kp) N C,. Thus, we can rewrite (5.35) as

1 dz
- Re A = T (2) —,
2 > [Reilmy ?{m Ta(2) 5

resp(Kq)

with 74 (z) = tr(Ty(2)).
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An elementary calculation yields the following resolvent formula

T (2) = To(2)

—ar(2)QD)(I + R®(2)9 7' 0*r(2) r(2) 0 — D(2))0*r® (2)
=@ @00 + R@)D@P ' 0*r®(x) ar®(2)Q0~ (I + R(2))D(2) Q*r® (2)

where

r(z) = (A+2)7L, r®(z) = (A* — )7L,
R(z) =97 10*(2)0, R®(z) = 0*r®() Qv ",

and
D() = (I + a(Rz) + R®(2) + RE()R(2)) .
It follows that
10(2) = 10(2) + tr (D(2)ad. (I + R® () + R(2))).
Thus, for small enough @ € C and z € T';. we have

74(2) = 10(2) + 3; logdet (I + a(R(z) + R®(z) + R®(2)R(2))) -

Since
_[r@ —r@00* %@
the fact that I'; encloses sp(—A) C C but no point of sp(A*) C C_ implies

dz

f 00 =]§ st (et A7+ - A7) 2 u(a) = s 0%)
Iy ’ 27'[1 . ' 27'[1 2 ’
and hence

f zra(z)dfz. = 1tr(Ql‘/“le*) —7{ logdet(/ + «(R(z) + R (2) + R®(Z)R(Z)))d—z..
r. 21 2 2mi

ry

Noting that
R(z) + R®(2) + R®(D)R(z) = —Q*(A* — ) 'Zp(A+ 20710,

and deforming the contour I" to the imaginary axis (which is allowed due to the decay of
the above expression as |z| — 00) yields

o d

tr(Ko Py) = $tr(Q9 ' 0%) +/ logdet(I — a E(w))

w
27
Since both sides of the last identity are analytic functions of «, this identity extends to all
o € ¢, and the proof of Theorem 3.13 is complete.

5.6 The Algebraic Riccati Equation
This section is devoted to the study the algebraic Riccati equation
Ra(X) =XBX — XAy —ALX —Cy =0

which plays a central role in the proof of Proposition 3.18. We summarize our results in the
following proposition.
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Proposition 5.5 Under Assumption (C) the following hold:

(1) For @ € 3. the Riccati equation Ry(X) = 0 has a unique maximal solution which
we denote by X. It also has a unique minimal solution, which is given by —60 X 1_40.
Moreover,

Dy = Ay — BX,
is stable and
Yo = Xo +0X1-46 > 0.
(2) The function 3. > a — Xy € L(E) is real analytic, concave, and satisfies

[Xa <0 for « e]% — k¢, Of;

Xy >0 for a€]0, % + kel (5.36)

Moreover, Xo = 0 and X1 = OM 6.

(3) If. for some a € 3., X € L(E) is a self-adjoint solution of Re(X) = 0 and sp(Ay —
BX) C C_, then X is the unique maximal solution of Ry (X) = 0.

4) If k. < oo, then the limits

X1 = lim Xa, X1 = lim Xo,,

| 2 te i
aly—ke 2 atstke

2 Ke

exist and are non-singular. They are the maximal solutions of the corresponding limiting
Riccati equations R%ﬂc (X%ﬂf) =0.

(5) If X € L(E) is self-adjoint and satisfies Rq(X) < 0 for some o € T, then X < X,.
(6) Foralloa € 3. the pair (Dy, Q) is controllable and sp(Dy) = sp(Kq) NC_. Moreover,
for any B € L(E) satisfying Conditions (3.17) one has

e(a) = %tr (Da + %Qﬁ_l Q*) = —%tr(Q*(Xa —aB)0). (5.37)

(7) Fort > 0 set
t
My, s =/ e’Pu gesDads > 0.
0

Then for all « € Je
. —1 . —1
At Mo = [0 Mo = Yo = 0

and Ker (Yy) is the spectral subspace of Dy corresponding to its imaginary eigenvalues.
(8) Set Ay, = M;,l — Y, Forall o € 3., one has

ePapyle!Ps = A g 8, (5.38)
and
1
Jim —log det(Aq.) = de(@) — tr(Qv 1 0%).
—00

In particular, for o € 3¢, Ao, — 0 exponentially fast as t — oo.
(9) Let Dy = 60D1_o0. Then

n *
YaetDa — elDa Yo{

foralla € 3. andt € R.
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(10) Let Wy, = aX| — Xy. Then
1.

Wy <0 for |oz—% 35
Wo =0 for 3 <lo—3| <k

=

andja + Wy > O0foralla €73,
(11) Set® = %(ﬂmax + Omin) and A = Ymax — Omin. Then the following lower bound holds

Ke > Ko = >

> | =l
| =

Moreover, the maximal solution satisfies

ad "L fora e l—/(,0;
X = | min f [3 e : (5.39)
adgax fora €10, 5 + ol

(12) Assume that k. = ko and that the steady state covariance satisfies the strict inequalities
[recall (3.13)]

Umin < M < Omax.
Then Condition (R) is satisfied.

Remark 5.6 Inthe equilibrium case ¥min = Umax = Do it follows from Part (11) that k. = oo.
One easily checks that in this case

Xg=avy' I,  0X1_¢8 = (1 —a)0y'I, Yyo=0,"1, Wg=0, Dy=A.

Proof For the reader convenience, we have collected the well known results on algebraic
Riccati equations needed for the proof in the Appendix.

We denote by H the complex Hilbert space CE @ CE on which the Hamiltonian matrix
K acts and introduce the unitary operators

0 6
o=[s 6]

acting on the same Hilbert space. We have already observed in the proof of Theorem 3.13
that for ¢ € R the spectrum of K, is symmetric w.r.t. the real axis and the imaginary axis.
The time-reversal covariance relations

A0 = AL = —Al_q. 0BO = B* = B, 0Cyt =Ch =Coq =Ci—q, (5.40)

which follow easily from the definitions of the operators Ay, B, Cy [recall Eq. (3.1), (3.12)
and (3.42)], further yield ®K, — K i“_ «® = 0 which implies

sp(Ka) = sp(Ki1—a). (5.41)

(1) By Theorem 3.13(5), sp(Ky) NiR = @ for & € J, and the existence and uniqueness of
the minimal/maximal solution of R, (X) = 0 follows from Corollary 6.3. The relation
between minimal and maximal solutions follows from the identity

Ra(0X0) = OR1-o(—X)0,

which is a direct consequence of Eq. (5.40). The maximal solution X, is related to the
spectral subspace H_ (K ) of K, for the part of its spectrum in the open left half-plane
C_ by

H_(Ky) = Ran |:XI :| , (5.42)
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see Sect. A.3. In particular sp(Dy) = sp(K) N C_.
The matrix Yy, = Xy — 60X 1-46 is called the gap of the equation Ry (X) = 0. It is
obviously non-negative. It has the remarkable property that for any solution X, Ker (Yy)
is the spectral subspace of Ay — B X for the part of its spectrum in iR [Theorem 6.7(1)].
Since sp(Dy) C C_, we must have Y, > 0.

(2) One deduces from Eq. (5.42) that the spectral projection of K, for the part of its
spectrum in C is given by

17,4 [1-v'X, v, !
P"_[XJYQ [6X1-a6 I]_[Xa(l—Ya_lXa) XY |

As already noticed in the proof of Theorem 3.13, P, is an analytic function of « in the
cut plane ¢, D J.. It follows that Y, land X, Y, I are real analytic on J.. The same
holds for Y, and X, = X, Ya_lYa.

To prove concavity we shall invoke the implicit function theorem to compute the first
and second derivatives X/, and X, of the maximal solution. To this end, we must show
that the derivative DR, of the map X — R,(X) at X = X, is injective. A simple
calculation shows that

DRy :Z v —ZD, — D} Z.

