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Abstract

The paper is devoted to studying the problem of controllability for 3D

Navier–Stokes equations in a bounded domain. We develop the method

introduced by Agrachev and Sarychev in the 2D case and establish a

sufficient condition under which the problem in question is approximately

controllable by a finite-dimensional force. In the particular case of a torus,

it is shown that our sufficient condition is fulfilled for a control of low

dimension not depending on the viscosity.
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0 Introduction

In the pioneering article [AS05a], Agrachev and Sarychev introduced a new
method for studying controllability properties of PDE’s perturbed by a finite-
dimensional control force. They considered the 2D Navier–Stokes (NS) equa-
tions

u̇ + (u,∇)u − ν∆u + ∇p = η(t, x), div u = 0, (0.1)

where x ∈ T
2 = R

2/2πZ
2, ν > 0 is the viscosity, u(t, x) is the velocity field,

p(t, x) is the pressure, and η(t, x) is a control function that takes on values in
a finite-dimensional space E ⊂ L2(T2, R2). One of the main results in [AS05a]
states that if E contains sufficiently many Fourier modes, then for any T > 0
and ν > 0 Eq. (0.1) is approximately controllable in time T . Without going
into details, let us explain two key ideas that enable one to prove approximate
controllability (AC) of (0.1). 1

Introduce the space

H =
{
u ∈ L2(T2, R2) : div u ≡ 0

}
(0.2)

and denote by Π : L2(T2, R2) → H the orthogonal projection in L2(T2, R2)
onto the subspace H . Projecting (0.1) to H , we obtain the following evolution
equation in H , which is equivalent to (0.1):

u̇ + νLu + B(u) = η(t). (0.3)

Here L = −Π∆, B(u) = Π{(u,∇)u}, and we use the same notation for the right-
hand side η and its projection to H . It is well known that the Cauchy problem
for (0.3) is well posed in appropriate functional spaces, and the corresponding
solutions defined on the positive half-line are continuous functions of time with
range in H . Recall that Eq. (0.3) is said to be approximately controllable in

time T by an E-valued control (where E ⊂ H is a finite-dimensional subspace)
if for any u0, û ∈ H and any ε > 0 there is an essentially bounded function
η : [0, T ] → E such that

‖u(T )− û‖ < ε,

1The scheme presented below is not entirely accurate and differs slightly from the one used
in the original paper [AS05a].
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where u(t) denotes the solution of (0.3) issued from u0 and ‖ · ‖ stands for the
L2-norm.

Along with (0.3), let us consider the control system

u̇ + νL(u + ζ(t)) + B(u + ζ(t)) = η(t). (0.4)

Here η and ζ are E-valued control functions. It turns out that the control
systems (0.3) and (0.4) are equivalent. Namely, we have the following property,
which is an analogue for PDE’s of a more general result established in [AS86]
for the case of ODE’s (see also Sections 6.1 and 12.4 in [AS05a]):

(P1) Equation (0.3) with η ∈ E is AC in time T > 0 if and only if so is Eq. (0.4)
with η, ζ ∈ E.

We now compare (0.4) with a control system of the form (0.3) in which the
control function takes on values in a space E1 ⊃ E. More precisely, for any
subset A ⊂ H , denote by coA the convex hull of A, that is, the set of vectors
v ∈ H that are representable in the form

v =

k∑

i=1

λiui,

where k ≥ 1 is an integer depending on v, ui ∈ A for i = 1, . . . , k, and λi > 0
are some constants whose sum is equal to 1. Let E1 ⊂ H be the largest vector
space such that

B(u) + E1 ⊂ co
{
B(u + ζ) + νLζ + η : η, ζ ∈ E

}
for any u ∈ H. (0.5)

Consider the control system

u̇ + νLu + B(u) = η1(t), (0.6)

where η1 is an E1-valued control. The following property is a version for
PDE’s of the well-known convexification principle (for instance, see Theorem 8.2
in [AS04] or Theorem 7 in [Jur97, Chapter 3]).

(P2) Suppose that Eq. (0.6) with η1 ∈ E1 is AC in time T > 0. Then so is
Eq. (0.4) with η, ζ ∈ E.

Note that, in a general situation, the subspace E1 may coincide with E. How-
ever, if E is a proper subset of E1, then properties (P1) and (P2) enable one
to reduce the question of AC for Eq. (0.3) to a similar problem with a larger
control space. Iterating this argument, for any initial space E one can construct
a non-decreasing sequence of subspaces E1 ⊂ E2 ⊂ · · · such that the following
property holds.

(P) Equation (0.3) with η ∈ E is AC in time T > 0 if and only if so is Eq. (0.3)
with η ∈ Ek for some k ≥ 1.
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Now let {ej} be an orthonormal basis in H formed of trigonometric polynomials
and let HN ⊂ H be the vector space spanned by e1, . . . , eN . It was shown by
Agrachev and Sarychev [AS05a] that if E ⊃ HN0

for a sufficiently large N0 ≥ 1,
then there is a sequence Nk → ∞ such that HNk

⊂ Ek for any k ≥ 1. This
property combined with (P) implies that (0.3) is AC.

The Agrachev–Sarychev approach is rather general and does not use any par-
ticular property of 2D NS equations other than well-posedness of the Cauchy
problem in appropriate functional spaces and the presence of a “mixing” non-
linearity. It can be applied to various controlled PDE’s, including the 2D Euler
system and nonlinear Schrödinger equation [AS05b]. Moreover, combining some
refined versions of properties (P1) and (P2) with a degree theory argument, it
was shown in [AS05a] that the 2D NS system on the torus possesses the property
of exact controllability in observed projections.

The aim of this paper is to develop the Agrachev–Sarychev method in such
a way that it can be applied to equations for which the well-posedness of the
Cauchy problem is not known to hold. Namely, we consider the 3D Navier–
Stokes system on a torus T

3. Let H be the space of divergence-free vector fields
on T

3 (cf. (0.2)) and let V = H1(T3, R3) ∩ H . As in the 2D case, one can
reduce the problem in question to an evolution equation in H of the form (0.3).
Let E ⊂ H be a finite-dimensional subspace. We shall say that the 3D NS
system (0.3) with η ∈ E is approximately controllable in time T if for any
u0, û ∈ V and any ε > 0 there is an essentially bounded function η : [0, T ] → E
and a strong solution u(t) of (0.3) such that

u(0) = u0, ‖u(T )− û‖V < ε.

The following theorem is a simplified version of the main result of this paper
(see Section 2 for more details).

Main Theorem. There is a finite-dimensional subspace E ⊂ H such that

for any T > 0 and ν > 0 the 3D Navier–Stokes system (0.3) with η ∈ E is

approximately controllable in time T .

