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Abstract

The paper is devoted to studying the problem of controllability for 3D
Navier—Stokes equations in a bounded domain. We develop the method
introduced by Agrachev and Sarychev in the 2D case and establish a
sufficient condition under which the problem in question is approximately
controllable by a finite-dimensional force. In the particular case of a torus,
it is shown that our sufficient condition is fulfilled for a control of low
dimension not depending on the viscosity.
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0 Introduction

In the pioneering article [ASO5a], Agrachev and Sarychev introduced a new
method for studying controllability properties of PDE’s perturbed by a finite-
dimensional control force. They considered the 2D Navier—Stokes (NS) equa-
tions

U+ (u, V)u —vAu+ Vp =n(t,z), divu=0, (0.1)

where x € T? = R?/27Z2, v > 0 is the viscosity, u(t,x) is the velocity field,
p(t,x) is the pressure, and 7(¢,x) is a control function that takes on values in
a finite-dimensional space E C L*(T?,R?). One of the main results in [AS05a]
states that if F contains sufficiently many Fourier modes, then for any 7' > 0
and v > 0 Eq. (0.1) is approximately controllable in time 7. Without going
into details, let us explain two key ideas that enable one to prove approximate
controllability (AC) of (0.1).1
Introduce the space

H = {ue L*(T*R?) :divu =0} (0.2)

and denote by IT : L?(T? R?) — H the orthogonal projection in L?(T?, R?)
onto the subspace H. Projecting (0.1) to H, we obtain the following evolution
equation in H, which is equivalent to (0.1):

4+ vLu+ B(u) = n(t). (0.3)

Here L = —IIA, B(u) = II{(u, V)u}, and we use the same notation for the right-
hand side n and its projection to H. It is well known that the Cauchy problem
for (0.3) is well posed in appropriate functional spaces, and the corresponding
solutions defined on the positive half-line are continuous functions of time with
range in H. Recall that Eq. (0.3) is said to be approzimately controllable in
time T by an E-valued control (where E C H is a finite-dimensional subspace)
if for any ug,2 € H and any £ > 0 there is an essentially bounded function
n:[0,7] — E such that
[u(T) —al <e,

1The scheme presented below is not entirely accurate and differs slightly from the one used
in the original paper [AS05a].



where u(t) denotes the solution of (0.3) issued from ug and || - || stands for the
L?-norm.
Along with (0.3), let us consider the control system

w4 vL(u+((t) + B(u+ ((t) =n(t). (0.4)

Here n and ¢ are E-valued control functions. It turns out that the control
systems (0.3) and (0.4) are equivalent. Namely, we have the following property,
which is an analogue for PDE’s of a more general result established in [AS86)
for the case of ODE’s (see also Sections 6.1 and 12.4 in [AS05a]):

(P1) Equation (0.3) with n € E is AC in time T' > 0 if and only if so is Eq. (0.4)
with n,( € E.

We now compare (0.4) with a control system of the form (0.3) in which the
control function takes on values in a space E1 O E. More precisely, for any
subset A C H, denote by co.A the convex hull of A, that is, the set of vectors
v € H that are representable in the form

k
v = E )\iui,
i=1

where k > 1 is an integer depending on v, u; € A for i =1,...,k, and A\; > 0
are some constants whose sum is equal to 1. Let E; C H be the largest vector
space such that

B(u)+ E1 C co{B(u+ () +vL{+n:n,( €E} foranyu€ H. (0.5)
Consider the control system
w4 vLu+ B(u) = (), (0.6)

where 7; is an FEj-valued control. The following property is a version for
PDE’s of the well-known convexification principle (for instance, see Theorem 8.2
in [AS04] or Theorem 7 in [Jur97, Chapter 3]).

(P2) Suppose that Eq. (0.6) with 7; € Ey is AC in time T > 0. Then so is
Eq. (0.4) with n,{ € E.

Note that, in a general situation, the subspace F; may coincide with £. How-
ever, if E is a proper subset of Fj, then properties (P;) and (P2) enable one
to reduce the question of AC for Eq. (0.3) to a similar problem with a larger
control space. Iterating this argument, for any initial space E one can construct
a non-decreasing sequence of subspaces 1 C Fo C --- such that the following
property holds.

(P) Equation (0.3) with n € E is AC in time T > 0 if and only if so is Eq. (0.3)
with n € E}, for some k& > 1.



Now let {e;} be an orthonormal basis in H formed of trigonometric polynomials
and let Hy C H be the vector space spanned by eq,...,en. It was shown by
Agrachev and Sarychev [AS05a] that if E D Hy, for a sufficiently large Ny > 1,
then there is a sequence N — oo such that Hy, C Ej for any k > 1. This
property combined with (P) implies that (0.3) is AC.

The Agrachev—Sarychev approach is rather general and does not use any par-
ticular property of 2D NS equations other than well-posedness of the Cauchy
problem in appropriate functional spaces and the presence of a “mixing” non-
linearity. It can be applied to various controlled PDE’s, including the 2D Euler
system and nonlinear Schrodinger equation [AS05b]. Moreover, combining some
refined versions of properties (P1) and (P2) with a degree theory argument, it
was shown in [AS05a] that the 2D NS system on the torus possesses the property
of exact controllability in observed projections.

The aim of this paper is to develop the Agrachev—Sarychev method in such
a way that it can be applied to equations for which the well-posedness of the
Cauchy problem is not known to hold. Namely, we consider the 3D Navier—
Stokes system on a torus T3. Let H be the space of divergence-free vector fields
on T3 (cf. (0.2)) and let V = HY(T3,R3) N H. As in the 2D case, one can
reduce the problem in question to an evolution equation in H of the form (0.3).
Let £ C H be a finite-dimensional subspace. We shall say that the 3D NS
system (0.3) with n € E is approzimately controllable in time T if for any
uo, & € V and any € > 0 there is an essentially bounded function 5 : [0,7] — E
and a strong solution u(t) of (0.3) such that

w(0) = uo, |[u(T)—dfv <e.

The following theorem is a simplified version of the main result of this paper
(see Section 2 for more details).

Main Theorem. There is a finite-dimensional subspace E C H such that
for any T > 0 and v > 0 the 3D Navier-Stokes system (0.3) with n € E is
approzimately controllable in time T .

To prove this result, we show that properties (P;) and (P2) remain valid for
the 3D NS system. Their proof, however, is different from that in the 2D case
and relies substantially on a perturbative result on existence of strong solutions
for 3D NS equations (see Section 1.4). We note that even in the 2D case the
approach of this paper contains some new elements compared with the proofs
in [ASO5a]. We also hope that our presentation will help the readers not familiar
with the geometric control theory of ODE’s to gain a better understanding of
the Agrachev—Sarychev method.

It should be mentioned that the problem of controllability for Navier—Stokes
and Euler equations was studied by many authors during the last fifteen years,
and a number of deep results have been obtained (see the papers [Lio90, Fur95,
Cor96, CF96, Ima98, FE99, Cor99, FC99, Gla00, Zua02] and the references
therein). In particular, it was proved that NS equations possess the property
of exact controllability (both in 2D and 3D) by a force supported in any given



domain (see [Cor96, CF96, Ima98, FE99]). Furthermore, feedback stabilisa-
tion properties of NS and Euler equations were studied in [Cor99, BS01, Fur01,
Fur04, BT04]. We point out, in particular, the paper [BT04] in which exponen-
tial stabilisation to a steady state solution for the 3D NS system is obtained via
finite-dimensional controllers. To the best of my knowledge, this paper provides
a first result on approximate controllability of 3D NS equations by a control of
finite-dimension not depending on the viscosity. In conclusion, we note that our
arguments can be used to prove the property of exact controllability in observed
projections for 3D NS system; we shall address this question in a subsequent
publication.

The paper is organised as follows. In Section 1, we have compiled some
preliminaries on Navier—Stokes equations. The main results of the paper are
presented in Section 2. We establish a sufficient condition under which the 3D
NS system is controllable by a finite-dimensional force and then show that it is
satisfied in the case of periodic boundary conditions. Section 3 is devoted to
the proofs.