By (1)one has sp(Dy) C C_ fora € J.. It follows that for any L € L(Z) the Lyapunov
equation DR, Z = L has the unique solution

0 *
Z=/ e'Pa e!Pagy
0

(see, e.g., Sect. 5.3 in [46]). This ensures the applicability of the implicit function
theorem and a straightforward calculation yields the following expressions valid for all

o € J.:
o0 *
X!, = / e'Pa (XyBB + BBXy + (1 —2a)BBB) e'Padr, (5.43)
0
o0 *
X! = —2/ e'Pa (X!, — B)B(X., — B)e'Pedr. (5.44)
0

From (5.44) we deduce X, < 0 which yields concavity.
We shall now prove the inequalites (5.36), using again the Lyapunov equation. Indeed,
one can rewrite the Riccati equation R, (Xy) = 0 in the following two distinct forms:

XoAg + ALXy = Xy BXy — Cq, (5.45)
Xo¢Dy + DXy = —XoyBXy — Cy. (5.46)

Recall that Condition (C) implies sp(A,) C C_ for ¢ < O [as established at the
beginning of the proof of Theorem 3.13(5)]. It follows from Eq. (5.45) that

o0 deel
X, = _/ !4 (Xy BXo —Cy)eAedr < a(l—a)/ e'4e Qv 2 0% A dr. (5.47)
0 0

Since (A}, Q) is controllable, we can conclude that X, < O for « e]% — K¢, O[.
Similarly, for « > 1, sp(Ay) C C4 and Eq. (5.45) leads to

o0 o0
Xo :/ e 44 (XyBXy — Co)e " Aodt > a(a — 1)/ e e Q2 Q*e A ds.
0 0
(5.48)
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Controllability again yields X, > 0 for o €]1, % + Kkel.
Finally, for o €]0, 1[ we use Eq. (5.46) and the fact that Dy, is stable [established in
Part (1)] to obtain

oo o0
Xa= / e'Pi (Xo BXy + Ca)e'Pdt = a(1 — a)/ e'Pe Q2 Qe Pudr.
0 0

It follows that X, > O for o €]0, 1[. To show that X, > 0, letu € Ker X,. From (5.45)
we infer (u, Cqu) = Oand hence u € Ker C,, = Ker Q*. Using (5.45) again, we deduce
Aqu € Ker X. Thus, we conclude that u € Ker Q* A for all n > 0 and (5.33) yields
that u = 0.
From X( = limg10 X < 0 and Xo = limy 0 Xo > 0, we deduce X = 0.
To prove the last assertlon we deduce from (5.45) and 1dent1tles A1 —A* = —0A0,
C1 =0, that M= 0X, 19 satisfies the Lyapunov equation AM + MA* + B = 0. Since
A is stable, this equatlon has a unique solution and Lemma 5.1(5) yields M=M.

(3) is a well known property of the Riccati equation [Theorem 6.6(3)].

(4) Since X, is concave and vanishes at @ = 0, the function o > X, — aX(’) is monotone
decreasing/increasing for o negative/positive. Thus, to prove the existence of the limits
X%ﬂc it suffices to show that the set {X, |« € J.} is bounded in L(E). For positive

«, this follows directly from Part (2) which implies 0 < X, < aX| (’). For negative o,
taking the trace on both sides of the first equality in Eq. (5.47) and using the fact that
Cy < 0, we obtain

o0 o0
tr(Xy) = —/ tr((Xo BXy — Co)e'dae!d)dt > —tr(Xy BXy — Ca)/ lle! A« ||2dz.
0 0

Thus, an upper bound on tr(X,BX, — Cy) will conclude the proof. Taking the trace
of Riccati’s equation yields

tr(Xa BXy — Ca) = tr(Xo(Aq + A%)) = Qa — Dir(X, 09~ Q%) < 2o ltr(??a),

min
where 5(\0[ = 0*X, Q. Combining the last inequality with the estimate
r(Xe)” < 19Z1tr(X3) = [0Z]tr(Q" X 00" Xa 0) < [0Z1 || Q[ *tr(Xo BXa)
yields a quadratic inequality for tr(Xy) which gives
tr(Xo) = —(1 = 20)[9Z] | Q1* V-

Summing up, we have obtained the required lower bound

o0
tr(Xy) > —(1 = 22)*8Z] | QII*9 2 /0 lle"Ae|%dr.

By continuity, we clearly have R 1 4, (X 1 +,) = 0. Continuity also implies that
sp(D 1 ixp) C C_ and the maximality of X lie, follows from Part (3).
Since C lie, < 0, the fact that X Lie, is regular follows from the same argument we

have used to prove the regularity of X, for o €]0, 1.

(5) is another well known property of the Riccati equation [Theorem 6.7(3)].

(6) Since Dy = A + Q(ad~'Q* — 0*X,), the controllability of (Dy, Q) follows from
that of (A, Q). The relation between sp(K, ) and sp(Dy) is a direct consequence of the
relation
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[ ]-[ L]

which follows from Eq. (5.42). Formula (5.37) is obtained by combining this informa-
tion with Eq. (3.43). The last assertion is deduced from controllability of (D, Q) in
the same way as in the proof of Lemma 5.1(1).

(7) To prove the existence of the limit, we note that (6) implies that for any « € J. and
to > 0 the function [19, 00[> 1 > M, ,1 takes strictly positive values and is bounded
and decreasing. Thus, we have

Zy = lim M, ! =inf M} > 0.
1—00 ’ t>0 ’

Since M, tl is easily seen to satisfy the differential Riccati equation

d _ R —1 P
aMa,t = (Ma,t BM(X,Y + Mot,t Dy + Dona,t) ’ (5.49)

it follows that for any > O and 7 > 0
T
-1 —1 —1 —1 —1 —1
Ma,l - Mot,t+'r = A (Mot,t%vBMot,tJrs + Ma,tJrs DDl + D;Ma,tﬁv) dS.
Letting t — oo, we conclude that Z,, satisfies

ZyBZy + ZyDy + DZy = 0. (5.50)

Expressing the last equation in terms of V, = 6(Zy — X4)60 and using (5.40), we
derive R1—_¢(Vy) = 0. By a well known property of Lyapunov equation (see, e.g.,
Theorem 4.4.2 in [46]), one has sp(Dy + BMOZ}) C C4 for all ¢+ > 0, which implies
sp(Dy + BZy) C C,. Since Dy + BZy = —0(A1_y — BV,)H, we have Sp(A1—¢ —
BV,) c C_. From Part (3) we conclude that V,, is the maximal solution to the Riccati
equation Rj_4(X) =0, i.e., that V, = X|_q. Thus,

Zy = Xo +0X1-48 = Yo,

is the gap of the Riccati equation. It is a well known property of this gap that Ker (¥,,) is
the spectral subspace of D, associated to its imaginary eigenvalues [Theorem 6.7(1)].
(8) Combining (5.49) and (5.50), one shows that Ay ; = M, ,l — Y, satisfies the differential
Riccati equation
d
dr
where Dy = —(Aq + BOX|_o0) = 0D;_,8. Since

Aa,t = _AOt,IBA(X,t + A(x,tﬁa + 5;Aa,t» (551)

Aoz% = - Ma,tYa)ilMa,z,
we further have lim; 0 A, } = 0. We deduce that Sy; = A, } satisfies the linear
Cauchy problem
d ~

asa,l =B - DaSa,t - Sa,tﬁzv Soz,O = 0»

whose solution is easily seen to be given by

t - - t
Ses = / e *PaBe~Duds = 6 ( / e*fleaBe—fDl—ads) 0
0 0
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(C))

(10)

t
= Qe ! P1-a (/ eSDl—“BeSDTfads) e Piag
0

=0 Pre My _y e Pieg.
We thus conclude that
Agy = 0ePia M P10,
which immediately yields (5.38).
Since Ay ; is strictly positive for ¢ > 0, we infer from Eq. (5.51) that
%log det(Ag,) = tr(Ag, Ay }) = —tr(Ag B — Dy — D)
= —tr(Q" Ay, Q) + 2tr(Di—a).
By Part (3) and Theorem 3.13(5), we have
1

1
(Do) =—5 »  [Reilm; =2e(l —a)— 5ur(Qz%—lQ*)
)‘esp(Kl—m)

2e(ar) — %tr(Qﬁ_l 0%).