To prove this result, we show that properties (P1) and (P2) remain valid for
the 3D NS system. Their proof, however, is different from that in the 2D case
and relies substantially on a perturbative result on existence of strong solutions
for 3D NS equations (see Section 1.4). We note that even in the 2D case the
approach of this paper contains some new elements compared with the proofs
in [AS05a]. We also hope that our presentation will help the readers not familiar
with the geometric control theory of ODE’s to gain a better understanding of
the Agrachev–Sarychev method.

It should be mentioned that the problem of controllability for Navier–Stokes
and Euler equations was studied by many authors during the last fifteen years,
and a number of deep results have been obtained (see the papers [Lio90, Fur95,
Cor96, CF96, Ima98, FE99, Cor99, FC99, Gla00, Zua02] and the references
therein). In particular, it was proved that NS equations possess the property
of exact controllability (both in 2D and 3D) by a force supported in any given
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domain (see [Cor96, CF96, Ima98, FE99]). Furthermore, feedback stabilisa-
tion properties of NS and Euler equations were studied in [Cor99, BS01, Fur01,
Fur04, BT04]. We point out, in particular, the paper [BT04] in which exponen-
tial stabilisation to a steady state solution for the 3D NS system is obtained via
finite-dimensional controllers. To the best of my knowledge, this paper provides
a first result on approximate controllability of 3D NS equations by a control of
finite-dimension not depending on the viscosity. In conclusion, we note that our
arguments can be used to prove the property of exact controllability in observed
projections for 3D NS system; we shall address this question in a subsequent
publication.

The paper is organised as follows. In Section 1, we have compiled some
preliminaries on Navier–Stokes equations. The main results of the paper are
presented in Section 2. We establish a sufficient condition under which the 3D
NS system is controllable by a finite-dimensional force and then show that it is
satisfied in the case of periodic boundary conditions. Section 3 is devoted to
the proofs.

Acknowledgements. This paper arose from my close cooperation with
A. A. Agrachev, S. B. Kuksin and A. V. Sarychev, and I would like to thank
them for numerous discussions. I am grateful also to M. Paicu for useful remarks
on the Navier–Stokes equations.

Notation. We use standard functional spaces arising in the theory of
Navier–Stokes equations; they are defined in Section 1.1. For a separable Banach
space X and a compact interval J ⊂ R, we introduce the following notation.

BX(R) is the closed ball in X of radius R centred at the origin.

Lp(J, X) is the space of measurable functions f : J → X such that

‖f‖Lp(J,X) :=

(∫

J

‖f(t)‖p
Xdt

)1/p

< ∞, (0.7)

where ‖ · ‖X stands for the norm in X . In the case p = ∞, condition (0.7) is
replaced by

‖f‖L∞(J,X) := ess sup
t∈J

‖f(t)‖X < ∞.

C(J, X) is the space of continuous functions f : J → X endowed with the norm

‖f‖C(J,X) := max
t∈J

‖f(t)‖X .

L(X) denotes the space of continuous linear operators in X with the usual
operator norm ‖ · ‖L(X).

If X is a Hilbert space and E ⊂ X is a closed subspace, then E⊥ stands for
the orthogonal complement of E in X . In this case, we denote by P = PE

and Q = QE the orthogonal projections in X onto the subspaces E and E⊥,
respectively.

Throughout the paper, we denote by Ci, i = 1, 2, . . . , unessential positive con-
stants, by R+ the half-line [0, +∞), and by JT the time interval [0, T ].
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1 Preliminaries on 3D Navier–Stokes equations

In this section, we have compiled some auxiliary results on 3D Navier–Stokes
equations. Although the methods used in their proofs are well known, we present
a rather detailed justification of all statements, since they will play an essential
role in Sections 2 and 3.

1.1 Functional spaces and Leray projection

Let D ⊂ R
3 be a bounded domain with C2-smooth boundary ∂D. Denote by

Hs = Hs(D, R3) the space of vector functions u = (u1, u2, u3) whose compo-
nents belong to the Sobolev space of order s and by ‖ · ‖s the corresponding
norm. In the case s = 0, we shall write L2 = L2(D, R3) and ‖ · ‖, respectively.
If s > 1/2, then Hs

0(D, R3) stands for the space of functions u ∈ Hs vanishing
on ∂D. Let

H =
{
u ∈ L2(D, R3) : div u = 0 in D, (u,n)|∂D = 0

}
,

where n is the outward unit normal to ∂D. Introduce the spaces

V = H1
0 (D, R3) ∩ H, U = H2(D, R2) ∩ V,

endowed with the norms ‖ · ‖1 and ‖ · ‖2, respectively.
Let Π : L2 → H be the Leray projection, that is, the orthogonal projection

in L2 onto the closed subspace H . The following result is a straightforward con-
sequence of the Hodge–Kodaira decomposition, elliptic regularity, and complex
interpolation (for instance, see [Soh01]).

Proposition 1.1. The projection Π satisfies the inequality

‖Πu‖s ≤ C ‖u‖s for any u ∈ Hs(D, R3),

where 0 ≤ s ≤ 2 and C > 0 is a constant not depending on u(x) and s.

1.2 Parabolic semigroups generated by the Stokes opera-

tor

Let L be the Stokes operator, that is, the operator −Π∆ with the domain U .
It is well known that L is a positive self-adjoint operator in H with discrete
spectrum (for instance, see [CF88, Chapter 4]). We shall use sometimes the
following equivalent norms on U and V :

‖u‖U = (Lu, Lu)1/2, ‖u‖V = (Lu, u)1/2,

where (·, ·) stands for the scalar product in L2.
Consider the problem

u̇ + Lu = h(t), (1.1)

u(0) = u0. (1.2)
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For any T > 0, we set JT = [0, T ] and define the space

XT = C(JT , V ) ∩ L2(JT , U)

endowed with the norm

‖u‖XT = max
0≤t≤T

‖u(t)‖V +

(∫ T

0

‖u(t)‖2
Udt

)1/2

.

The following result is a consequence of the above-mentioned properties of L
(for instance, see [Hen81, Section 1.3]).

Proposition 1.2. For any h ∈ L2(JT , H) and u0 ∈ V , problem (1.1), (1.2) has

a unique solution u ∈ XT , which satisfies the inequality

‖u(t)‖2
V +

∫ t

0

‖u(s)‖2
Uds ≤ ‖u0‖2

V +

∫ t

0

‖h(s)‖2ds, t ∈ JT . (1.3)

We now consider the projection of problem (1.1), (1.2) to a subspace of
finite codimension. Let E ⊂ U be a finite-dimensional subspace and let E⊥

be its orthogonal complement in H . We denote by PE and QE the orthogonal
projections in H onto the subspaces E and E⊥, respectively. Consider the
problem

ẇ + LEw = f(t), (1.4)

w(0) = w0, (1.5)

where LE = QEL. Define the space

XT (E) := C(JT , V ∩ E⊥) ∩ L2(JT , U ∩ E⊥),

endowed with the norm ‖ · ‖XT .