Acknowledgements. This paper arose from my close cooperation with
A. A. Agrachev, S. B. Kuksin and A. V. Sarychev, and I would like to thank
them for numerous discussions. I am grateful also to M. Paicu for useful remarks
on the Navier—Stokes equations.

Notation. We use standard functional spaces arising in the theory of
Navier—Stokes equations; they are defined in Section 1.1. For a separable Banach
space X and a compact interval J C R, we introduce the following notation.

Bx(R) is the closed ball in X of radius R centred at the origin.
L?(J, X) is the space of measurable functions f : J — X such that

1/p
1l = ( / IIf(t)II’S(dt) < oo, 0.7)

where || - || x stands for the norm in X. In the case p = oo, condition (0.7) is
replaced by

[l fll Lo (g,x) == ess sup || f(t)[ x < oo.
teJ
C(J, X) is the space of continuous functions f : J — X endowed with the norm

£ lle ) = max|| F(£)]x.

L(X) denotes the space of continuous linear operators in X with the usual
operator norm || - [ £(x)-

If X is a Hilbert space and E C X is a closed subspace, then E+ stands for
the orthogonal complement of £ in X. In this case, we denote by P = Pg
and Q = Qg the orthogonal projections in X onto the subspaces E and E-*,
respectively.

Throughout the paper, we denote by C;, i = 1,2,..., unessential positive con-
stants, by Ry the half-line [0, +00), and by Jr the time interval [0, T7].



1 Preliminaries on 3D Navier—Stokes equations

In this section, we have compiled some auxiliary results on 3D Navier—Stokes
equations. Although the methods used in their proofs are well known, we present
a rather detailed justification of all statements, since they will play an essential
role in Sections 2 and 3.

1.1 Functional spaces and Leray projection

Let D C R? be a bounded domain with C?-smooth boundary &D. Denote by
H* = H*(D,R?) the space of vector functions u = (u1,us,u3) whose compo-
nents belong to the Sobolev space of order s and by || - ||s the corresponding
norm. In the case s = 0, we shall write L? = L*(D,R3) and || - ||, respectively.
If s > 1/2, then H§(D,R3) stands for the space of functions u € H* vanishing
on 0D. Let

H = {ue L*(D,R®) :divu=0in D, (u,n)|sp = 0},
where n is the outward unit normal to dD. Introduce the spaces
V =H}D,R*NnH, U=HDR)NYV,

endowed with the norms || - ||; and || - ||2, respectively.

Let II : L? — H be the Leray projection, that is, the orthogonal projection
in L? onto the closed subspace H. The following result is a straightforward con-
sequence of the Hodge—Kodaira decomposition, elliptic regularity, and complex
interpolation (for instance, see [Soh01]).

Proposition 1.1. The projection 11 satisfies the inequality
Iull, < Cllull, for any u € H*(D,R),

where 0 < s < 2 and C > 0 is a constant not depending on u(zx) and s.

1.2 Parabolic semigroups generated by the Stokes opera-
tor

Let L be the Stokes operator, that is, the operator —ITA with the domain U.

It is well known that L is a positive self-adjoint operator in H with discrete

spectrum (for instance, see [CF88, Chapter 4]). We shall use sometimes the
following equivalent norms on U and V:

HU'HU = (LuaLu)l/Qv ”u”V = (Luau)l/Qv

where (-, -) stands for the scalar product in LZ.
Consider the problem
U+ Lu = h(t), (1.1)
u(0) = wo. (1.2)



For any T > 0, we set Jr = [0,T] and define the space
Xr = C(Jr, V)N L*(Jr,U)

endowed with the norm

T 1/2
_ 2
lullee = gaas )l + ([ I iae)

The following result is a consequence of the above-mentioned properties of L
(for instance, see [Hen81, Section 1.3]).

Proposition 1.2. For any h € L*(Jr, H) and ug € V., problem (1.1), (1.2) has
a unique solution u € Xr, which satisfies the inequality

t t
I\U(?f)||2v+/0 lu(s)lI5ds < ||u(>||2v+/0 Ih(s)|Pds, teJp.  (1.3)

We now consider the projection of problem (1.1), (1.2) to a subspace of
finite codimension. Let E C U be a finite-dimensional subspace and let E*
be its orthogonal complement in H. We denote by Pr and Qg the orthogonal
projections in H onto the subspaces E and E*, respectively. Consider the
problem

w+ Lgw = f(t), (1.4)
w(0) = wy, (1.5)
where Ly = QgL. Define the space
Xr(E) :=C(Jr,VNEYNL*(Jr,UNEY),
endowed with the norm || - || x,.

Proposition 1.3. For any f € L*(Jr, EY) and wo € V N E+, problem (1.4),
(1.5) has a unique solution w € Xr(FE), which satisfies the inequality

wllzr < C (lwollv + £l z2(sr, 1)) (1.6)
where C' > 0 is a constant depending only on E and T .

Proof. Step 1. We first prove the uniqueness of solution. To this end, suppose
that w € Xr(FE) is a solution of problem (1.4), (1.5) with f = 0 and wy = 0.
Then

%IIH}(%‘)H2 =2(w(t),w(t)) = =2(w(t), Lpw(t)) <0,

whence it follows that w = 0.

Step 2. We now prove the existence of solution. Without loss of generality,
we shall assume that T' > 0 is sufficiently small; the general case can be reduced
to the former by iteration. Let us set Y = L?(Jy, E+). We claim that there is



a continuous operator Sg : Y — )Y with the following property: if u € X7 is the
solution of problem (1.1), (1.2) with h = Sgf and ug = wg, then the function
QEru belongs to Xr(F) and satisfies Egs. (1.4), (1.5). If this assertion is proved,
then inequality (1.6) is a straightforward consequence of (1.3).

To construct the operator Sg, suppose that u € Xp is a solution of (1.1),
(1.2) with ug = wp and some function h € ) and let w = Qgu. Since E C U and
dim F < oo, the projection Qg is continuous in the spaces U and V. This implies
that w € X7p(FE). Moreover, it follows from (1.2) that (1.5) holds. Applying Qg
to (1.1), we derive

w+ Lgw =h — QgLPgu.

Thus, w is a solution of (1.4) if and only if
Let us denote by K : L?(Jr, H) — Xr the operator that takes each function h
to the solution in Xr of problem (1.1), (1.2) with ug = 0:
t
Kh(t) = / ==L (5)ds. (1.8)
0

Then the solution of (1.1), (1.2) with ug = wg can be written in the form
u=v+Kh, ov(t)=e Tuw.

Substituting this expression for u in the left-hand side of (1.7) and denoting
by I the identity operator, we obtain the following functional equation for h:

(I — QELPEK)h = f + QrLPgv.

The right-hand side of this equation belongs to ). Therefore, the required
assertion will be established if we show that

|QeLPEK| c(y) < 4 for sufficiently small T' > 0, (1.9)

where £()) stands for the space of continuous linear operators in Y.

Step 3. Let us prove (1.9). Since

e ™| ccmy = e,

where ay > 0 is the first eigenvalue of L, it follows from (1.8) that
[Khlly < CiT[hlly, (1.10)

where C; > 0 does not depend on 7. Using again the fact that £ C U is
finite-dimensional, we see that

|QeLPEgll < Callgl for amy g € H, (L11)

where Co > 0 depends only on E. Combining (1.10) and (1.11), we arrive
at (1.9). The proof of Proposition 1.3 is complete. O



Remark 1.4. Tt is clear that inequality (1.6) remains valid if we replace T by
any 7' < T, and the corresponding constant C' in the right-hand side will be
independent of 7”. In particular, we obtain the estimate

t t
IIw(t)II%/Jr/ IIw(S)II?Jd8<C<Iwo|?/+/ ||f(8)||2d8), teJr, (1.12)
0 0

where C' > 0 does not depend on wqy and f.

We now consider a particular case of (1.4) in which E is a subspace generated
by eigenfunctions of the Stokes operator. Let {e;} be an orthonormal basis in H
formed of the eigenfunctions of L and let {c;} be the corresponding sequence of
eigenvalues indexed in an increasing order. Let us denote by H the vector space
spanned by eq, ..., en and by H]# its orthogonal complement in H. We write Py
and Qu for the orthogonal projections in H onto the subspaces Hy and Hy,
respectively. In what follows, we shall need a refinement of inequality (1.6) for
the case £ = Hy.