Since Ay ; — 0 fort — o0, given € > 0 there exists fp > O such that
de(a) —tr(QV Q") —€e < %Mg det(Ag.) < 4e(a) —tr(QV ' Q%)
for all r > ty. It is straightforward to derive from these estimates that
Jlim. % logdet(Ay ;) = 4e(a) — tr(Q9 1 Q%).

Using (5.40), one rewrites the Riccati equation (5.50) as

D;Ya = —Yy(Dy + BYy) = =Y (Ag + B(Yy — Xo))
= —Yy(Ay + BOX|40) = —Y,0(—=A1_¢ + BX| ()0
= Yy0Di_o0 = Yo Dy.

Thus, the result immediately follows from the fact that

d * n ~ n

5 & P Yae P = P (DY, — Yo Dae P = 0.

For any u € E we infer from Parts (2) and (4) that the function o +— (u, Wyu) is
convex, real analytic on the interval J., and continuous on its closure. Since it vanishes

for |o — %I = % one has either (u, Wyu) = 0 for all @ € J,. or (u, Wou) < 0 for

loe — %l < % and (u, Wyu) > 0 for % <l — %l < k.. This proves the first assertion.

Since Yy + Wy, = aX| + 0X_,0, we deduce from Part (2) that Y, + W, > 0 for

lo — 1| < . Considernow § < o — 4| < «c.Ifu € Eis such that (u, Wou) > 0, then

-

Part (7) yields (u, (Yy + Wo)u) > 0. Thus, it remains to consider the case of u € E
such that (#, Wyu) = 0 for all ¢ € J.. Using (5.44) we get that

o0
(u, W/u) = —(u, X/u) = 2/ |0*(X/, — Bye'Peul?dt =0
0
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for o € J.. Since QQ*(X!, — B) = —D),, this further implies D/,e/Pvu = 0 for all
(a, t) € J. x R. Duhamel’s formula

d t
—¢!Day :/ =P pl esDay ds = 0
da 0

allows us to conclude that e/Pey = e!Poy = ¢tA

nuity to all (o, t) € J. x R. Thus,

u, a relation which extends by conti-

lim e'Poy = lim e u =0,
—>00 [—00
which, using (7) again, further implies that u ¢ Ker (Y,) and hence (u, (Y, + Wy)u) =
(u, Yqu) > 0.
(11) For A € R, one has

R () = Q07" (W — (@ — 1) W9 —a) 91 0%,

sothat R (A1) < 0iffa—1 < A9 < a.Itfollowsthat P = {(a, 1) € R? | Ry (A1) < 0}
is the closed parallelogram limited by the 4 lines (see Fig. 11)
o o a—1 a—1

A A

A= 5 = = N =

- 9
19max ﬂmin ﬁmax

Pmin

The projection of P on the «-axis is the closed interval [% — K0, % + «o]. Thus,
Theorem 6.5 implies that the Riccati equation has a self-adjoint solution for all
o € [% — K0, % + kol. By Theorem 6.6(2) it also has a maximal solution X, which,
by Theorem 6.7(3), satisfies the lower bound (5.39). From this lower bound we further
deduce that for o € [0, % + ko[, the gap satisfies
o 1l—« A 1
Yl)[:Xo[—I—GX]_O,GzI9 + = (§+K0—a)>0.

max Umin Umax Umin

Since Ker Y%Jm_ # {0} by Parts (6) and (7), we conclude that x. > kg.

(12) The concavity of R, = Xy + (1 — @)X and the fact that Ry = R; = X1 > 0 imply
that for |a — %I < % one has R, > X;| > 0. For % <o - % < ko, Part (11) gives
Xo > a® L. Since M > Oin, Part (2) yields X| = OM~'0 < 9= and hence

max* min
o 1—01_/(0—(0(—%)

Imax T Omm 2_1
max min A(KO 4)

> 0.

Ry >

The case —kg < a — % < —% is similar.

5.7 Proof of Proposition 3.18
5.7.1 A Girsanov Transformation

By Proposition 5.5, for a € J. we have A = Dy, + Q 0*(X, — ), and we can rewrite the
equation of motion (3.2) as

dx (1) = Dax(t)dt + Qdwq (1), (5.52)
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Fig. 11 The parallelogram PP

where
we (1) = w(t) — /Ot O*(ef — Xa)x(s)ds.
Let Z (¢) be the stochastic exponential of the local martingale
N (1) = /Ot 0" (@f — Xa)x(s) - dw(s).

Combining the Riccati equation with the relations QQ* = QQ*8 = Q¥ ~'Q and
BOQ*B = Q¥ ~2Q*, we derive

1
5107 @B = Xo)x|* = —aop(x) = (@ = Xo)x - Ax,
and we can write the quadratic variation of 7, as
1 t t
E[na](t) = —Ot/ op(x(s))ds —/ (B — Xa)x(s) - Ax(s)ds.
0 0
Hence
1 t t
Na () — E[na](t) =/ (B — Xo)x(s) - dx(s) + o / og(x(s))ds.
0 Jo
The It6 calculus and Proposition 3.5(3) give
1
Na (1) — E[na]([) = - (}\a[ + oS + xo(x(1)) — Xa(x(o))) s
with Ay = Str(QQ* (e — X)) and
|
Xa(x) = Ex - XgX.
Finally, we note that Proposition 5.5(6) yields

1
Ao = _Etr(Q*(on —ap)Q) = e(a).
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Lemma 5.7 The process
Zo(t) = E(Me) (1) = e*[e(&)HﬂG’+Xa(x(l))*xoz(x(0))] (5.53)
is a Py-martingale for all x € E.

Proof We wish to apply the Girsanov theorem; see Sect. 3.5 in [42]. However, it is not clear
that the Novikov condition is satisfied on a given finite interval. To overcome this difficulty,
we follow the argument used in the proof of Corollary 5.14 in [42, Chapter 3].

Fix T > 0. By Lemma 5.3, {x(¢) — e’Ax},E[oJ] is a centered Gaussian process under the
law P,. Since

/X |0* (@ — Xo)x(1)]?dt < Cls —s/|(|x|2 + sup |x(1) —e”‘xP)

tel0,7]

for some constant C, Fernique’s theorem implies that there exists § > 0 such that

E, {exp(; / 0% p - xo,)x(mzdt)} < o,

provided 0 < s < s’ < 7 and s’ — s < §. Novikov criterion implies that under the same
conditions,
ws]

E, [5(%)(8’)
= E, {CXP(/S 0% (B — Xo)x(1) - dw () — % /S 10" (ep — Xa)X(t)Izdt) ‘Ws:| =1

EMa)(s)

ForO<s<s <s’" <71, —s <8ands” —s’ < § we deduce

) [E(Ha)(S”) S] _E, [EM) (") EMa)(s") Ws]
EMa)(s) L EMa) (") EMa)(s)

] EMa)(s")

P EM)(s)

_E, _]Ex [E(na)(s//)
L EMa)(s")

Wx] =1,
EMe)(T)

—_— Wo] =1.
E(nq)(0)
Since t > 0 is arbitrary, the proof is complete. O

]

[EMa) (s
L EMa)(s)

and an induction argument gives

Ex [EMa)(T)] = Ex [

The previous lemma allows us to apply Girsanov theorem and to conclude that {wq (¢)};¢0,7]
is a standard Wiener process under the law Q;!V[ -] =E,[Z(7) - ]. This change of measure
will be our main tool in the next section.