Proposition 1.3. For any f ∈ L2(JT , E⊥) and w0 ∈ V ∩ E⊥, problem (1.4),
(1.5) has a unique solution w ∈ XT (E), which satisfies the inequality

‖w‖XT ≤ C
(
‖w0‖V + ‖f‖L2(JT ,H)

)
, (1.6)

where C > 0 is a constant depending only on E and T .

Proof. Step 1. We first prove the uniqueness of solution. To this end, suppose
that w ∈ XT (E) is a solution of problem (1.4), (1.5) with f = 0 and w0 = 0.
Then

d

dt
‖w(t)‖2 = 2(w(t), ẇ(t)) = −2(w(t), LEw(t)) ≤ 0,

whence it follows that w ≡ 0.

Step 2. We now prove the existence of solution. Without loss of generality,
we shall assume that T > 0 is sufficiently small; the general case can be reduced
to the former by iteration. Let us set Y = L2(JT , E⊥). We claim that there is
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a continuous operator SE : Y → Y with the following property: if u ∈ XT is the
solution of problem (1.1), (1.2) with h = SEf and u0 = w0, then the function
QEu belongs to XT (E) and satisfies Eqs. (1.4), (1.5). If this assertion is proved,
then inequality (1.6) is a straightforward consequence of (1.3).

To construct the operator SE , suppose that u ∈ XT is a solution of (1.1),
(1.2) with u0 = w0 and some function h ∈ Y and let w = QEu. Since E ⊂ U and
dimE < ∞, the projection QE is continuous in the spaces U and V . This implies
that w ∈ XT (E). Moreover, it follows from (1.2) that (1.5) holds. Applying QE

to (1.1), we derive
ẇ + LEw = h − QELPEu.

Thus, w is a solution of (1.4) if and only if

h − QELPEu = f. (1.7)

Let us denote by K : L2(JT , H) → XT the operator that takes each function h
to the solution in XT of problem (1.1), (1.2) with u0 = 0:

Kh(t) =

∫ t

0

e−(t−s)Lh(s)ds. (1.8)

Then the solution of (1.1), (1.2) with u0 = w0 can be written in the form

u = v + Kh, v(t) = e−tLw0.

Substituting this expression for u in the left-hand side of (1.7) and denoting
by I the identity operator, we obtain the following functional equation for h:

(I − QELPEK)h = f + QELPEv.

The right-hand side of this equation belongs to Y. Therefore, the required
assertion will be established if we show that

‖QELPEK‖L(Y) ≤ 1
2 for sufficiently small T > 0, (1.9)

where L(Y) stands for the space of continuous linear operators in Y.

Step 3. Let us prove (1.9). Since

‖e−tL‖L(H) = e−α1t,

where α1 > 0 is the first eigenvalue of L, it follows from (1.8) that

‖Kh‖Y ≤ C1T ‖h‖Y , (1.10)

where C1 > 0 does not depend on T . Using again the fact that E ⊂ U is
finite-dimensional, we see that

‖QELPEg‖ ≤ C2‖g‖ for any g ∈ H, (1.11)

where C2 > 0 depends only on E. Combining (1.10) and (1.11), we arrive
at (1.9). The proof of Proposition 1.3 is complete.
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Remark 1.4. It is clear that inequality (1.6) remains valid if we replace T by
any T ′ < T , and the corresponding constant C in the right-hand side will be
independent of T ′. In particular, we obtain the estimate

‖w(t)‖2
V +

∫ t

0

‖w(s)‖2
Uds ≤ C

(
‖w0‖2

V +

∫ t

0

‖f(s)‖2ds

)
, t ∈ JT , (1.12)

where C > 0 does not depend on w0 and f .

We now consider a particular case of (1.4) in which E is a subspace generated
by eigenfunctions of the Stokes operator. Let {ej} be an orthonormal basis in H
formed of the eigenfunctions of L and let {αj} be the corresponding sequence of
eigenvalues indexed in an increasing order. Let us denote by HN the vector space
spanned by e1, . . . , eN and by H⊥

N its orthogonal complement in H . We write PN

and QN for the orthogonal projections in H onto the subspaces HN and H⊥
N ,

respectively. In what follows, we shall need a refinement of inequality (1.6) for
the case E = HN .

Corollary 1.5. Suppose that the conditions of Proposition 1.3 are fulfilled with

E = HN , where N ≥ 1 is an integer, and that f ∈ L2(JT , Hr) for some

r ∈ (0, 1/2). Then there is a constant C > 0 not depending on N and r such

that the solution w ∈ XT (HN ) of problem (1.4), (1.5) with w0 = 0 satisfies the

inequality

‖w‖XT ≤ C α
−r/2
N+1 ‖f‖L2(JT ,Hr). (1.13)

Proof. Let D(Lr) be the domain of the operator Lr:

D(Lr) =

{
u =

∞∑

j=1

ujej ∈ H :

∞∑

j=1

α2r
j u2

j < ∞
}

.

It is well known that (see [Tay97, Chapter 17])

D(Lr/2) = Hr ∩ H for r ∈ (0, 1/2). (1.14)

Therefore, using the Poincaré inequality and the fact that f(t) ∈ H⊥
N for almost

every t ∈ JT , we derive

‖f(t)‖r ≥ C1‖Lr/2f(t)‖ ≥ C1α
r/2
N+1‖f(t)‖ almost surely.

Combining this with (1.6), we arrive at (1.13).

1.3 Linearised Navier–Stokes system

For any u, v ∈ H2, we have (u,∇)v ∈ L2, and therefore we can define a bilinear
operator by the formula

B(u, v) = Π{(u,∇)v}. (1.15)

The following proposition, which establishes some continuity properties for B,
can be proved with the help of Proposition 1.1, Sobolev embedding theorems,
and interpolation inequalities (cf. [CF88, Chapter 6]).
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Proposition 1.6. There are positive constants C1 and C2 such that, for any

u, v ∈ H2, we have

‖B(u, v)‖ ≤ C1 min
{(

‖u‖1‖u‖2

)1/2‖v‖1,
(
‖v‖1‖v‖2

)1/2‖u‖1

}
, (1.16)

‖B(u, v)‖1 ≤ C2

(
‖u‖1‖u‖2

)1/2‖v‖2. (1.17)

In particular, the function B(u) = B(u, u) is continuous from H2 to H1 ∩ H.