Corollary 1.5. Suppose that the conditions of Proposition 1.3 are fulfilled with
E = Hy, where N > 1 is an integer, and that f € L*(Jr,H") for some
r € (0,1/2). Then there is a constant C' > 0 not depending on N and r such
that the solution w € Xr(Hy) of problem (1.4), (1.5) with wo = 0 satisfies the

inequality
—r/2
lwllay < Cay 220 ). (1.13)

Proof. Let D(L") be the domain of the operator L":

D(L") = {u = Zujej € H: Za?ru? < oo}.
j=1 j=1

It is well known that (see [Tay97, Chapter 17])
D(L"?y=H"NH forre(0,1/2). (1.14)

Therefore, using the Poincaré inequality and the fact that f(¢) € Hy for almost
every t € Jr, we derive

IF @)l = CoIL2F ()] 2 Cray Tl ()] almost surely.
Combining this with (1.6), we arrive at (1.13). O

1.3 Linearised Navier—Stokes system

For any u,v € H?, we have (u, V)v € L?, and therefore we can define a bilinear
operator by the formula

B(u,v) = II{(u, V)v}. (1.15)

The following proposition, which establishes some continuity properties for B,
can be proved with the help of Proposition 1.1, Sobolev embedding theorems,
and interpolation inequalities (cf. [CF88, Chapter 6]).



Proposition 1.6. There are positive constants C1 and Ca such that, for any
u,v € H?, we have

. 1/2 1/2
1B(u, )| < Crmin{ ([[ufl1]lullz) vl (lolllollz) "l (1.16)
1/2
1B(w,v)[[1 < Co(llulltflull) " [lv]l2- (1.17)
In particular, the function B(u) = B(u,u) is continuous from H?* to H' N H.

We now fix a finite-dimensional subspace £ C H and consider the equation
W+ Lgw + QB(v1(t),w) + QB(w,v2(t)) = f(t), (1.18)

where v; and vo are given functions and Q denotes the orthogonal projection
in H onto E+.

Proposition 1.7. For any functions vy,vs € L*(Jp,V), f € L*(Jr, E*Y) and
wo € VNEL, problem (1.18), (1.5) has a unique solution w € Xr(E). Moreover,
there is a constant C > 0 depending only on max{||v7;||L4(JT’V),i =1, 2} such
that

lwllxr < C (lwollv + 1fllz2sr,m))- (1.19)

Proof. Step 1. Let us show that if w € Xp(FE) is a solution of (1.18), (1.5), then
it satisfies inequality (1.19). This will imply, in particular, the uniqueness of
solution.

It follows from (1.16) that the function

f@) = f(t) = Q(B(v1(t), w(t)) + B(w(t), v2(t)))
belongs to the space L?(Jr, E1) and satisfies the inequality
IF @I < 27O + Co(llox@®IF + [l 1F) [w(@) v (@) |
<2 FONI + 6 [lw®)IF + Co(lor @17 + o) lw (B3

for any ¢ € Jr, where § > 0 is an arbitrary constant and C > 0 depends only
on §. Combining this with inequality (1.12) in which f is replaced by f and
choosing ¢ > 0 sufficiently small, we obtain

1 t
@)+ [ wlo)las

t
<C3<||wo||%/+/0 (||v1||i‘+||vzlli‘)||wll?/d8+IIfII%zuT,H)) (1.20)

Ignoring the integral on the left-hand side and applying the Gronwall inequality,
we obtain

sup lw(t)llv < Ca(llwolly + 1 £l L2(sr,m)-
0<t<T

Combining this with (1.20), we obtain a similar upper bound for |[wl|2(;..0)-

10



Step 2. We now construct a solution with the help of contraction mapping
principle. Namely, we shall prove the following assertion: there is a constant
e > 0 such that if v; € L*(Jg, H'), i = 1,2, for some S < T and

lvillLacrs, a1y + lv2llLacss,mry < &, (1.21)

then for any wg € V N E+ and f € L?(Jg, E+) problem (1.18), (1.5) has a
solution w € Xg(F). Once this claim is established, existence of solution on Jr
will follow by a simple iteration argument.

Let us consider an operator F that takes each function @ € Xg(F) to the
solution of the equation

W+ Lpw=g, g:=f—Q(B(v1,®)+ B(w,vz)), (1.22)

supplemented with the initial condition (1.5). Using Proposition 1.6, we easily
show that g € L?(Js, E+). Thus, in view of Proposition 1.3, the operator F
is well defined. Let us show that F is a contraction. Indeed, if w; € Xs(E),
i = 1,2, and w; = F(w;), then the function w = w; — wy is a solution of
problem (1.4), (1.5) with

f=-Q(B(vi,®) + B(w, v2)),

where W = W, — Ws. Repeating literally the arguments used in Step 1, we can
show that

£l L2(ss, 52y < Csll@llxs (101l pacs,mry + lvall Lacss,my)-
Proposition 1.3 and Remark 1.4 imply that if (1.21) is satisfied, then
[wllxs = [|F(w1) = F(w2)llxs < Coe |01 — Wal|xs-

It follows that F is a contraction for sufficiently small €. Its unique fixed point
w € Xg(E) is a solution of problem (1.18), (1.5). The proof is complete. O

1.4 Strong solutions of the Navier—Stokes system

In this subsection, we establish two perturbative results on solvability of the
3D Navier—Stokes system. Let us fix a finite-dimensional subspace £ C U and
consider the problem

W+ Lpw + Q(B(w) + B(v,w) + B(w,v)) = f(t), (1.23)
w(0) = wo, (1.24)

where v € L*(Jr, HY), f € L*(Jr, E*), and wy € V N E+ are given functions.

Theorem 1.8. For any R > 0 there are positive constants € and C such that
the following assertions hold.

11



(i) Let v € L*(Jp, HY), f € L2(Jp, ELY), and @y € VN EL be some functions
such that problem (1.23), (1.24) withv =0, f = f, wo = Wo has a solution
w € Xp(E). Suppose that
ol Lscrrmy < Re I fllL2meny < R, (|@]lar < R (1.25)
Then, for any triple (v, f,wo) satisfying the inequalities

lo—#llpscrm i <& 1 = Flegmmsy <& llwo—ollv <&, (126)
problem (1.23), (1.24) has a unique solution w € Xr(E).
(ii) Let
R: L*(Jr, HY) x L?(Jr, EY) x (VN EY) — Xp(E)
be an operator that is defined on the set of functions (v, f,wq) satisfy-
ing (1.26) and takes each triple (v, f,wo) to the solution w € Xp(FE)

of (1.23), (1.24). Then R is uniformly Lipschitz continuous, and its Lip-
schitz constant does not exceed C.

Proof. We shall use a refined version of the implicit function theorem (IFT). Its
exact formulation is given in the Appendix (see Section 4.1).

Step 1. In view of Proposition 1.3, problem (1.4), (1.5) is well posed in the
space X7 (F). Therefore, we can define continuous operators

Kg: L*(Jr,EY) — Xp(E), Mg:VNE+ - Xr(E) (1.27)

by the following rule: Kz takes each function f € L?(Jr, E+) to the solution
w € Xp(E) of problem (1.4), (1.5) with wy = 0 (cf. (1.8)) and Mg takes each
function wy € V' N E+ to the solution w € Xr(FE) of problem (1.4), (1.5) with
f =0. In what follows, we shall omit the subscript E to simplify notation.

Let us define the spaces

H=L'(Jr, H) x L*(Jr, EX) x (VN EY), Y =L*Jr, EY).
We seek a solution of (1.23), (1.24) in the form
w = Mwy + Kg, (1.28)

where g € Y is an unknown function. Substituting (1.28) for w in (1.23), we
obtain the following functional equation in the space ):

g+ Q(B(Mwo + Kg) + B(v, Mwo + Kg) + B(Mwo + Kg,v)) — f = 0. (1.29)

Let us set u = (v, f,wo) and denote by F(u,g) the left-hand side of (1.29). It
is a matter of direct verification to show that the operator F : H x Y — ) is
twice continuously differentiable. Furthermore, setting

a=(0,f, @), §=Ff—Q(B®@)+ B(0,d)+ B(@,0)) (1.30)

we see that F(@,g) = 0. In view of Proposition 4.1, the desired assertion will
be established if we show that for any R > 0 there is p(R) > 0 such that the
following three statements hold for any (9, f, wp, W) satisfying (1.25).
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(a) The functions @ and § defined by (1.30) satisfy the inequality
l@llx +[l9lly < p(R).