5.7.2 Completion of the Proof

From Eq. (3.35) and the results of the previous section we deduce that for a € J,

| d @ g o
(@) = - logE, |:(dl:(9x(t))) (ﬁ(x(O))) eae}
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1 o —o
= —logE, |:Za Q) (dﬂ(gx(t))) (di(x(o))) e—xa(X(O))+Xa(X(t))+e(a)t:|
t dx dx

=e(@) + %bg@fw |:(3l:(6'x(t))) (%(x(o»)i e—Xa<x(0>>+Xa<X<f>>]

where xq(x) = %x - X x. Denoting by Q, the Markov semigroup associated with Eq. (5.52),
we can write

1
er (o) = e(a) + A log(na| 0L q).
where - .,
Ne(x) = (j—g(x)) e %@ g () = (j—l:(@x)) el ™) (5.54)

Thus, to prove Eq. (3.45) we must show that the “prefactor” (ny| Q' &x) satisfies

1 ,
Jim -~ 1og(na| Q) = 0.

To this end, let us note that the Markov semigroup for (3.7) can be written as
1
(P = [ 7wy, (5.55)
X

where n denotes the centered Gaussian measure on X’ with covariance /. For o € J,, this
yields the representation

(0L )(x) = det2m My, )72 / ML O-PF £y, (5.56)
Using Eq. (5.54), a simple calculation leads to
(el QL) = det(2 My )~} det(@r M)~ / e beNuizgy
= det(M; })? det(M™")? det(N,1) 2,
provided

N - [em_a + Wica + Aia)f —e'PiMy; }
T~ My et Pe Yo + W + Aoy

is positive definite. By Schur’s complement formula, we have
det(Na,t) = det(Ya + Wot + Aa,t) det(Ylfot + Wlfot + Alﬂ)t,t - Ta,t)a

where

R B | 1 |
Toy =16 (etDa Ma,lz) Moc,t2 Yo + Wy + Aa,z)ilMaytz (Ma,12 etD"‘) 0.
It follows that
(na| 0 &q) = (det(M) det(My,,) det(Yy + Wo + Aq,r)

_1
X det(yl—a + Wl—ot + Al—ot,t - Ta,t)) z.
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_ _1 1
For any o € J, Proposition 5.5 implies that Yo, + Wy, > O while,ast — oo, M,/ \ Yy ,
1

Ag,r \ Oand | M,, 7 e'P=|| \{ 0 monotonically (and exponentially fast forar € J,.). It follows
that
1

Fle) = Tim (1l QLEw) det(Ya) Y 6s7)
o) = l11m = .
1o\ T Lo det(M) det(Yy + Wy) det(Y1 o + Wi_o)
Foro € 7., Y, > 0, and we conclude that
o
lim — log(ne|Q%&x) = 0. (5.58)
t—oo t

Consider now the limiting cases o = % =+ k.. We shall denote by C and r generic positive
constants which may vary from one expression to the other. Since Y, is singular, one has
log det(M(;tl) — —o00. However, the obvious estimate |e/P= | < C(1 +t)" implies M, ; <
C(1 4+ 1t)" and hence M > C(1 +t)~" from which we conclude that

a.t

1
lim — log det(M,}) = 0. (5.59)

t—00

It follows that (5.58) also holds in the limiting cases a = % + k..

By Holder’sinequality R > « — ¢;(«) is a convex function. The above analysis shows that
itis a proper convex function differentiable on J. for any r > 0, and such thatlim;_, o e; (o) =
e(a) for a € J.. Since limaT%Hc ¢’ (a) = 400 by Theorem 3.13(3), the fact that

lim ¢;(x) = +00
1—>00
for & € R\ J. is a consequence of the following lemma and the symmetry (3.39).

Lemma 5.8 Let (f;):~0 be a family of proper convex functions f; : R —] — 0o, 0o] with
the following properties:

(1) Foreacht > 0, f; is differentiable on la, bl.
(2) The limit f(a) = lim;_, o f;(a) exists for o €la, b[ and is differentiable on la, bl.
(3) limgyp f'(a) = +o0.

Then, for all o > b, one has lim;_, o, f;(a) = 400.

Proof By convexity, for any y €]a, b[ and any o € R one has

fr(@) = fi(y) + (@ = y) f] (v,
and Properties (1) and (2) further imply

Jim. ) =f'o.

It follows that
liminf (@) = f () + @ = 7)f' (). (5.60)

As alimit of a family of convex functions, f is convex on |a, b[ and, hence, infy, ¢14,51 f(¥) >
—o0. Thus, Property (3) and Inequality (5.60) yield

liminf f;(a) > liminf f(y) + (@ — y) f'(y) = 400 foralla > b.
t—00 y1b
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5.8 Proof of Proposition 3.22

(1) The required properties of the function g,(«) are consequences of more general results
concerning integrals of exponentials of quadratic forms with respect to a Gaussian measure
on an infinite-dimensional space. However, we shall derive here more detailed information
about g; (o) which will be used later (see the proof of Theorem 3.28).

We shall invoke Lemmata 5.2 and 5.3, and use the notations introduced in their proofs.
By Proposition 3.5, we can write

1 o
gi(@) = log / e 201y, (dy),

where y; is the Gaussian measure on ), with mean 7;a and covariance K; = D,D;}. The
convexity of g; is a consequence of Holder’s inequality. The operator £;, given by

(Lix)(s) = =Xgx(s) +8(s —)(F + X1 — B)x(t) = 8(s)(G +6X,0 — B)x(0), (5.61)

maps 94 to H_ in such a way that (x|L;y) = (L;x]|y) for all x, y € Ran D;. It follows that
the operator S; = D; L, D; acting in the space E @ 9 is self-adjoint, and a simple calculation
shows that S; — DJ[B, QID; is finite rank, so that S; is trace class. Using explicit formulas
for Gaussian measures, we derive

a2

1
gi(a) = Y logdet(I +aS;) — %(Ttathta) + Z(D;‘LITtaKl +0551)_1D;k£tha)
(5.62)
if I +aS; > 0, and g,(0) = +oo otherwise. Set s_(r) = minsp(S;) < 0, s4(1) =
max sp(S;) > 0, and

—s_(H7 " ifs_(@) <O0;
+o00 if s_(t) =0;

—sp (D71 ifsp() > 0;
—00 if s () =0;

a—(t) = l ap (1) = [

sothat I + oS, > 0iff « € 7, =Ja_(¢), a4 (¢)[. Analyticity of g; on J; follows from the
Fredholm theory (e.g., see [70]), and a simple calculation yields

gi(a) = —%tr((I +aS)7LS) — $(Tial L, Tya)

o " v (5.63)
+£(DFLTal (I +aS)™" + (I +a8) %) DiL Tha).

Suppose o4 () < oo and denote by P_ the spectral projection of S; associated to its minimal
eigenvalue s_ () < 0. By the previous formula, for any @ € [0, o (¢)[ one has
1 tr(P-)

/
>
§i(@) z 2t a

! 1
() —a Ztr((l +a8) IS~ P) — Z(TfaILtha),

which implies that g/ (o) — +00 as @ — o (¢). The analysis of the lower bound «_(r) is
similar.
(2) Is a simple consequence of the continuity and concavity of the maps
Jedar> Fy =0X_of +a(X; + F),
Je3a > Gy =N+ Py(Xe — a(G +6X16)|Ran ()
and the fact that Fy = 6X16 > 0and Go = N + P, X1|rany > O.