We now fix a finite-dimensional subspace E ⊂ H and consider the equation

ẇ + LEw + QB(v1(t), w) + QB(w, v2(t)) = f(t), (1.18)

where v1 and v2 are given functions and Q denotes the orthogonal projection
in H onto E⊥.

Proposition 1.7. For any functions v1, v2 ∈ L4(JT , V ), f ∈ L2(JT , E⊥) and

w0 ∈ V ∩E⊥, problem (1.18), (1.5) has a unique solution w ∈ XT (E). Moreover,

there is a constant C > 0 depending only on max
{
‖vi‖L4(JT ,V ), i = 1, 2

}
such

that

‖w‖XT ≤ C
(
‖w0‖V + ‖f‖L2(JT ,H)

)
. (1.19)

Proof. Step 1. Let us show that if w ∈ XT (E) is a solution of (1.18), (1.5), then
it satisfies inequality (1.19). This will imply, in particular, the uniqueness of
solution.

It follows from (1.16) that the function

f̂(t) = f(t) − Q
(
B(v1(t), w(t)) + B(w(t), v2(t))

)

belongs to the space L2(JT , E⊥) and satisfies the inequality

‖f̂(t)‖2 ≤ 2‖f(t)‖2 + C1

(
‖v1(t)‖2

1 + ‖v2(t)‖2
1

)
‖w(t)‖V ‖w(t)‖U

≤ 2‖f(t)‖2 + δ ‖w(t)‖2
U + C2

(
‖v1(t)‖4

1 + ‖v2(t)‖4
1

)
‖w(t)‖2

V

for any t ∈ JT , where δ > 0 is an arbitrary constant and C2 > 0 depends only
on δ. Combining this with inequality (1.12) in which f is replaced by f̂ and
choosing δ > 0 sufficiently small, we obtain

‖w(t)‖2
V +

1

2

∫ t

0

‖w(s)‖2
Uds

≤ C3

(
‖w0‖2

V +

∫ t

0

(
‖v1‖4

1 + ‖v2‖4
1

)
‖w‖2

V ds + ‖f‖2
L2(JT ,H)

)
. (1.20)

Ignoring the integral on the left-hand side and applying the Gronwall inequality,
we obtain

sup
0≤t≤T

‖w(t)‖V ≤ C4

(
‖w0‖V + ‖f‖L2(JT ,H)

)
.

Combining this with (1.20), we obtain a similar upper bound for ‖w‖L2(JT ,U).
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Step 2. We now construct a solution with the help of contraction mapping
principle. Namely, we shall prove the following assertion: there is a constant
ε > 0 such that if vi ∈ L4(JS , H1), i = 1, 2, for some S ≤ T and

‖v1‖L4(JS ,H1) + ‖v2‖L4(JS,H1) ≤ ε, (1.21)

then for any w0 ∈ V ∩ E⊥ and f ∈ L2(JS , E⊥) problem (1.18), (1.5) has a
solution w ∈ XS(E). Once this claim is established, existence of solution on JT

will follow by a simple iteration argument.
Let us consider an operator F that takes each function ŵ ∈ XS(E) to the

solution of the equation

ẇ + LEw = g, g := f − Q
(
B(v1, ŵ) + B(ŵ, v2)

)
, (1.22)

supplemented with the initial condition (1.5). Using Proposition 1.6, we easily
show that g ∈ L2(JS , E⊥). Thus, in view of Proposition 1.3, the operator F
is well defined. Let us show that F is a contraction. Indeed, if ŵi ∈ XS(E),
i = 1, 2, and wi = F(ŵi), then the function w = w1 − w2 is a solution of
problem (1.4), (1.5) with

f = −Q
(
B(v1, ŵ) + B(ŵ, v2)

)
,

where ŵ = ŵ1 − ŵ2. Repeating literally the arguments used in Step 1, we can
show that

‖f‖L2(JS ,E⊥) ≤ C5‖ŵ‖XS

(
‖v1‖L4(JS,H1) + ‖v2‖L4(JS ,H1)

)
.

Proposition 1.3 and Remark 1.4 imply that if (1.21) is satisfied, then

‖w‖XS = ‖F(ŵ1) −F(ŵ2)‖XS ≤ C6ε ‖ŵ1 − ŵ2‖XS .

It follows that F is a contraction for sufficiently small ε. Its unique fixed point
w ∈ XS(E) is a solution of problem (1.18), (1.5). The proof is complete.

1.4 Strong solutions of the Navier–Stokes system

In this subsection, we establish two perturbative results on solvability of the
3D Navier–Stokes system. Let us fix a finite-dimensional subspace E ⊂ U and
consider the problem

ẇ + LEw + Q
(
B(w) + B(v, w) + B(w, v)

)
= f(t), (1.23)

w(0) = w0, (1.24)

where v ∈ L4(JT , H1), f ∈ L2(JT , E⊥), and w0 ∈ V ∩ E⊥ are given functions.

Theorem 1.8. For any R > 0 there are positive constants ε and C such that

the following assertions hold.
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(i) Let v̂ ∈ L4(JT , H1), f̂ ∈ L2(JT , E⊥), and ŵ0 ∈ V ∩E⊥ be some functions

such that problem (1.23), (1.24) with v = v̂, f = f̂ , w0 = ŵ0 has a solution

ŵ ∈ XT (E). Suppose that

‖v̂‖L4(JT ,H1) ≤ R, ‖f̂‖L2(JT ,E⊥) ≤ R, ‖ŵ‖XT ≤ R. (1.25)

Then, for any triple (v, f, w0) satisfying the inequalities

‖v − v̂‖L4(JT ,H1) ≤ ε, ‖f − f̂‖L2(JT ,E⊥) ≤ ε, ‖w0 − ŵ0‖V ≤ ε, (1.26)

problem (1.23), (1.24) has a unique solution w ∈ XT (E).

(ii) Let

R : L4(JT , H1) × L2(JT , E⊥) × (V ∩ E⊥) → XT (E)

be an operator that is defined on the set of functions (v, f, w0) satisfy-

ing (1.26) and takes each triple (v, f, w0) to the solution w ∈ XT (E)
of (1.23), (1.24). Then R is uniformly Lipschitz continuous, and its Lip-

schitz constant does not exceed C.

Proof. We shall use a refined version of the implicit function theorem (IFT). Its
exact formulation is given in the Appendix (see Section 4.1).