(b) The norm of the second derivative of F is bounded uniformly in (u, g).

(c) Let F'(u,g) be the derivative of F with respect to g. Then F'(4, §) is an
invertible linear operator in ), and its norm satisfies the inequality

1(F/(@.9) " ¢, < P(R):

Step 2. To prove (a), we first note that (1.16) implies the inequality
1B(a,b)|ly + |B(b,a)lly < CillallLa(rr,mm)llbll 2 (1.31)

It follows that

19ly < Illy + Coll @l aer (18| 21,10y + 0]l L3 1, 11)) < Cs(R).
A similar inequality for @ is obvious.
Step 3. The definition of F implies that the operator
Fi(u,g) = F(u,9) —g+f

is a sum of bilinear forms with respect to (v, g, wp). Therefore, the second deriva-
tive of F coincides with the symmetrization of F;. Thus, to prove (b), it suffices
to show that J; is continuous in appropriate functional spaces. This assertion is
a straightforward consequence of (1.31) and the continuity of operators (1.27).

Step 4. We now prove (c). Let us set a = Mwy + Kg € Xp. We wish to
show that for any £ € ) the equation

F'(@,§)h == h+ QB(a+ 9, Kh) + QB(Kh,a + %) = ¢
has a unique solution i € ), whose norm satisfies the inequality

[7lly < p(R) 1€][»- (1.32)
Setting ¢ = Kh, we obtain the following problem for ¢ € Xr(E):

¢+ Lu¢+ QB(a(t) +9(t),¢) + QB(¢,a(t) + 6(t)) =&, ¢(0) = 0.

In view of Proposition 1.7, this problem has a unique solution ¢ € Xr(E), which
satisfies the inequality

[Cllxr < Ca(R) [€]ly- (1.33)

Since
h=(+ Lp¢ =& —Q(Bla(t) + 9(t),¢) + B(C,alt) + 0(t)))

inequality (1.32) follows from (1.33) and (1.31). The proof of Theorem 1.8 is
complete. O

13



Remark 1.9. In Section 3.3, we shall need to consider perturbations of an equa-
tion of the form

U+ Lu+¢) + B(u+¢) 4+ B(u+ ¢ v) + Bv,u+¢) = g(t), (1.34)

where ¢ € L4(Jr, H?), v € L*(Jr,H'), and g € L*(Jr, H). In this case, we
have a result similar to Theorem 1.8. Namely, for any R > 0 there are positive
constants € and C such that the following assertions hold.

(i) Let ¢ € L*(Jp, H?), v € L*(Jp, H'), and § € L?(Jr, E*) be some func-
tions such that problem (1.34), (1.2) with v = 9 and g = § has a solution
4 € Xp. Suppose that

ICllzacrr m2y S R, |[0llagre vy S Ry dllozrm S R, [ld]xr < R

Then, for any pair (v, g) satisfying the inequalities

lv—="0llracrr,m) <€ 9= dllL2@r,m <e, (1.35)
problem (1.34), (1.2) has a unique solution u € Xr.

(ii) Let R : L*(Jr, H')x L?(Jr, H) — Xr be the resolving operator that takes
each pair (v, g) satisfying (1.35) to the solution v € Xr of (1.34), (1.2).
Then R is uniformly Lipschitz continuous, and its Lipschitz constant does
not exceed C.

To prove the above assertions, it suffices to rewrite (1.34) in the form
it LutB(u)+B(u, v+0)+B(v+(,u) = f := g=L{=B((,v) = B(v,()—=B((, ()
and to apply Theorem 1.8. We shall not dwell on the details.

We now consider problem (1.23), (1.24) in which E = Hy.

Proposition 1.10. For any R > 0 there is an integer Nog > 1 such that if
N > Ny and functions v € Xr, f € L*(Jr,Hx), and wo € Hy NV satisfy the
inequalities

lollxr <R, N fll2@rmy S R, flwollv < R, (1.36)

then problem (1.23), (1.24) with E = Hy has a unique solution w € Xp(Hp),
which satisfies the inequality

[wllar < C(R), (1.37)
where the constant C(R) > 0 depends only on R.

Proof. The uniqueness of solution can be established by a standard argument.
We shall use the contraction mapping principle to construct a solution.
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Let us denote by B, the set of functions w € Xp(Hy) such that |w]|x, < p
and w(0) = wg. Consider an operator F : B, — Xp(Hy) that takes each
function @ € B, to the solution w € X7 (Hy) of the problem

W+ Lyw = Qn(f — B(v+ @) + B(v)), (1.38)
w(0) = wy, (1.39)

where Ly = QnL. We claim that for any R > 0 there is a constant p > 0
and an integer No > 1 such that F is a contraction of the set B, into itself
for N > Ny.

Step 1. We first show that F(B,) C B, for an appropriate choice of p and
sufficiently large N. Let us fix any r € (0,1/2). In view of Proposition 1.3 and
Corollary 1.5, the solution w € Xr(Hy) of (1.38), (1.39) satisfies the inequality

lwllar < Ca(llwollv + 1fllL2rr.mn)) + Cooy' LT | B(v + @) — B(U)IILz(JT,flzrib
It follows from (1.16), (1.17), and an interpolation inequality that -
IB(v+@)=B()l, < [ Bv+®)=B(v)ll/2 < Cs(llo+@lllv+dll2+[vllllv]2),
whence we see that
IB(v+@) = Bv)||z2(sp,m57) < Ca(llvlZy + [@]%,)- (1.41)
Combining (1.40) and (1.41), we derive
|7 (@)l < C5(R) + Coory'[} p*

Hence, if p = 2C5(R) and N is so large that an,; > (4CsCs(R))?/", then
F(B,) C B,.

Step 2. We now show that F is a contraction. Indeed, if @y, w2 € B, and
w; = F(w;), i = 1,2, then the difference w = w1 — we € Xp(Hy) is a solution
of problem (1.4), (1.5) with £ = Hy, wo = 0 and

f=Qun(B(v+ @) — Bv+ 1)) = Qu (B(is, @) + B(i, 1)),

where 4; = v+ W;, i = 1,2, and W = Wy — w;. It follows from (1.16) and (1.17)
that

~ ~ 1/2 N ~ ~
£ < Co{ (lallallnllz) " + (lallillall2) 2 @],

. R 1/2)) ~ i~ N1/20
£l < Cs{ (laall1l|azll2) "~ @2 + (@l |@]l2) a2}

Combining these estimates with an interpolation inequality, we see that

T
/0 1@ 2t < Colldl%, (I, + la2]%,) < Cro(B? + p) [[1 — 2%,
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Applying Corollary 1.5, we arrive at the inequality
~ ~ —r/2
|F(@1) = F (@)l e = wllaer < Cax'{F 11l 2amair
< Cuay [} (R 4 p*) 2 — @)l
It follows that the operator F is a contraction for sufficiently large /N and, hence,
has a unique fixed point w € B,, which is a solution of (1.23), (1.24). Since
p = 2C5(R), we see that w satisfies (1.37). The proof is complete. O

2 Main results

In this section, we present our main results on approximate controllability of NS
equations. To simplify notation, we shall confine ourselves to the case v = 1.
All the results are valid for any positive viscosity, and the proofs remain literally
the same.

2.1 Approximate controllability

Let LZ (R4, H) be the space of measurable functions h : Ry — H whose
restriction to any interval Jr belongs to L?(Jr, H). Consider the controlled

Navier—Stokes system

U+ Lu+ B(u) = h(t) + n(t), (2.1)

u(0) = wuy, (2.2)

where h € L2 (R4, H) and ug € V are given functions and n(t) is a control

taking on values in a finite-dimensional subspace £ C U. Let us recall the
concept of approximate controllability.