Q) IfX +F >0and N+ P, (X1 — G —0X10)|ran N > 0, then we also have F| > 0 and
G1 > 0 and the result is again a consequence of the concavity of F, and G.
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(4) Proceeding as in the proof of Proposition 3.18, we start from the expression

1
gi(e) = e(@) + — log(ne| 0 a),

where

Ne(dx) = e 3 Kama(@HIXIOx ) () g (x) = 3 (HateFEX DY,
Setting

Cur = [Ga + POAI o BlRany —Poe'Pe M ]
¢ _M(;.,tletDa'RanN Fo + Ay '

Cay = 30+ (Xog — (G +0X10) +0A_4,0)a,
b — Py(Xy —a(G +0X10) +0A1_o,0)a
o, — _Ma—,l]etDaa )
evaluation of a Gaussian integral leads to
(el QL E0) = det@x N~ 72 det(2r My )2 / e 27 Cartmebui~Cu gz (5.64)
Ran (N)®E
= det(N?) det(Mq;)~ 2 det(Cy) 2 e2burCatbur—car,

provided Cy ; > 0. By Schur’s complement formula, the last condition is equivalent to
Fot + Aa,t > 0, GO{ + PveAlfot,t9|RanN - Ta,t > O!

where

L _

| _1 1 1 _1
Ty =P, (eTDoc Ma‘;) Maj (Fo, + Aa,,) Maj (Ma,f etDa)

Ran N

Moreover, one has
det(ca,l) = det(Fy + Aa,t) det(Gy + POA1—.10lRan N — Ta,t)-
For o € J, it follows from Proposition 5.5 that

lim TO{,I = 0,

—00
and Fy + Ay r and Gy + PyOA|_ 10|rRan N — To,; are both positive definite for large 7. As
in the proof of Proposition 3.18 we can conclude that

. 1 t
Jim ~ log(na| Q4 £a) = 0.

(5) Suppose that o < % + ke fa €layg, % + k¢], then the matrix Cy ; acquires a negative

eigenvalue as ¢ increases. Consequently, the integral in (5.64) diverges and g, () = o0 for

large ¢, proving (3.62). The case ¢ > % —kcand o € [% — K¢, a—[ is similar. Suppose now

that oy = % + k. Since €' (@) — oo as a 1 % + k. by Theorem 3.13(3), Lemma 5.8 applies
1

to g, and yields (3.62) again. The same argument works in the case ¢ = 5 — .
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Combined with Parts (1) and (4), the above analysis shows that for any @ < o4 one has
a4 () > o for large enough ¢ while for any o« > o4, oy (f) < o for large enough 7. We
deduce

a+ <liminf o4 (¢) < limsupo4(t) < a4,
11— 00 —00
and (3.61) follows. ]

5.9 Proof of Theorem 3.28

We use the notation of Proposition 3.22 and its proof. We start with a few technical facts that
will be used in the proof.

Lemma 5.9 Assume that Condition (C) holds and that ep > 0. Then, for some constants
c>0andT > 0, the following hold true.

M) 1Sl = cand Sl < ct fort = T.

(2) The function g;(a) has an analytic continuation from J; to the cut plane C \ (] —
00, (1)) U [ (2), 00]). Moreover, for any compact subset K C C\ (] — oo, @_]U
[y, 00]) there is Tk > 0 such that

sup [gr(@)| < oo.

ack
t>Tg

(3) Fort > T the interval 3, is finite and is mapped bijectively to R by the function g,. In
the following, we set

ag = (g) ()

fort > T ands € R.
(4) Let

s+ = lim € (a),
Jood0— 04
and suppose that s €] — 0o, s_] (resp. s € [s4, +00[). Then we have
tlim g = a_ (resp. a4), lilm inf g; (a,;) > e(a—) (resp. e(ay)). (5.65)
— 00 — 00
(5) Fort > T ands €] — oo, s_]U [s4, +0o0], let

1 B 1 3
M= S+, S) L ber =~ + 0, S)~i D} LiTha.

The operator M ; is trace class on & & 39, with trace norm

195, ll1 < ¢+ s,
and by ; € E @ 09 is such that
lim ||bs ;|| = 0.
1—00

Proof (1) Writing (5.61) as
(Lx)(s) = LVx(s) +8(s — )LPx(1) 4+ 8(s) LD x(0)
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with LU) € L(8), we decompose S; = DL, D; = SV + 8P + 8. Lemma 5.3(4)
yields

1
IS < LD D% = LD I, < e,

1511 = w@FILVDy) < 1LV @, DF) = LV 1 < e,

forz > 0. A simple calculation further gives S,(Z) =D:LPD,, S,(3) = 5§L(3)50, where
Dy = [esAN% RsQ].

It follows from Lemma 5.2(3) that

ISP < 18211 = w(DFILP D)) < IL?|tw(D, D})

= |LP|re*Ne'*" + R, QQ*R’) < e,

and

ISP < 18211 = w(@DFILD Do) < ILD e (BoD) = ILD e (N) < e,

for t > 0. We conclude that ||S;|| < c; +c¢2+c3and |S;]l1 < (c1 +¢2 +c3)t fort > 1.
(2) Since g;(0) = 0 for all # > 0, it suffices to show that the function g, has the claimed
properties. By definition,

C\ (1 - 00, a— ()] U [as(t),00]) Cla e C| —a™! ¢sp(Sh}, (5.66)

and the analyticity of g; on this set follows directly from Eq. (5.63). Let K C C\ (] —
00, @—] U [a4, 00]) be compact. By Proposition 3.22(5) and (6) there exists Tx > T
such that

dist(K,] — o0, a—(®)] U [a4(t),0]) > § > 0 (5.67)

for all + > Tk. By Part (1), laS/| < % so that |(I +aS;)" || < 2forall t > T and

all @ € C satisfying |o| < (2¢)~!. By the spectral theorem, it follows from (5.66) and
(5.67) that

_ 2¢
I +aSH™!| < 5

forallr > Tk and all @ € K such that || > (2¢)~!. Hence ||(I + aS;)~"|| is bounded
on K uniformly in # > Tk . The boundedness of g now easily follows from Eq. (5.63)
and Part (1).

(3) By Part (5) of Proposition 3.22, if T > 0 is large enough then the interval J; is finite for
all t > T. By Part (1) of the same Proposition, the function g/ is strictly increasing on
J; and maps this interval onto R.

(4) We consider s > s, the case s < s_ is similar. Since o, ; € J;, Part (5) of Proposi-
tion 3.22 gives

o =liminf o ; <limsupay,; < lim a4 () = o4.
t—00 =00 t—00

Suppose that @ < . Invoking convexity, we deduce from the definition of oy ; and
Part (4) of Proposition 3.22

s = liminf g/ (cs,,) < liminf g/ (a) = €' ().
—00 —00
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The strict convexity of e(«) leads to s < ¢’(«) < s4 which contradicts our hypothesis
and yields the first relation in (5.65).

To prove the second one, notice that for any y € [0, o[ one has y < a5 < a4(t)
provided ¢ is large enough. By convexity

gr(as) = & (y) + (a5 — )8 (¥) = & (¥) + (a5, — v)g;(0),
and letting t — oo yields
lim inf g; (as,1) > e(y) + (a4 — y)e'(0).
—00

Taking y — a4 gives the desired inequality.

(5) We consider s > s, the case s < s_ is again similar. By Part (3), if T > 0 is large
enough then oy ; €]0, oy (t)[C TJ; forallt > T. Since I + aS; > 0 for o € J;, Part (1)
allows us to conclude

1 1 1
1 I = T (ST +ausH™) < ?IISflll < ;”Stnl <c.
By Eq. (5.63) and the definition of «; ; we have

1
tr(fms 1) — ﬂ T LiTia

tas’[

+ (bs,t| ((1 FagS)t + (I + onS,)_%) bs,,) ,
from which we deduce
Il = 5+ IE I + a - TL T
~tay, (bs,t| ((1 s S)t 4+ + as,,s,)*%) b‘y,,) . (5.68)
One easily checks that

1
Jim ST, T =0,

so that |9 ;1 < s + 2c and hence |90, [l1 = |91 + ||9ﬁ:,f, li < |s| + 3c fort
large enough. Finally, from (5.68) we derive

o 2 = 5 (b (0 + st + (1 + 5072 b )

1 1
< ( tr(imA ,)-I— 7% T7L:Tia )
21‘0[57[

from which we conclude that ||bs ;|| — 0 as t — oo.