Step 1. In view of Proposition 1.3, problem (1.4), (1.5) is well posed in the
space XT (E). Therefore, we can define continuous operators

KE : L2(JT , E⊥) → XT (E), ME : V ∩ E⊥ → XT (E) (1.27)

by the following rule: KE takes each function f ∈ L2(JT , E⊥) to the solution
w ∈ XT (E) of problem (1.4), (1.5) with w0 = 0 (cf. (1.8)) and ME takes each
function w0 ∈ V ∩ E⊥ to the solution w ∈ XT (E) of problem (1.4), (1.5) with
f = 0. In what follows, we shall omit the subscript E to simplify notation.

Let us define the spaces

H = L4(JT , H1) × L2(JT , E⊥) × (V ∩ E⊥), Y = L2(JT , E⊥).

We seek a solution of (1.23), (1.24) in the form

w = Mw0 + Kg, (1.28)

where g ∈ Y is an unknown function. Substituting (1.28) for w in (1.23), we
obtain the following functional equation in the space Y:

g + Q
(
B(Mw0 + Kg) + B(v, Mw0 + Kg) + B(Mw0 + Kg, v)

)
− f = 0. (1.29)

Let us set u = (v, f, w0) and denote by F(u , g) the left-hand side of (1.29). It
is a matter of direct verification to show that the operator F : H × Y → Y is
twice continuously differentiable. Furthermore, setting

û = (v̂, f̂ , ŵ0), ĝ = f̂ − Q
(
B(ŵ) + B(v̂, ŵ) + B(ŵ, v̂)

)
(1.30)

we see that F(û, ĝ) = 0. In view of Proposition 4.1, the desired assertion will
be established if we show that for any R > 0 there is ρ(R) > 0 such that the

following three statements hold for any (v̂, f̂ , ŵ0, ŵ) satisfying (1.25).

12



(a) The functions û and ĝ defined by (1.30) satisfy the inequality

‖û‖H + ‖ĝ‖Y ≤ ρ(R).

(b) The norm of the second derivative of F is bounded uniformly in (u , g).

(c) Let F ′(u , g) be the derivative of F with respect to g. Then F ′(û, ĝ) is an
invertible linear operator in Y, and its norm satisfies the inequality

∥∥(
F ′(û, ĝ)

)−1∥∥
L(Y)

≤ ρ(R).

Step 2. To prove (a), we first note that (1.16) implies the inequality

‖B(a, b)‖Y + ‖B(b, a)‖Y ≤ C1‖a‖L4(JT ,H1)‖b‖XT . (1.31)

It follows that

‖ĝ‖Y ≤ ‖f̂‖Y + C2‖ŵ‖XT

(
‖ŵ‖L4(JT ,H1) + ‖v̂‖L4(JT ,H1)

)
≤ C3(R).

A similar inequality for û is obvious.

Step 3. The definition of F implies that the operator

F1(u , g) = F(u , g) − g + f

is a sum of bilinear forms with respect to (v, g, w0). Therefore, the second deriva-
tive of F coincides with the symmetrization of F1. Thus, to prove (b), it suffices
to show that F1 is continuous in appropriate functional spaces. This assertion is
a straightforward consequence of (1.31) and the continuity of operators (1.27).

Step 4. We now prove (c). Let us set a = Mŵ0 + Kĝ ∈ XT . We wish to
show that for any ξ ∈ Y the equation

F ′(û, ĝ)h := h + QB(a + v̂, Kh) + QB(Kh, a + v̂) = ξ

has a unique solution h ∈ Y, whose norm satisfies the inequality

‖h‖Y ≤ ρ(R) ‖ξ‖Y . (1.32)

Setting ζ = Kh, we obtain the following problem for ζ ∈ XT (E):

ζ̇ + LEζ + QB(a(t) + v̂(t), ζ) + QB(ζ, a(t) + v̂(t)) = ξ, ζ(0) = 0.

In view of Proposition 1.7, this problem has a unique solution ζ ∈ XT (E), which
satisfies the inequality

‖ζ‖XT ≤ C4(R) ‖ξ‖Y . (1.33)

Since
h = ζ̇ + LEζ = ξ − Q

(
B(a(t) + v̂(t), ζ) + B(ζ, a(t) + v̂(t))

)

inequality (1.32) follows from (1.33) and (1.31). The proof of Theorem 1.8 is
complete.
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Remark 1.9. In Section 3.3, we shall need to consider perturbations of an equa-
tion of the form

u̇ + L(u + ζ) + B(u + ζ) + B(u + ζ, v) + B(v, u + ζ) = g(t), (1.34)

where ζ ∈ L4(JT , H2), v ∈ L4(JT , H1), and g ∈ L2(JT , H). In this case, we
have a result similar to Theorem 1.8. Namely, for any R > 0 there are positive
constants ε and C such that the following assertions hold.

(i) Let ζ ∈ L4(JT , H2), v̂ ∈ L4(JT , H1), and ĝ ∈ L2(JT , E⊥) be some func-
tions such that problem (1.34), (1.2) with v = v̂ and g = ĝ has a solution
û ∈ XT . Suppose that

‖ζ‖L4(JT ,H2) ≤ R, ‖v̂‖L4(JT ,H1) ≤ R, ‖ĝ‖L2(JT ,H) ≤ R, ‖û‖XT ≤ R.

Then, for any pair (v, g) satisfying the inequalities

‖v − v̂‖L4(JT ,H1) ≤ ε, ‖g − ĝ‖L2(JT ,H) ≤ ε, (1.35)

problem (1.34), (1.2) has a unique solution u ∈ XT .

(ii) Let R : L4(JT , H1)×L2(JT , H) → XT be the resolving operator that takes
each pair (v, g) satisfying (1.35) to the solution u ∈ XT of (1.34), (1.2).
Then R is uniformly Lipschitz continuous, and its Lipschitz constant does
not exceed C.

To prove the above assertions, it suffices to rewrite (1.34) in the form

u̇+Lu+B(u)+B(u, v+ζ)+B(v+ζ, u) = f := g−Lζ−B(ζ, v)−B(v, ζ)−B(ζ, ζ)

and to apply Theorem 1.8. We shall not dwell on the details.

We now consider problem (1.23), (1.24) in which E = HN .

Proposition 1.10. For any R > 0 there is an integer N0 ≥ 1 such that if

N ≥ N0 and functions v ∈ XT , f ∈ L2(JT , H⊥
N ), and w0 ∈ H⊥

N ∩ V satisfy the

inequalities

‖v‖XT ≤ R, ‖f‖L2(JT ,H) ≤ R, ‖w0‖V ≤ R, (1.36)

then problem (1.23), (1.24) with E = HN has a unique solution w ∈ XT (HN ),
which satisfies the inequality

‖w‖XT ≤ C(R), (1.37)

where the constant C(R) > 0 depends only on R.