Definition 2.1. Let T' > 0 be a constant. Equation (2.1) is said to be approzi-
mately controllable in time T if for any € > 0 and any points ug, & € V there is a
control function n € L>(Jr, E) and a solution u € Xp = C(Jr, V)N L2(Jp,U)
of problem (2.1), (2.2) such that

[u(T) —ally <e. (2.3)

To formulate the main result of this paper, we introduce some notation.
In view of Proposition 1.6, the nonlinear operator B(u) is continuous from U
to H! N H. For any finite-dimensional subspace G C U, we denote by F(G)
the largest vector space F' C U such that for any 7; € F there are vectors
n,¢Y, ..., ¢* € G and positive constants as, ..., ay satisfying the relation

k
m=n-Y_ aB({).
j=1

We emphasise that the integer £ > 1 may depend on 7. It is not difficult to see
that F(G) is well defined and that G C F(G). Moreover, taking into account
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the fact that B(u) is a bilinear form on U, we conclude that dim F(G) < oo.
We now set

Ey=FE, Ex=F(Ey1) fork>1, Ex=|]E (2.4)
k=1

The following theorem is the main result of this paper.

Theorem 2.2. Let h € L2 (Ry,H) and let E C U be a finite-dimensional

subspace such that Eo is dense in H. Then for any T > 0 the Navier—Stokes
system (2.1) is approzimately controllable in time T'.

The proof of Theorem 2.2 is based on an auxiliary result which is of in-
dependent interest (cf. property (P) in the Introduction). To formulate it, we
introduce the following definition.

Definition 2.3. Let T, R, and ¢ be positive constants and let £ C U be a
subspace. Equation (2.1) is said to be (g, R)-controllable in time T if for any
uo € By(R) and @ € By(R) there is a control function n € L*°(Jr, E) and a
solution u € X of problem (2.1), (2.2) such that (2.3) holds.

Theorem 2.4. Let T', R, and e be positive constants, let E C U be a finite-
dimensional subspace, let By = F(E), and let h € L?(Jr, H). Then Eq. (2.1)
with n € E is (e, R)-controllable in time T if and only if so is the equation

@+ Lu+ B(u) = h(t) + m(t), m € Ey. (2.5)

A proof of Theorem 2.4 will be given in Section 3. Here we show that
Theorem 2.4 implies the approximate controllability of the Navier—Stokes system
and that the hypothesis of Theorem 2.2 is fulfilled for the case of a torus in R3.

2.2 Proof of Theorem 2.2: reduction to e-controllability

The required assertion will be established if we show that, for any positive
constants T, R, and ¢, Eq. (2.1) is (e, R)-controllable in time 7. From now
on, we fix T, R, and € and we shall say that a system is e-controllable if it is
(e, R)-controllable in time T

Step 1. Recall that the subspaces H and H]# were introduced in Section 1.2.
We first show that there is an integer N > 1 such that Eq. (2.1) with n € Hy is
e-controllable, and the control function 1 € L (Jr, Hy) can be chosen so that

91l Loo (g, 11y < K, (2.6)

where K > 0 is a constant that depends only on R, T', and ¢.
We fix arbitrary points ug € By (R) and @ € By (R) and set

on(t) =T Py (ti+ (T —t)e ug) for0<t<T. (2.7)
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Note that
sup [lun|lx, < C(R,T). (2.8)
N>1

Consider the problem

1b+QNL(1U+UN)+QNB(w+UN):QNh(t), U}(O) :QN'LL(). (29)

Since

QuLoy =0, [|Quuollv < lluollv, [[QnA@)] < [[A#);

Proposition 1.10 and inequality (2.8) imply that problem (2.9) has a unique
solution wy € Xr(Hy) for sufficiently large N. It follows that the function
uny = vn + wy belongs to the space X1 and satisfies Egs. (2.1) and (2.2) with

n(t) = on + Py (Lun + B(un) — h(t)). (2.10)
Moreover, it follows from (2.7) that

[un (T) = ally = 1Qn (un (T) = @)l[x < lwn (T)]lx + |Qnal1- (2.11)

The second term in the right-hand side of (2.11) goes to zero as N — o0
uniformly with respect to 4 € By (R). Therefore, the e-controllability of (2.1)
with n € Hy will be established if we show that

sup [lwn (D)1 — 0 as N — oo, (2.12)

up,u

where the supremum is taken over ug € By (R), @ € By (R).
To prove (2.12), we take the scalar product in H of the function 2Lwy and
the first equation in (2.9). This results in

Ocllwn |y + 2wy |f = 2(h, Lwy) — 2(B(un), Lwy). (2.13)

Let us estimate the right-hand side of this relation. By the Cauchy inequality
and (1.16), we have

|(h, Lwn)
|(B(un), Lwn)

| < FlwnllE + 17017
| < tllwnll + 1Bun)|? < Flwnllf + CrllunFllux].

Substituting these estimates into (2.13) and using the Poincaré inequality, we
derive
Ocllwn 1} + anallwn i < 201812 + 201 |unff||uvl]2.

Applying the Gronwall and Cauchy—Schwarz inequalities, we obtain
T
lon (DI < e+ o[} + C / e T (A2 + flun||F|uw]|2) ds
0

T
< e N fug ||} + Ce / e= N T h)%ds + Caa{F un |,
0

(2.14)
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The first two terms on the right-hand side of (2.14) go to zero as N — oo
uniformly with respect to ug € By (R). If we show that

sup |lun ||l x, < Ca(R,T), (2.15)
N>1

then (2.12) will follow from (2.14).
Inequality (2.8) and Proposition 1.10 (see (1.37)) imply that

sup [wy ||, < C5(R,T).
N>1

Combining this with (2.8), we arrive at (2.15).

Step 2. We now show that, for sufficiently large k > 1, Eq. (2.1) with n € Ej
is e-controllable. Indeed, let us chose an integer N > 1 and a constant K > 0
such that for any points ug € By (R) and @ € By (R) and an appropriate control
function ny € L*°(Jr, Hy) verifying (2.6) there is a unique solution uy € Xr
of (2.1), (2.2) with n = nn, and it satisfies the inequality

lun(T) — a1 < &/2, (2.16)
By Theorem 1.8, there is §g > 0 such that, for any function n € L>®(Jp, H)
verifying the condition
ln — 0w Lo (g0, 1) < o,
problem (2.1), (2.2) has a unique solution u € X, which satisfies the inequality

lu = unllay < Clin—nnllLosr m)- (2.17)

Since F is dense in H and Hy is finite-dimensional, for any § > 0 we can
find & > 1 such that By (K) is contained in the d-neighbourhood of Ej. It
follows that for any function ny € L*°(Jr, Hy) satisfying inequality (2.6) there
is n € L*°(Jr, E)) such that

ln =0l Loe (g 1)y < 0.

Let us choose § € (0,dp) so small that 2C'§ < e. Then (2.17) and (2.16) imply
that (2.3) holds. Thus, Eq. (2.1) with € Ej, is e-controllable for a sufficiently
large k.

Step 3. We now show that Eq. (2.1) with n € E is e-controllable. Indeed,
since Eq. (2.1) with n € E}) is e-controllable, applying Theorem 2.4 in which
E = Ex_1, we see that so is Eq. (2.1) with n € Ex_;. Repeating this argument &
times, we arrive at the required result. The proof of Theorem 2.2 is complete.