(1) By Proposition 3.22(4) one has
1
lim —logE,[e*"] = e(—a),
t—>00 t

for —a € J. By the Girtner—Ellis theorem, the local LDP holds on the interval Jn_, ny[
with the rate function

I(s) = sup(as — e(—w)).

aeR
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Note that / (s) = supgcy, (s —e(—a)) fors €]n—, n4[. To prove that the global LDP holds
we must show that for all open sets O C R

L. 1 Nt .
lim inf — log P [7 0]>_ £ J(s).
iminf > loglP, | = € O] = —Inf J(s)

By a simple and well known argument (see, e.g., [17, Sect. V.2]), it suffices to show that for
any s € R

T | N
]elir(; lltrgégf n logP, [|r;,| < 6] > —J(s),
where 7, = % — 5. The latter holds for any s €]n—, n4[ by the Gértner—Ellis theorem. Next,
we observe that whenever o4 = % =+ k., then by Proposition 3.22(4) we have ny = Fo0.
Thus, it suffices to consider the cases where o > % — ke or/and o4 < % + x.. We shall
only discuss the second case, the analysis of the first one is similar.
Fix s < n_ and set ¢y = —a_; so that g;(—o;) = —s and, by Lemma 5.9(3),
lim o = —ary, liminf g;(—a;) > e(ay). (5.69)
t—00 =00
Defining the tilted probability P, on C([0, 7], E) by

t
dp, — eamr—tg;(—at)’
dP

‘
Vv
we immediately get the estimate
]ptv [|ﬁt| < e] > e—t(sa,—s-ela;\—gx(—az))ﬂﬁ{} [|ﬁz| < e],
and hence,
1 PP Lo~
n log I, [|77t| < 6] > gr(—ay) — say — elay| + n log I, [|77t| < 6] . (5.70)
We claim that for any sufficiently small € > 0,
pe = liminf P, [|7,] < €] > 0. (5.71)
—00
Using (5.69) we derive from (5.70) that
1 A
lim inf — log P} [Ii] < €] = e(@y) + sars. — el

provided € > 0 is small enough. Letting € | 0, we finally get

| .
161% htrgégf A log P, [17:] < €] = e(ay) + say,

which, in view of (3.66), is the desired relation.
Thus, it remains to prove our claim (5.71). To this end, note that for A € R,

B [e—mﬁt] —E [e(af—ix/z)n,—zg,(—a,)—mg;(—a,)] = ef (& (o +iA/N—gi(—an)—ig](—a)A/1)

and a simple calculation using Eq. (5.62), (5.63) yields

B [e—i/\fzr] _ (det( / +iMmﬂJ)—lemrmf.\-,,)—xz(bﬁ,f\(1+ixm7.y,,>—1b7.\-,,))f. (5.72)
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Let S(R, E) be the Schwartz space of rapidly decaying E-valued smooth functions on R and
S'(R, E) its dual w.r.t. the inner product of §3. Denote by p the centered Gaussian measure
on K_ = E & S'(R, E) with covariance I and let

- 1
ni (k) = —E(khm—s,tk —2b_s.1).
By Lemma 5.9(5), |7, (k)| < oo for y-a.e.k € K_ and
~ R 1
n = / n(k)y (dk) = —Etr(im,s,,).

It follows that for A € R,
1
/ e~ R =T 5 (k) = (det( I +iam_ t)—1eixtr<mts.,)—Az(bﬂ,,|(1+imfx,,>—‘bf.c.r>)2 7

and comparison with (5.72) allows us to conclude that the law of 7, under ﬁlsf) coincides with
the one of 7; — 77, under y, so that

pe = limint  [[7 — 7| < ].
For m > 0 let P, denote the spectral projection of 9, ; for the interval [—m, m] and define

1 1
Ct< (k) = _E(Pmkmn—s,tk —2b_5)+ Etr(Pmm—s,t)v

1 1
§t> (k) = _5((1 - Pm)k|m—s,tk - 2b—s,z) + Etr((l - Pm)m—s,t)a

sothatn, —7, = ¢~ +¢7 and P[¢,~] = p[¢7 ] = 0. Since ¢~ and ¢, are independent under
7, we have
pe = liminf p 171 < e/2] 7 1671 < €/2]. (5.73)

The Chebyshev inequality gives

A~ < A < 4/\ <
Plietl <e2]=1-7 g7 = €/2] = 1= S0 [167P].

Choosing m = %(c + |s])€2, the estimate

P16 1]

ltr(P M2 )+ | Pubs: |
2 m s,t mvs,t

IA

1 m
2 1P 11190111 + 15, 1> < F(e+lsh+ 155112,

together with Lemma 5.9(5) shows that

2m 1
liminf y ||~ 2{>1—- ———— = —.
minf7 [le”l <2 =1 - nha =3
To deal with the second factor on the right-hand side of (5.73) we first note that (I —
Pu)|9M ¢ | = m(I — Py,), so that, using again Lemma 5.9(5),
1Myl _c+lsl _ 3
m 2

1
Np =t — Py) < —tur(( — Pm)|ms,t|) =<
m m €

Setting

[l
€; = €, i=1,...,Nu),
J e+ sl G m)
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where the 1 ; denote the repeated eigenvalues of (I — P,,)Mis; we have > j€j S € and
hence, passing to an orthonormal basis of eigenvectors of (I — Py,)9 ;, we obtain

Nm
plie7 1 <e2) =nn, | [Domiki —2bjk; — pj| <€
j=1
Non b €;
anl[kz—z—]k—l‘ <—’],
i1 M [

where ny denotes the centered Gaussian measure of unit covariance on RY and the bj eR
are such that |b;| < ||by,|l. An elementary analysis shows thatif [b| < 1and 0 < § < 1,
then

8
ny [|k* —2bk — 1] < §] > T
Thus, provided € < ¢ + |s|, we can conclude that
€ 372

which shows that p. > 0 and concludes the proof of Part (2).

(2) According to Bryc’s lemma (see [7] or [39, Sect. 4.8.4]) the Central Limit Theorem for the
family (7;);-0 holds, provided that the generating function g, has an analytic continuation
to the disc D, = {o € C| || < €} for some € > 0 and satisfies the estimate

sup |g(a)| < oo,

aeDe
>ty

for some 7y > 0. These properties clearly follow from Lemma 5.9 (2).

5.10 Proof of Lemma 4.1

(1) Let
C= \/ Ran (0*w)’:
j=0

be the controllable subspace of (w*w, t). From (3.1) and (3.4) we derive

2im 1V (a)*a))jt 1

Q¥ = (-1 [ oo

and hence

\/ Ran (2% 0) = C & {0}.

j=0

The last relation and Q2 (C @ {0}) = {0} ® w*C yield that the controllable subspace of (22, Q)
isC®w*C.Since A = Q — %Qﬁ‘_l 0%, (A, Q) has the same controllable subspace. Finally,
since Ker w = {0}, we conclude that C ® o*C = Z iff ¢ = RZ.

(2) The same argument yields C(2, Om;) = C; ® w*C;. Thus if 0 # u € C; N C;, we have
0#u®0e€C(2, 0m)NC(, Or;) and the result follows from Proposition 3.7 (2).
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5.11 Proof of Theorem 4.2

(1) By assumption (J), the Jacobi matrix

by ap 0 O 0 0 7
ap by ap 0 0 0
0 a b3y a3 0 0

w? = s
0 0 0 = . ar O
0O 0 O 0o . br_1 ar_i
_0 0 0 o .- ar—1 bL _

is positive and a; # O for all i € Z. Denote by {§;};c7 the canonical basis of RZ. Starting
with the obvious fact that Ran (¢) = span({d; | i € 0Z}), a simple induction yields

\/ Ran(0*0) = span({3; | dist(i, 0T) < k}).
0<j=<k

Hence the pair (w?, 1) is controllable.