Proof. The uniqueness of solution can be established by a standard argument.
We shall use the contraction mapping principle to construct a solution.
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Let us denote by Bρ the set of functions w ∈ XT (HN ) such that ‖w‖XT ≤ ρ
and w(0) = w0. Consider an operator F : Bρ → XT (HN ) that takes each
function ŵ ∈ Bρ to the solution w ∈ XT (HN ) of the problem

ẇ + LNw = QN (f − B(v + ŵ) + B(v)), (1.38)

w(0) = w0, (1.39)

where LN = QNL. We claim that for any R > 0 there is a constant ρ > 0
and an integer N0 ≥ 1 such that F is a contraction of the set Bρ into itself
for N ≥ N0.

Step 1. We first show that F(Bρ) ⊂ Bρ for an appropriate choice of ρ and
sufficiently large N . Let us fix any r ∈ (0, 1/2). In view of Proposition 1.3 and
Corollary 1.5, the solution w ∈ XT (HN ) of (1.38), (1.39) satisfies the inequality

‖w‖XT ≤ C1

(
‖w0‖V + ‖f‖L2(JT ,H)

)
+ C2α

−r/2
N+1 ‖B(v + ŵ) − B(v)‖L2(JT ,Hr).

(1.40)
It follows from (1.16), (1.17), and an interpolation inequality that

‖B(v+ŵ)−B(v)‖r ≤ ‖B(v+ŵ)−B(v)‖1/2 ≤ C3

(
‖v+ŵ‖1‖v+ŵ‖2+‖v‖1‖v‖2

)
,

whence we see that

‖B(v + ŵ) − B(v)‖L2(JT ,Hr) ≤ C4

(
‖v‖2

XT
+ ‖ŵ‖2

XT

)
. (1.41)

Combining (1.40) and (1.41), we derive

‖F(ŵ)‖XT ≤ C5(R) + C6α
−r/2
N+1 ρ2.

Hence, if ρ = 2C5(R) and N is so large that αN+1 ≥ (4C6C5(R))2/r , then
F(Bρ) ⊂ Bρ.

Step 2. We now show that F is a contraction. Indeed, if ŵ1, ŵ2 ∈ Bρ and
wi = F(ŵi), i = 1, 2, then the difference w = w1 − w2 ∈ XT (HN ) is a solution
of problem (1.4), (1.5) with E = HN , w0 = 0 and

f = QN

(
B(v + ŵ2) − B(v + ŵ1)

)
= QN

(
B(û2, ŵ) + B(ŵ, û1)

)
,

where ûi = v + ŵi, i = 1, 2, and ŵ = ŵ2 − ŵ1. It follows from (1.16) and (1.17)
that

‖f‖ ≤ C7

{(
‖û1‖1‖û1‖2

)1/2
+

(
‖û2‖1‖û2‖2)

1/2
}
‖ŵ‖1,

‖f‖1 ≤ C8

{(
‖û2‖1‖û2‖2

)1/2‖ŵ‖2 +
(
‖ŵ‖1‖ŵ‖2

)1/2‖û1‖2

}
.

Combining these estimates with an interpolation inequality, we see that

∫ T

0

‖f(t)‖2
1/2dt ≤ C9‖ŵ‖2

XT

(
‖û1‖2

XT
+ ‖û2‖2

XT

)
≤ C10(R

2 + ρ2) ‖ŵ1 − ŵ2‖2
XT

.
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Applying Corollary 1.5, we arrive at the inequality

‖F(ŵ1) −F(ŵ2)‖XT = ‖w‖XT ≤ C α
−r/2
N+1 ‖f‖L2(JT ,Hr)

≤ C11α
−r/2
N+1 (R2 + ρ2)1/2‖ŵ1 − ŵ2‖XT .

It follows that the operator F is a contraction for sufficiently large N and, hence,
has a unique fixed point w ∈ Bρ, which is a solution of (1.23), (1.24). Since
ρ = 2C5(R), we see that w satisfies (1.37). The proof is complete.

2 Main results

In this section, we present our main results on approximate controllability of NS
equations. To simplify notation, we shall confine ourselves to the case ν = 1.
All the results are valid for any positive viscosity, and the proofs remain literally
the same.

2.1 Approximate controllability

Let L2
loc(R+, H) be the space of measurable functions h : R+ → H whose

restriction to any interval JT belongs to L2(JT , H). Consider the controlled
Navier–Stokes system

u̇ + Lu + B(u) = h(t) + η(t), (2.1)

u(0) = u0, (2.2)

where h ∈ L2
loc(R+, H) and u0 ∈ V are given functions and η(t) is a control

taking on values in a finite-dimensional subspace E ⊂ U . Let us recall the
concept of approximate controllability.

Definition 2.1. Let T > 0 be a constant. Equation (2.1) is said to be approxi-

mately controllable in time T if for any ε > 0 and any points u0, û ∈ V there is a
control function η ∈ L∞(JT , E) and a solution u ∈ XT = C(JT , V ) ∩ L2(JT , U)
of problem (2.1), (2.2) such that

‖u(T )− û‖1 < ε. (2.3)

To formulate the main result of this paper, we introduce some notation.
In view of Proposition 1.6, the nonlinear operator B(u) is continuous from U
to H1 ∩ H . For any finite-dimensional subspace G ⊂ U , we denote by F(G)
the largest vector space F ⊂ U such that for any η1 ∈ F there are vectors
η, ζ1, . . . , ζk ∈ G and positive constants α1, . . . , αk satisfying the relation

η1 = η −
k∑

j=1

αjB(ζj).

We emphasise that the integer k ≥ 1 may depend on η1. It is not difficult to see
that F(G) is well defined and that G ⊂ F(G). Moreover, taking into account
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the fact that B(u) is a bilinear form on U , we conclude that dimF(G) < ∞.
We now set

E0 = E, Ek = F(Ek−1) for k ≥ 1, E∞ =

∞⋃

k=1

Ek. (2.4)

The following theorem is the main result of this paper.

Theorem 2.2. Let h ∈ L2
loc(R+, H) and let E ⊂ U be a finite-dimensional

subspace such that E∞ is dense in H. Then for any T > 0 the Navier–Stokes

system (2.1) is approximately controllable in time T .

The proof of Theorem 2.2 is based on an auxiliary result which is of in-
dependent interest (cf. property (P) in the Introduction). To formulate it, we
introduce the following definition.

Definition 2.3. Let T , R, and ε be positive constants and let E ⊂ U be a
subspace. Equation (2.1) is said to be (ε, R)-controllable in time T if for any
u0 ∈ BV (R) and û ∈ BU (R) there is a control function η ∈ L∞(JT , E) and a
solution u ∈ XT of problem (2.1), (2.2) such that (2.3) holds.