2.3 Navier—Stokes equations on a torus

In this subsection, we study controlled Navier—Stokes equations with periodic
boundary conditions. More precisely, let us fix a vector ¢ = (q1,q2,¢q3) with
positive components and set ']I‘(31 =R3/ 27er’1, where

Zg = {2 = (z1,79,73) €ER®: 2;/q; € Z for i = 1,2,3}.
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Consider the Navier—Stokes system
U+ (u, V)u —vAu+ Vp = h(t,z) + n(t,z), divu =0, (2.18)

where z = (1,22, 23) € T;. In other words, we assume that all functions are
periodic of period 27q; with respect to x;, i = 1,2,3. To simplify notation, we
shall assume, without loss of generality, that the mean values of u, h, and 7
with respect to = € ']I‘(31 are zero. As in the case of a bounded domain with
Dirichlet boundary condition, one can reduce (2.18) to an evolution equation in
an appropriate Hilbert space. Namely, we set

H= {u € L*(T2,R?) : divu = 0,/ u(z)dx = O}
T

and denote by IT : L*(T3, R®) — H the orthogonal projection in L?(T3,R?) onto
the subspace H. Define the spaces

1/m3 3 2 m3 3
V=HYT,,R°)NH, U=H*T,R’)NH,

endowed with the norms || - ||; and || - ||2, respectively. Projecting (2.18) to the
space H and taking v = 1, we obtain Eq. (2.1) in which L = —A is the Stokes
operator with the domain D(L) = U and B(u) = II{(u, V)u}. Theorem 2.2,
which was formulated for the Dirichlet boundary condition, remains valid in
this case as well. Our aim is to describe explicitly a finite-dimensional subspace
E C U for which the hypothesis of Theorem 2.2 is fulfilled.

To this end, we first construct an orthogonal basis in H formed of the eigen-
functions of L. For z,y € R3, let

3 3 3
(@ y)g =D ' wyi, (wy) =D x|z =) |wil.
i=1 i=1 i=1
We set 73 = 72\ {0} and R? = R3\ {0}. For a € R3, denote by a' the
two-dimensional subspace in R? defined by the equation (z,a), = 0. Note
that at = (—a)*. For any m € Z2, let us choose a vector £(m) € m* so

that {¢(m),f(—m)} is an orthonormal basis in m=

product (-,-). We now set

with respect to the scalar

em(z) = £(m) cos(m, x)q, sm(z) = £(m)sin(m,z), for m e Z3.

It is a matter of direct verification to show that c,, and s,, are eigenfunctions
of L and that {c,, Sm, m € Z3} is an orthogonal basis in H. For a finite family
of functions A, we denote by span .4 the vector space spanned by .A.

Theorem 2.5. For any vector ¢ = (q1, g2, q3) with positive components there is
an integer d > 4 such that if

E = span{cy, sm, |m| < d},

then the vector space Eo, defined in (2.4) is dense in H.
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Theorems 2.2 and 2.5 imply the following result on approximate controlla-
bility of the NS system by a force of finite dimension.

Corollary 2.6. Let E C U be the finite-dimensional subspace defined in The-
orem 2.5. Then for any T > 0 the Navier—Stokes system (2.1) with n € E is
approximately controllable in time T .

Remark 2.7. In the particular case when ¢ = (1,1,1), it is possible to give a
more precise description of a subspace £ C U for which F, is dense in H.
Namely, let E be the vector space that is spanned by the functions ¢,, and s,,
with indices m = (m,ma,m3) € Z3 such that either |m| < 2 or |m| = 3 and
m; # 0 for ¢ = 1,2,3. Repeating the proof of Theorem 2.5 (see below), it is
easy to see that the subspace E., defined in (2.4) is dense in H. A simple
computation shows that dim £ = 64. Thus, for any 7" > 0 and v > 0 the 3D
Navier—Stokes system on the standard torus T® is approximately controllable
by a 64-dimensional control.

Proof of Theorem 2.5. For any integer k > 1, set Hy, = span{cy, Sm, |m| < k},
so that £ = Hy. We shall show by induction that the sequence of subspaces
defined in (2.4) satisfies the inclusion

Esy, D Hiq for any k£ > 0. (2.19)
Since the base of induction is obvious, we shall prove inclusion (2.19) for £ > 1

assuming that it is true for any k&’ < k.

Step 1. Let us endow R? with the Euclidean scalar product (-, -) and denote
by P,, a € R3, the orthogonal projection in R? onto the subspace a*. Define
the two-dimensional subspaces

Ay, = span{cp,, c_p}, B :=span{s,,s_n}, m €L,

and note that any functions f,, € A,, and g, € B,, can be represented in the
form

fm(z) = fm cos(m, T)q, gn(z) = gnsin(n, z)q, (2.20)
where fm and g, are some vectors such that <fm, m)q = (Gn,M)qg = 0.

Let us show that the following relations hold for any m,n € Z3:

B(fmsgn) = Amn(fm)(cos<m —n,2)gPp—n + cos(m +n, x>qu+n)§m (2.21)
B(fm, fn) = Amn(fm) (sin{m — n, )q Pr—p — sin(m + n, x>qu+n)fn, (2.22)
B(gm: fn) = Amn(gm) (cos(m + n, @) ¢ Py — cos(m — n, a:>qu_n)fn, (2.23)

where f; € A; and g; € B;, | = m,n, are arbitrary functions, Py stands for the
zero operator in R, and

Amn(fm) = <f~mvn>q’ Amn(gm) = 5(Gms1)q- (2.24)

N
N

21



We shall confine ourselves to the proof of (2.21), since the other relations can
be established in a similar way.
It is a matter of direct verification to show that

{acos(l,z)q} = (Pa) cos(l,z)q, W{asin({l,z),} = (Pa) sin(l,z), (2.25)
for any a € R3 and [ € Z2. Combining (2.25) and (2.20), we obtain
B(fm, gn) = H{gn cos(m, z)q(fm, V) sin(n, z)4}
= II{ G (fm, n)q cos(m, z)q cos(n, z)q }
= —<f’”2’n>q II{ gn (cos(m — n, z)q + cos(m + n, x)q) }

= <f’”+>" {cos(m —n, 2)gPm—n + cos(m + n, x>qu+n}§n.

~m7
m’
(m

Step 2. To prove (2.19), we first show that
For_1D Hl:—l—d? (226)

where H,, C 'H,, denotes the subspace spanned by the functions ¢; and s; with
indices | € Z3 such that either |I| < p — 1 or |I| = p and there are at least
two non-zero components of [. The proof of (2.26) is based on the following
proposition.

Proposition 2.8. For any vector ¢ = (q1, g2, q3) with positive components there
is a constant e, > 0 such that if m,n,l € Z2 satisfy the conditions

l=m+n, m andn are not parallel, |n| <eqlm|, (2.27)
then for any f € A; and g € B there are a,b € span{An,, An, Bm, Bn} such that
B(a) + f,B(b) + g € span{ Ay —n, Bm—n}- (2.28)

Postponing the proof of Proposition 2.8 until the end of this subsection, let
us prove (2.26). Take any vector | € Z3 of length |I| = k + d with at least two
non-zero components. Let us choose non-parallel vectors m,n € Z3 such that

l=m+n, |ml=k+d-1, |n|=1, m—-n|=k+d—2. (2.29)

For instance, if [ = (I1,12,13) and I; > 2, then we can take m = (I — 1, l2,13) and
n = (1,0,0). If d > 4 is sufficiently large, then the second and third relations
in (2.29) imply that |n| < e4/m|. Therefore, by Proposition 2.8, for any f € A,
and g € B; we can find functions a,b € Hy44—2 such that

B(a)+ f,B(b) + g € span{Am—n, Bmn—n} C Hi+a—2- (2.30)

The definition of F(FEsk_2) and the induction hypothesis imply that 4;, B, C
Esj—1. Since [ was arbitrary, we obtain (2.26).