(2) The argument in the proof of Part (1) yieldsC; = C, = RZ and the first statement follows
directly from Proposition 3.7(2). To prove the second one, we may assume that Vi, = 91
and Y¥max = Ur. From Theorem 3.2(3) we already know that ¥y < M < ¢ and that

o0
M— 9 =t / o — o hore M dr.
0

Since ¥; ! — 9~ > 0it follows that

Ker (M —91) C [ Ker(@;' =07 H)0*a* = [ \/ 4”081 | =ci = {0},

n>0 n>0

which implies M — 1 > 0. é similar argument shows that ) — M > 0.

3) Setk = — % and ko = % > % Writing

1
. [Q+iv 0 ov=: 0 p —p
v Ka_|: 0 Q+ivi|+|: 0 Qﬁ—§:||:(/c2—3‘)191 —K:I

9720% 0
X 1 )
0 B2 Q0*
one derives det(iv — Ky) = det(Q + iv)2 det(I + T (iv)), where

R =0"10%Q+2710072. (574)

S() = [ kR(z) —R(z)ﬁ]

(= PR —kR(2)
A simple calculation further gives

det(Q +iv) = det(w® — v?),  R(iv) = ivi* (0® — v?) L.
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Denote by D(v?) the adjugate of w> — v2. Expressing (w? — v?)~! with Cramer’s formula
and observing that Dir(vV3) = D (v?) = a, we get

27iv | b(v2)e2? a
R , 5.75
O)ﬂ%[ a m%%} 679

where
b(v?) = D1 (v?),  c(w?)=Drr(v?), d?) = det(w® —1?),

are polynomials in v> with real coefficients. Inserting (5.75) into (5.74), an explicit calculation
of det(/ + X (iv)) yields

2 2y A2\ 2
det(iv — Kq) = (d(Uz) + (7\))2M)

d(v?)
— N2 (a8/27 02 —8/2 .0 2\\2 Az"z_"(%f 2
+ (v)* (e7°b(v*) —e*%c(v?))” —4a e 2.
0~ 7

By the Desnanot—Jacobi identity,

b(WHe(v?) — a2

_ P A )
407) = det(w vY) =d°),

where w? is the matrix obtained from w? by deleting its first and last rows and columns.
Thus, we finally obtain

det(iv — Ky) = (d(vz) n (7\))2&(1)2))2 + G2 (2b(0?) — e e ()’

2
0 K
— 4a? Oww

"04

where b, ¢, d and d are polynomials with real coefficients. Since d(0) = det(w?) > 0, Ky is
regular for all @« € R and we can rewrite the eigenvalue equation as

)
g0 = 0, (5.76)
21
0 %

where the rational function

glx) = ! |:(d(x) +7°xd(x))* ( 2p(x) — ea/zc(x))2:|

442 72x

has real coefficients, a simple pole at 0, a pole of order 2L at infinity and is non-negative on

10, oo[. It follows that
2 ) 1
Ke =4/ Kg +go(K0 - Z)’

= min X
80 xe]Ooo[g()

where

Since kg > 1 , we conclude that k. > k¢, with equality iff gg = O.
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Under Assumption (S) the polynomials b and ¢ coincide and § = 0. Thus, gg = 0 iff the
polynomial )
f@) =d() +7xd(x) (5.77)

has a positive zero. If L is odd, then this property follows immediately from the fact that
f0) =det(@?) >0, f@)=CE0D"+0a"NH <0 (x - ).

A more elaborate argument is needed in the case of even L. We shall invoke the deep
connection between spectral analysis of Jacobi matrices and orthogonal polynomials. We
refer the reader to [71] for a detailed introduction to this vast subject.

Let p be the spectral measure of w? for the vector §;. The argument in the proof of Part (1)
shows that 81 is cyclic for . Thus, w? is unitarily equivalent to multiplication by x on
L*(R, p(dx)) and in this Hilbert space 8 is represented by the constant polynomial py = 1.
Starting with 6, = a]_1 (W*—b1)8) = p1 (w81, a simple induction shows that there are real
polynomials { px }kefo,...,.—1) satisfying the recursion

ag pk—1 () + b1 —x) pr () + a1 pi+1(x) =0, (ke {0,...,L-2}, p-1 =0,po=1),

(5.78)
and such that §; = pk,l(wz)S 1. Thus, these polynomials form an orthonormal basis of
L*(R, p(dx)) such that

_ Pk—1(X)pj—1(A)
(kl(@? = x) 13;)2/#,0(@»). (5.79)
For1 < j <k < L, define

_bj aj 0 0 0 0 7
aj bj+l aj+1 0 0 0
0 aji1 bjy2 ajp 0 0

dijk(x) =det(x — Jijk),  Jjk =

0 0 0 . a0
0 0 0 0 . by ap_y

L0 0 0 0 - ar—1 br |

Laplace expansion of the determinant Pii1(x) = d[1k+1)(x) on its last row yields the
recursion

Pir1(x) = (x = b 1) Pr(x) — ai Peo1 (x).
Comparing this relation with (5.78) one easily deduces
ar---ap pr(x) = Pe(x), (kefl,...,L =1}, dx)=PL(x). (5.80)

Polynomials of the second kind {g }xe(o,.... —1) associated to the measure p are defined by

A' —_
() = / PP ) g, (5.81)
— X

Note in particular that go(x) = 0 and g (x) = afl. Applying the recursion relation (5.78)
to both sides of this definition, we obtain

akqr—1(x)+ (b1 — X)qr(x) + ak+161k+1(X)=/ pc)p(dr) =0, (kefl,....L=2}).
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Fig. 12 The zeros of the polynomials Py and py _ interlace

Set gk (x) = aj1qr+1(x) and observe that these polynomials satisfy the recursion
Ak+1qk—1(x) + (D2 — X)qic(x) + ak42Gi+1(x) =0,
(kef0,...,L—3},g-1=0,q0 = 1).

Comparing this Cauchy problem with (5.78) and repeating the argument leading to (5.80)
we deduce that as - - - axy1 gi(x) = dpp, k+1](x), so that

al---aqu(x):d[z,k](x), (kE{Z,...,L—l}).

In particular, we can rewrite Definition (5.77) as

&) = PL(x) + V2xqr—1(x). (5.82)
Taking now Assumption (S) into account we derive from (5.79) that for any z € C \ sp(w?),
lpL1 W . )
LT (i) = 1l = 2)7'o0) = (Sh1lw? — 27" s80)

dr
=<81|(w2—z>—161>=/’;( ),
—Z

from which we conclude that |p;_1(A)| = 1 for all A € sp(w?). Denote by Ay > Ay_| >

- > A1 the eigenvalues of o? = Ji,ryand by pp 1 > pup—p > --- > p thatof Jjg p—1.
It is a well known property of Jacobi matrices (or equivalently of orthogonal polynomials)
that

AL < ML—1 <AL—1 <+ <] <Al

(see Fig. 12). These interlacing inequalities and the previously established property allow us
to conclude that

pL10) = (=17, p_; () <0.
From Eq. (5.82) and Definition (5.81), we deduce

L-1
FO0) =720 ( Py Gptiay + > P2 1()”1) pL-1(+j)

A

Jj=2 A
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L1

A
=720 | Pl e =2 > PR
j=1

<0,
Al — A2j

which, together with f(0) > 0, shows that f has a positive root.
By Proposition 5.5(12), the validity of Condition (R) follows from Part (2) and the fact
that k. = ko.
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Appendix: Basic Theory of the Algebraic Riccati Equation

In this appendix, for the reader convenience we briefly expose the basic results on algebraic
Riccati equation used in this work. We refer the reader to [2,46,68] for detailed expositions
and proofs.

Let h be a d-dimensional complex Hilbert space. We denote by (-, -) the inner product
of h. We equip the vector space H = h @ b with the Hilbertian structure induced by b and
the symplectic form

ox®y, X ®YyY)=cdy, J&®Y)) = y)—(y.x).