Theorem 2.4. Let T , R, and ε be positive constants, let E ⊂ U be a finite-

dimensional subspace, let E1 = F(E), and let h ∈ L2(JT , H). Then Eq. (2.1)
with η ∈ E is (ε, R)-controllable in time T if and only if so is the equation

u̇ + Lu + B(u) = h(t) + η1(t), η1 ∈ E1. (2.5)

A proof of Theorem 2.4 will be given in Section 3. Here we show that
Theorem 2.4 implies the approximate controllability of the Navier–Stokes system
and that the hypothesis of Theorem 2.2 is fulfilled for the case of a torus in R

3.

2.2 Proof of Theorem 2.2: reduction to ε-controllability

The required assertion will be established if we show that, for any positive
constants T , R, and ε, Eq. (2.1) is (ε, R)-controllable in time T . From now
on, we fix T , R, and ε and we shall say that a system is ε-controllable if it is
(ε, R)-controllable in time T .

Step 1. Recall that the subspaces HN and H⊥
N were introduced in Section 1.2.

We first show that there is an integer N ≥ 1 such that Eq. (2.1) with η ∈ HN is
ε-controllable, and the control function η ∈ L∞(JT , HN ) can be chosen so that

‖η‖L∞(JT ,H) ≤ K, (2.6)

where K > 0 is a constant that depends only on R, T , and ε.
We fix arbitrary points u0 ∈ BV (R) and û ∈ BU (R) and set

vN (t) = T−1PN

(
tû + (T − t)e−tLu0

)
for 0 ≤ t ≤ T . (2.7)

17



Note that
sup
N≥1

‖vN‖XT ≤ C(R, T ). (2.8)

Consider the problem

ẇ + QNL(w + vN ) + QNB(w + vN ) = QNh(t), w(0) = QNu0. (2.9)

Since
QNLvN ≡ 0, ‖QNu0‖V ≤ ‖u0‖V , ‖QNh(t)‖ ≤ ‖h(t)‖,

Proposition 1.10 and inequality (2.8) imply that problem (2.9) has a unique
solution wN ∈ XT (HN ) for sufficiently large N . It follows that the function
uN = vN + wN belongs to the space XT and satisfies Eqs. (2.1) and (2.2) with

η(t) = v̇N + PN

(
LuN + B(uN ) − h(t)

)
. (2.10)

Moreover, it follows from (2.7) that

‖uN(T ) − û‖1 = ‖QN(uN (T ) − û)‖1 ≤ ‖wN (T )‖1 + ‖QN û‖1. (2.11)

The second term in the right-hand side of (2.11) goes to zero as N → ∞
uniformly with respect to û ∈ BU (R). Therefore, the ε-controllability of (2.1)
with η ∈ HN will be established if we show that

sup
u0,û

‖wN (T )‖1 → 0 as N → ∞, (2.12)

where the supremum is taken over u0 ∈ BV (R), û ∈ BU (R).
To prove (2.12), we take the scalar product in H of the function 2LwN and

the first equation in (2.9). This results in

∂t‖wN‖2
V + 2‖wN‖2

U = 2(h, LwN ) − 2(B(uN ), LwN ). (2.13)

Let us estimate the right-hand side of this relation. By the Cauchy inequality
and (1.16), we have

|(h, LwN )| ≤ 1
4‖wN‖2

U + ‖h‖2,

|(B(uN ), LwN )| ≤ 1
4‖wN‖2

U + ‖B(uN )‖2 ≤ 1
4‖wN‖2

U + C1‖uN‖3
1‖uN‖2.

Substituting these estimates into (2.13) and using the Poincaré inequality, we
derive

∂t‖wN‖2
V + αN+1‖wN‖2

V ≤ 2‖h‖2 + 2C1‖uN‖3
1‖uN‖2.

Applying the Gronwall and Cauchy–Schwarz inequalities, we obtain

‖wN(T )‖2
V ≤ e−αN+1T ‖u0‖2

V + C2

∫ T

0

e−αN+1(T−s)
(
‖h‖2 + ‖uN‖3

1‖uN‖2

)
ds

≤ e−αN+1T ‖u0‖2
V + C2

∫ T

0

e−αN+1(T−s)‖h‖2ds + C3α
−1/2
N+1 ‖uN‖4

XT
.

(2.14)
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The first two terms on the right-hand side of (2.14) go to zero as N → ∞
uniformly with respect to u0 ∈ BV (R). If we show that

sup
N≥1

‖uN‖XT ≤ C4(R, T ), (2.15)

then (2.12) will follow from (2.14).
Inequality (2.8) and Proposition 1.10 (see (1.37)) imply that

sup
N≥1

‖wN‖XT ≤ C5(R, T ).

Combining this with (2.8), we arrive at (2.15).

Step 2. We now show that, for sufficiently large k ≥ 1, Eq. (2.1) with η ∈ Ek

is ε-controllable. Indeed, let us chose an integer N ≥ 1 and a constant K > 0
such that for any points u0 ∈ BV (R) and û ∈ BU (R) and an appropriate control
function ηN ∈ L∞(JT , HN ) verifying (2.6) there is a unique solution uN ∈ XT

of (2.1), (2.2) with η = ηN , and it satisfies the inequality

‖uN(T ) − û‖1 < ε/2, (2.16)

By Theorem 1.8, there is δ0 > 0 such that, for any function η ∈ L∞(JT , H)
verifying the condition

‖η − ηN‖L∞(JT ,H) ≤ δ0,

problem (2.1), (2.2) has a unique solution u ∈ XT , which satisfies the inequality

‖u − uN‖XT ≤ C ‖η − ηN‖L∞(JT ,H). (2.17)

Since E∞ is dense in H and HN is finite-dimensional, for any δ > 0 we can
find k ≥ 1 such that BH(K) is contained in the δ-neighbourhood of Ek. It
follows that for any function ηN ∈ L∞(JT , HN) satisfying inequality (2.6) there
is η ∈ L∞(JT , Ek) such that

‖η − ηN‖L∞(JT ,H) ≤ δ.

Let us choose δ ∈ (0, δ0) so small that 2Cδ < ε. Then (2.17) and (2.16) imply
that (2.3) holds. Thus, Eq. (2.1) with η ∈ Ek is ε-controllable for a sufficiently
large k.

Step 3. We now show that Eq. (2.1) with η ∈ E is ε-controllable. Indeed,
since Eq. (2.1) with η ∈ Ek is ε-controllable, applying Theorem 2.4 in which
E = Ek−1, we see that so is Eq. (2.1) with η ∈ Ek−1. Repeating this argument k
times, we arrive at the required result. The proof of Theorem 2.2 is complete.