Step 3. We can now prove (2.19) using the same argument as in the previous
step. In view of (2.26), it suffices to show that A;, B; C Eqg, for any vector [ € Z2

22



of length |I| = k + d with only one non-zero component. To this end, we choose
non-parallel vectors m,n € Z2 such that (cf. (2.29))

l=m+n, |m|l=k+d, |n|=2, |m—n|l=Fk+d,

and the vectors m, n, and m — n have at least two non-zero components. For
instance, if | = (1;,0,0) and {; > 2, then we can take m = (I3 —1,1,0) and
n = (1,-1,0). If d is sufficiently large, then |n| < g4|m|, and using again
Proposition 2.8, for any f € A; and g € B; we can construct a,b € H,__,; such
that

B(a) + f,B(b) + g € span{Ay—n, Bm—n} C Hyyy-

Recalling the definition of F(Fak_1), we see that A4;, B; C Es,_1, and, hence,
(2.19) holds. O

Proof of Proposition 2.8. We shall confine ourselves to the proof of existence of
a vector a € span{A,, B, } such that

B(a) + f € span{Amn—n, Bm—n}. (2.31)
Step 1. We seek a in the form

a=fm+0gn fm € Am, Ggn € By. (2.32)

Representing f,, and g, in the form (2.20) and using relations (2.21) and (2.23),
we derive

B(fm + gn) = B(fm; fm) + B(fm;gn) + B(gna fm) + B(gnagn)
= cos(m — 1, )¢ Pr—n (Amn(fn)Gn — Anm (gn)fm)
+ cos(m + 1, &) g Prgn (Amn (fir)Gn + Anm (gn) fm)-

Taking into account (2.24), we see that the desired assertion will be established
if we show that any vector ¢ € (m + n)t can be represented in the form

c= Pm+n(<fma n)qGn + <§n,m>qu), (2.33)

where fm €m* and g, € nt.
Step 2. To establish (2.33), we first show that the image of the bilinear

operator ~ _ _
P:mlan_)Rgv (fvg)'_)<fan>qg+<gvm>qfv

coincides with (m — n)*. Indeed, a simple calculation implies that
<P(f,§),m —n)g =0 for any femt, gent,

and therefore I'(m*,n*) C (m — n)*. To prove the converse inclusion, it
suffices to show that I'(m™, n") contains a two-dimensional affine subspace. To
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this end, let us choose a vector go € nt such that (o, m), = 1; this can be done
because m and n are not parallel. Then

(G0, f) = (f,n)qdo + f-

Since go ¢ m*, the above relation implies that the affine subspace I'(go, m*) is
two-dimensional.

Step 3. To conclude the proof of Proposition 2.8, we shall need the following
simple lemma; its proof is obvious.

Lemma 2.9. Let a,b € R? be two nonzero vectors and let N, C R? be the

orthogonal complement of b for the scalar product (-,-). Then P,(Ny) = a* if
and only if (a,b)q # 0.

Since the image of the bilinear application I' coincides with (m — n)*, rep-
resentation (2.33) will be established if we show that

Prin(m —n)t = (m+n)*. (2.34)
To prove (2.34), we denote by S, : R® — R3 the linear operator such that
{a,b)qy = (Sqa,b) for any a,b € R3. (2.35)

Obviously, such an operator exists and is invertible. It follows from (2.35) that
for any vector a € R3 the subspace a coincides with the orthogonal complement
of Sya with respect to the scalar product (-, -). Therefore, in view of Lemma 2.9,
relation (2.34) holds if and only if

K = (m+n,Se(m —n)), #0. (2.36)

Since all the norms in R?® are equivalent and S, is an invertible continuous
operator, we can find a constant Cy > 0 such that

Kinn = (Sq(m+n), Sy(m—n)) = (Sym, Sym) — (Syn, Syn) > C'(;1|m|2 - Cq|n|2-

Therefore, if |m| > 2Cy|n|, then (2.36) holds. The proof is complete. O

3 Proof of Theorem 2.4

3.1 Scheme of the proof

Let us fix constants R, T, and €. As in the proof of Theorem 2.2, we shall say
that a system is e-controllable if it is (e, R)-controllable in time T. We need to
show that if (2.5) is e-controllable, then so is (2.1).

Along with (2.1) and (2.5), let us consider the equation

4+ L(u+((t) + Blu+¢(t) = h(t) +n(t), (3.1)

where 1 and { are control functions. Suppose we can prove the following two
propositions.
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Proposition 3.1. Let u € X7 be a solution of (3.1) with n,{ € L>®(Jr, E).
Then there are sequences of controls ni € L (Jr, E) and of solutions u, € Xr
for Eq. (2.1) with n = ny, such that

ur(0) = u(0) for all k > 1, (3.2)

lur(T) —w(T)|lv — 0 ask — oc.

Proposition 3.2. Let u € Xp be a solution of (2.5) with m € L*®(Jr, Ev),
where By = F(E). Then there are sequences of controls ny, (, € L (Jr, E) and
of solutions u, € Xp for Eq. (3.1) with n = n, and { = (x such that (3.2) holds
and

llur —ullc(rp vy — 0 ask — oo. (3.4)

Propositions 3.1 and 3.2 imply the following results relating the control sys-
tems (2.1), (3.1), (2.5) (cf. properties (P1) and (P2) in the Introduction).

Extension: Equation (2.1) with n € E is e-controllable if and only if so is
Eq. (3.1) with n,{ € E.

Convexification: Equation (3.1) with 7, € E is e-controllable if and only if
so is Eq. (2.5) with n € Ey, where E; = F(E).

The claim of Theorem 2.4 is a straightforward consequence of the above as-
sertions. Thus, to establish Theorem 2.4, it suffices to prove Propositions 3.1
and 3.2. Their proofs are given in the next two subsections.

3.2 Proof of Proposition 3.1

Recall that P and Q stand for the orthogonal projections in H onto the sub-
spaces E and E*, respectively. Let us set

v(t) = Pu(t), w(t)=Qu(t) forte Jr.

It is clear that v € C(Jr, E) and w € Xr(E). Moreover, the function w is a
solution of the equation

W+ Lpw + Q(B(w) + B(v + ¢, w) + B(w,v +¢)) = f(t),

where we set
f=Q(h=Bv+¢) — Lv+()).
Let us choose a sequence vy € C!(Jr, E) such that

vk — (v + Ollzarrvy = 0 ask — oo, (3.5)
vE(0) =v(0), vp(T)=v(T) forall k> 1. (3.6)

Consider the equation

i+ Lz + Q(B(2) + B(vk, 2) + B(z,vr)) = fr(t), (3.7)
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where
fk = Q(h - B(’Uk) - L’Uk).
Using (3.5), (1.16), and the fact that dim E' < oo, it is easy to show that

Ife = fllL2(sp,my — 0 as k — oco. (3.8)

Theorem 1.8 combined with (3.5) and (3.8) implies that, for sufficiently large
k > 1, Eq. (3.7) has a unique solution wy, € Xp(E) that satisfies the initial
condition

wg (0) = w(0). (3.9)

Moreover, since the resolving operator associated with (3.7) is Lipschitz contin-
uous, we see that
|lwr —w|x, — 0 as k — oco. (3.10)

We now set ur = vx + wi. The construction implies that the function wuy
belongs to the space Xr and satisfies Eq. (2.1) with the function

n(t) = mi(t) == 0k (t) + P(Lun(t) + Bluk(t)) — h(t)),

which belongs to L*°(Jr, E). Furthermore, it follows from (3.9) and the first
relation in (3.6) that the initial condition (3.2) is also verified. Finally, the
second relation in (3.6) and convergence (3.10) imply that

[ur(T) = u(T)|lv = [we(T) = w(T)llv < |lwx —wllxr =0 ask — oc.

The proof of Proposition 3.1 is complete.

3.3 Proof of Proposition 3.2

Step 1. Without loss of generality, we can assume that n;(t) is piecewise con-
stant. Indeed, suppose that Proposition 3.2 is proved in this case, and let
u € Xr be a solution of (2.5), (2.2) with some 1, € L>(Jr, E1). Then there is
a sequence n"™ € L (Jr, Eq) of piecewise constant functions such that

In™ —mllz2(sp,my — 0 as m — oo.

Applying Theorem 1.8 with F = {0}, we see that, for sufficiently large m > 1,
problem (2.5), (2.2) with 7; replaced by ™ has a unique solution u™ € X,
which converges to u in Xy as m — oo. In particular, for any € > 0 there
is a piecewise constant function 7; € L*®°(Jr, F1) and a solution 4 € Xp of
problem (2.5), (2.2) with n; = 7; such that

@ — |y < /2. (3.11)

By assumption, Proposition 3.2 is true for the piecewise constant function 7.
Therefore there are sequences of control functions ny,(x € L*(Jr, E) and of
solutions uy € Xr for problem (2.1), (2.2) with ¢ = {; and n = 7 such that

lug — @ljxp — 0 as k — oo.
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Combining this with (3.11), for any € > 0 we can find 7., (. € L*°(Jr, E) and a
solution u. € X7 of problem (2.1), (2.2) with ¢ = (. and 1 = 1. such that

lue — ullx, < e.