The symplectic complement of V C H is the subspace V* = {v | w(u, v) = 0 for all u € V}.
A subspace V C H isisotropicif V C V* and Lagrangian if V = V.V is Lagrangian iff it is
isotropic and d-dimensional. For Y, Z € L(h), we denote by Y @ Z the element of L(h, H)
defined by (Y @ Z)x = Yx @ Zx. In the block-matrix notation,

Y

Y@Z:[z

] Y@z =[Y*z*].
The graph of X € L(b) is the d-dimensional subspace of H defined by
Gg(X)=RanGyx, Gx=1&®X.
A subspace V C H is a graph iff V N ({0} & h) = {0 & 0}.
The algebraic Riccati equation associated to the triple (A, B, C) of elements of L(b) is
the following quadratic equation for the unknown self-adjoint X € L(h):
R(X)=XBX — XA—A*X —C=0. 6.1

In the following, we shall assume that C is self-adjoint, that B > 0 and that the pair (A, B)
is controllable. We denote by R(A, B, C) the set of self-adjoint elements of L(h) satisfying
Eq. (6.1), which we can also write as

R(X) = G4LGy =0, L:[C A ]

A —B*
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Existence of Self-Adjoint Solutions

The Hamiltonian associated to the Riccati equation (6.1) is the unique element of L (H) such
that (#, Lv) = w(u, Kv) for all u, v € H. One easily checks that

k= [ CA f*]'
Note that since L = L*, K is w-skew adjoint:
w(u, Kv) + o(Ku,v) = w(u, Kv) — o, Ku) = (u, Lv) — (v, Lu) = 0. (6.2)
The first result we recall is a characterization of the set R(A, B, C).

Theorem 6.1 (Theorem 7.2.4 in [46]) The map X — G(X) is a bijection from R(A, B, C)
onto the set of K -invariant Lagrangian subspaces of H.

The following are elementary symplectic geometric properties of projections:

Lemma 6.2 (1) The range of a projection P € L(H) is isotropic iff P*JP = 0 and
Lagrangian iff I — P = J*P*J.

(2) Denote by Py the spectral projection of K for k € sp(K). Then J P, J* = P*_ and in
particular Ran Py is isotropic iff k ¢ iR.

(3) Let = C sp(K) be such that £ N (—X) = @. Then the spectral subspace of K for X is
isotropic.

Note that J K + K*J = 0, which implies that the spectrum of K, including multiplicities,
is symmetric w.r.t. the imaginary axis. If sp(K) NiR = #, then the spectral subspace of K
for ¥ = sp(K) N C4 is d-dimensional and hence, by Lemma 6.2(3), Lagrangian. Thus,
Theorem 6.1 yields (see Theorems 7.2.4 and 7.5.1 in [46])

Corollary 6.3 Ifsp(K) NiR = @, then R(A, B, C) # 0.

Remark 6.4 In cases where sp(K) NiR # ¢, and under our controllability assumption, a
necessary and sufficient condition for the existence of self-adjoint solution is that all Jor-
dan blocks of K corresponding to eigenvalues in iR are even-dimensional. For the Riccati
equations arising in our analysis of harmonic networks, the singular case sp(Ky) NiR # @
only occurs at the boundary points o = % =+ «.. There, the existence of solutions follows by
continuity [Part (4) of Theorem 5.5].

Another powerful criterion for the existence of self-adjoint solutions is the following

Theorem 6.5 (Theorem 9.1.1 in [46]) If there exists a self-adjoint X € L(h) such that
R(X) <0, then R(A, B,C) # (.

Extremal Solutions

The set R(A, B, C) inherits the partial order of L (h). A minimal/maximal solution of (6.1) is
a minimal/maximal element of /R(A, B, C). Clearly, a minimal/maximal solution, if it exists,
is unique.

Theorem 6.6 Assume that R(A, B, C) # .
(1) (A, B, C) is compact.
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(2) R(A, B, C) contains aminimal element X _ and a maximal element X . In the following,
we set

D:=A— BX+.

(3) X € R(A, B, C) is minimal/maximal iff sp(A — BX) C Cu.
4) R(A,B,C)=X_+R(D_,B,0) =X, —R(—D4, B,0).

Parts (2) and (3) are stated as Theorems 7.5.1 in [46]. Part (4) follows from simple algebra.
Since X +— R(X) is continuous, R(A, B, C) is closed. Its boundedness follows from from
Part (4) and the fact that

X =X_lh =X —X_) Str (X4 — X_),
for all X € (A, B, C). The Heine-Borel theorem thus yields Part (1).

The Gap

In this section, we assume that JR(A, B, C) # () and use the notations introduced in Theo-
rem 6.6.
The gap of the Riccati equation (6.1) is the non-negative element of L () defined by

Y=X,—X_.
We set K = Ker Y, so that K- = Ran Y. For X € L(h), we define
Dx = A — BX.

Theorem 6.7 (1) Forany X € R(A, B, C), Kisthe spectral subspace of Dx forsp(Dx)NiR
and K is the spectral subspace of D%, for sp(D%) \ iR. Moreover, Dx | is independent
of X € R(A, B, C).

(2) The map X — Ker X is a bijection from R(D—, B, 0) onto the set of all D_-invariant
subspaces containing the spectral subspace of D_ to the part of its spectrum in iR.
Moreover, X < X' iff Ker X’ C Ker X.

3) If R(X) <0 for some self-adjoint X € L(h), then X_ < X < X4.

4) If R(X) < 0 for some self-adjoint X € L(h), then sp(K) NiR = ¢.

The first and last Assertions of Part (1) is Theorem 7.5.3 in [46]. The second Assertion is
dual to the first one. Part (2) is a special case of Theorem 1 and Part (3) is Theorem 14(b)
in [68]. Part (4) is the first assertion of Theorem 9.1.3 in [46].

Note that Theorem 6.1 implies that for X € R(A, B, C) one has

—KGx = GxDxy,

so that sp(Dyx) = sp(—K|g(x)). Whenever sp(K) NiR = #, it follows that sp(Dx) NiR = ¢
and hence L = {0} and Y > 0. By Part (3) of Theorem 6.6, we further have sp(D;) C C_
so that G, is the spectral subspace of K to the part of its spectrum in C_.

Real Riccati Equations and Real Solutions

In this section, we assume that £ is a d-dimensional real Hilbert space and (A, B, C) a triple
of elements of L (&) such that (A, B) is controllable, B > 0, and C self-adjoint.

Denote by hh = C& the complexification of £ equipped with its natural Hilbertian structure
and conjugation C. The C-linear extensions of A, B and C to ) (which we denote by the
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same symbols) are such that (A, B) is controllable, B > 0, and C is self-adjoint on h. Let
MR(A, B, C) be the set of self-adjoint solutions of (6.1), interpreted as a Riccati equation in
L(h), and define

Rr(A, B,C) ={X e R(A,B,C)| X = X}.

Clearly, Rr(A, B, C) is the set of real self-adjoint solutions of (6.1) viewed as a Riccati
equation on L(E).

Theorem 6.8 (1) IfR(A, B, C) # 0, then its minimal/maximal element is real and hence
coincides with the minimal/maximal element of Rr (A, B, C).

(2) Under the same assumption, the gap Y = X — X_ is real and so is K = Ker Y.

(3) For any X € Rr(A, B, C), K is the spectral subspace of Dx for sp(Dx) N iR and
Kt is the spectral subspace of Dy, for sp(D%) \ iR. Moreover, Dx |k is independent of
X e R(A, B, ().

To prove Part (1), note that X € R(A, B, C) whenever X € R(A, B, C). In particular,
one has X4 € R(A, B, C) and hence X — X4 > 0. It follows that

X4 = X1l =Xy = X4) =tr(X4 — X3) =0.

The remaining statements are simple consequences of the reality of X .
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