Since € > 0 is arbitrary, we obtain the required assertion.

Step 2. We now prove the proposition for piecewise constant functions n (¢).
A simple iteration argument combined with Theorem 1.8 shows that it suffices
to consider the case in which there is only one interval of constancy. Thus, we
assume that u € X is a solution of (2.5), (2.2) with n(t) =m € Ei.

We claim that there is a function n € E and a sequence (;, € L*(Jr, E)
such that problem (3.1), (2.2) with ¢ = {} has a unique solution u; € Xp, which
satisfies (3.4). We shall need the following lemma whose proof is given in the
Appendix (see Section 4.2).

Lemma 3.3. Let E C U be a finite-dimensional space and Ey = F(E). Then

for any m1 € Ey there are vectors (',..., (™, n € E and positive constants
A,y ..oy A whose sum is equal to 1 such that
Z/\ B(u+ ¢%) —|—L§J) n foranyueV. (3.12)

Relation (3.12) implies that the function u € X satisfies the equation
&,u—!—Lu—l—Z)\j(B(u—i—Cj)—!-LCj) = h(t) +n. (3.13)
j=1

Following a classical idea in the theory of control, we now fix an integer k > 1
and consider the function

Ck(t) = C(kt/T), (3.14)

where ((¢) is a 1-periodic function defined by the relation
C(8)=¢ for0<s—(A+-+X_1)<N,i=1,....,m
Equation (3.13) can be rewritten as
O+ L(u+ Ci(t)) + B(u+ (k(t)) = h(t) + 1+ fr(t), (3.15)

where fr = fr1 + fro,

Fra(t) = LG (t) ZA L, (3.16)

Jr2(t) = B(u(t) + G(t) Z t) +¢). (3.17)
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It follows from the definition of {; and inequality (1.16) that the functions f
belong to the space L>°(Jr, H) and satisfy the inequality

sup || fill o (g7, 1) < 00- (3.18)
k>1

Setting 1 = u — K fi, where the operator K is defined by (1.8), we conclude
from (3.15) that @y, € Xr is a solution of the equation

Oy, + Ltk + C) + Btk + C) + Bk + i, K fre) + B(K fr, Gx + Cr)
—htn—BKf). (3.19)

We wish to consider (3.1) as a perturbation of (3.19) and to apply Remark 1.9.
To this end, we note that

gl xr + ISkl oo (g, By + 1B fi)ll2rp,my + 1K frllxr < R,

where R > 0 does not depend on k. Therefore, by Remark 1.9, there is € > 0
depending only R such that if functions v € L*(Jp, H') and f € L%(Jr, H)
satisfy the inequalities

lv— K felloarmy <& |\f +BE fe)llez2rm < ¢, (3.20)
then the equation
hz+ L(z+ )+ B(z+ )+ B(z+ (eyv) + Blo,z4+ ) =h+n+ f (3.21)

has a unique solution z € Xr satisfying the initial condition z(0) = ug. Suppose
we have shown that

K fellerr,vy + I BK fi)llL2(ip,my — 0 as k — oo, (3.22)

In this case, the functions v = 0 and f = 0 satisfy condition (3.20) for sufficiently
large k, and we can conclude that problem (3.1), (2.2) with ¢ = (i has a unique
solution uy € Xr, and

lug — Gkllxr — 0 as k — oo. (3.23)

Since [|K fillc(sp,vy — 0 as k — oo (see (3.22)), convergence (3.23) and the
definition of 4y imply that (3.4) holds. Thus, it remains to prove (3.22).

Step 3. To prove (3.22), we note that (1.16) implies the inequality
3/2 1/2
1B fi)l 2.1y < CLIE Fill Vg gy K FRlIES0 10 0y

Since the sequence {f;} is bounded in L?(Jr, H) (see (3.18)), Proposition 1.2
implies that || K fx|/z2(s,,m2) is bounded by a constant not depending on k.
Therefore convergence (3.22) will be established if we show that

HkaHC(JT,V) — O as ]f — OQ. (324)
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Step 4. To prove (3.24), note that, in view of interpolation inequalities for
Sobolev spaces, we have

1/7 6/7
1K Fkl1Z vy S Coll K Frllg iy 1K FRlIG G 122, (3.25)
where U* denotes the dual space of U endowed with the norm ||v||y- = | L™ v].

It is a matter of straightforward verification to show that
|L7e™ || gy < Cst™" forr >0, t>0.

Combining this with (3.18), for any ¢ € Jr we derive
¢
e s P PRI

t
< Cs (sl fill=carm) [ (69 <Co (320)
k>1 0

Furthermore, integrating by parts, we write
K fi(t) = Fi(t) — Gk(t), (3.27)

where

Fu(t) = /0 Cfis)ds, Calt) = / LI E (5) ds.

0
The definition of the norm in U* implies that

t
1Gkllcmve) < {23?/0 le™ = e | Eie(s) | ds < | Fll i op iy (3:28)

Suppose we have shown that
| Fxllc(rp,my — 0 as k — oo. (3.29)

Then combining (3.25) — (3.29), we arrive at (3.24).

Step 5. We now prove (3.29). We shall show that for any piecewise con-
stant H2-valued function u on Jr, the sequence {F}} converges to zero in the
space C'(Jr, H). If this assertion is established, then a simple approximation
argument combined with inequality (1.16) shows (3.29) is true for any v € Xp.

Convergence (3.29) will be established if we prove the following assertions:

(i) The family {F}} C C(Jr, H) is relatively compact.
(ii) For any t € Jr, the sequence {Fy(t)} goes to zero in H as k — oo.

To prove (i), note that, in view of (3.18), the family {F}} is uniformly equicon-
tinuous on Jp. Therefore, by the Arzela—Ascoli theorem, it suffices to show that
there exists a compact set K C H such that

Fr(t)e K forallte Jp, k> 1.
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This assertion follows from the fact that, for piecewise constant functions u, the
image of fi is contained in a finite set not depending on k.

We now prove (ii). Let us denote by J, = [t4—1,%4], ¢ = 1,..., L, the intervals
of constancy of u. We fix any integer r, 1 < r < L, and for any ¢t € J,;1 write

Fk@)=/Otfkas)ds=i/t:fk<s>ds+/;fk<s>ds.

Thus, to prove (ii), it suffices to show that, for any ¢, ¢ =1,..., L, and ¢t € Jg,

we have .

fi(s)ds = 0 as k — oo.
tq71

This can be done by a straightforward computation (cf. [Jur97, Chapter 3]).
The proof of Proposition 3.2 is complete.

4 Appendix

4.1 A version of the implicit function theorem

Let X and Y be Banach spaces and let Z = X x Y. We denote by Bx(z,9)
the closed ball in X of radius 0 centred at z and by Bz(z) the closed ball in Z
of radius 1 centred at z. Let F': Z — Y be a C* function. We write F}(z)
for its Fréchet derivative with respect to y at a point z and denote by |F|,
the C2? norm of the restriction of F' to Bz(z). The following result can be
established by repeating the arguments used in a standard proof of the implicit
function theorem (for instance, see [Tay97, Chapter 1]).

Proposition 4.1. For any R > 0 there are positive constants C and § such
that the following statements hold:

(i) Let 2 = (#,9) € Z be any point such that the linear operator Fy(2) is
invertible and .
1Fl. <R, [[(Fy(2) ) SR

Then there is a unique C? function f : Bx(%,0) — Y such that
F(x, f(x)) =0 for x € Bx(%,9).
(il) The function f satisfies the inequality

If(x1) = f(x2)|ly < Cllzr — a2||x for x1, 22 € Bx(&,4).
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4.2 Proof of Lemma 3.3

In view of the definition F(F), there are vectors ¢t,...,¢* 7 € E and con-
stants a; > 0, j = 1,...,k, such that

K
m=i-Y aB({).
=1

Let us set m = 2k, n =17,

A =22, ¢ =\Jad forj=1,...,k,
A=k, I =—Vad™h forj=k+1,...,m,

where o = a1 + - - + . It is a matter of direct verification to show that (3.12)

holds.
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