2.3 Navier–Stokes equations on a torus

In this subsection, we study controlled Navier–Stokes equations with periodic
boundary conditions. More precisely, let us fix a vector q = (q1, q2, q3) with
positive components and set T

3
q = R

3/2πZ
3
q, where

Z
3
q = {x = (x1, x2, x3) ∈ R

3 : xi/qi ∈ Z for i = 1, 2, 3}.
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Consider the Navier–Stokes system

u̇ + (u,∇)u − ν∆u + ∇p = h(t, x) + η(t, x), div u = 0, (2.18)

where x = (x1, x2, x3) ∈ T
3
q . In other words, we assume that all functions are

periodic of period 2πqi with respect to xi, i = 1, 2, 3. To simplify notation, we
shall assume, without loss of generality, that the mean values of u, h, and η
with respect to x ∈ T

3
q are zero. As in the case of a bounded domain with

Dirichlet boundary condition, one can reduce (2.18) to an evolution equation in
an appropriate Hilbert space. Namely, we set

H =

{
u ∈ L2(T3

q , R
3) : div u ≡ 0,

∫

T3
q

u(x) dx = 0

}

and denote by Π : L2(T3
q , R

3) → H the orthogonal projection in L2(T3
q, R

3) onto
the subspace H . Define the spaces

V = H1(T3
q , R

3) ∩ H, U = H2(T3
q , R

3) ∩ H,

endowed with the norms ‖ · ‖1 and ‖ · ‖2, respectively. Projecting (2.18) to the
space H and taking ν = 1, we obtain Eq. (2.1) in which L = −∆ is the Stokes
operator with the domain D(L) = U and B(u) = Π{(u,∇)u}. Theorem 2.2,
which was formulated for the Dirichlet boundary condition, remains valid in
this case as well. Our aim is to describe explicitly a finite-dimensional subspace
E ⊂ U for which the hypothesis of Theorem 2.2 is fulfilled.

To this end, we first construct an orthogonal basis in H formed of the eigen-
functions of L. For x, y ∈ R

3, let

〈x, y〉q =

3∑

i=1

q−1
i xiyi, (x, y) =

3∑

i=1

xiyi, |x| =

3∑

i=1

|xi|.

We set Z
3
∗ = Z

3 \ {0} and R
3
∗ = R

3 \ {0}. For a ∈ R
3
∗, denote by a⊥ the

two-dimensional subspace in R
3 defined by the equation 〈x, a〉q = 0. Note

that a⊥ = (−a)⊥. For any m ∈ Z
3
∗, let us choose a vector ℓ(m) ∈ m⊥ so

that {ℓ(m), ℓ(−m)} is an orthonormal basis in m⊥ with respect to the scalar
product (·, ·). We now set

cm(x) = ℓ(m) cos〈m, x〉q , sm(x) = ℓ(m) sin〈m, x〉q for m ∈ Z
3
∗.

It is a matter of direct verification to show that cm and sm are eigenfunctions
of L and that {cm, sm, m ∈ Z

3
∗} is an orthogonal basis in H . For a finite family

of functions A, we denote by spanA the vector space spanned by A.

Theorem 2.5. For any vector q = (q1, q2, q3) with positive components there is

an integer d ≥ 4 such that if

E = span{cm, sm, |m| ≤ d},

then the vector space E∞ defined in (2.4) is dense in H.
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Theorems 2.2 and 2.5 imply the following result on approximate controlla-
bility of the NS system by a force of finite dimension.

Corollary 2.6. Let E ⊂ U be the finite-dimensional subspace defined in The-

orem 2.5. Then for any T > 0 the Navier–Stokes system (2.1) with η ∈ E is

approximately controllable in time T .

Remark 2.7. In the particular case when q = (1, 1, 1), it is possible to give a
more precise description of a subspace E ⊂ U for which E∞ is dense in H .
Namely, let E be the vector space that is spanned by the functions cm and sm

with indices m = (m1, m2, m3) ∈ Z
3
∗ such that either |m| ≤ 2 or |m| = 3 and

mi 6= 0 for i = 1, 2, 3. Repeating the proof of Theorem 2.5 (see below), it is
easy to see that the subspace E∞ defined in (2.4) is dense in H . A simple
computation shows that dimE = 64. Thus, for any T > 0 and ν > 0 the 3D
Navier–Stokes system on the standard torus T

3 is approximately controllable
by a 64-dimensional control.

Proof of Theorem 2.5. For any integer k ≥ 1, set Hk = span{cm, sm, |m| ≤ k},
so that E = Hd. We shall show by induction that the sequence of subspaces
defined in (2.4) satisfies the inclusion

E2k ⊃ Hk+d for any k ≥ 0. (2.19)

Since the base of induction is obvious, we shall prove inclusion (2.19) for k ≥ 1
assuming that it is true for any k′ < k.

Step 1. Let us endow R
3 with the Euclidean scalar product (·, ·) and denote

by Pa, a ∈ R
3
∗, the orthogonal projection in R

3 onto the subspace a⊥. Define
the two-dimensional subspaces

Am := span{cm, c−m}, Bm := span{sm, s−m}, m ∈ Z
3
∗,

and note that any functions fm ∈ Am and gn ∈ Bn can be represented in the
form

fm(x) = f̃m cos〈m, x〉q, gn(x) = g̃n sin〈n, x〉q , (2.20)

where f̃m and g̃n are some vectors such that 〈f̃m, m〉q = 〈g̃n, n〉q = 0.

Let us show that the following relations hold for any m, n ∈ Z
3
∗:

B(fm, gn) = Amn(fm)
(
cos〈m − n, x〉qPm−n + cos〈m + n, x〉qPm+n

)
g̃n, (2.21)

B(fm, fn) = Amn(fm)
(
sin〈m − n, x〉qPm−n − sin〈m + n, x〉qPm+n

)
f̃n, (2.22)

B(gm, fn) = Amn(gm)
(
cos〈m + n, x〉qPm+n − cos〈m − n, x〉qPm−n

)
f̃n, (2.23)

where fl ∈ Al and gl ∈ Bl, l = m, n, are arbitrary functions, P0 stands for the
zero operator in R

3, and

Amn(fm) =
1

2
〈f̃m, n〉q, Amn(gm) =

1

2
〈g̃m, n〉q. (2.24)
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We shall confine ourselves to the proof of (2.21), since the other relations can
be established in a similar way.

It is a matter of direct verification to show that

Π
{
a cos〈l, x〉q

}
= (Pla) cos〈l, x〉q, Π

{
a sin〈l, x〉q

}
= (Pla) sin〈l, x〉q (2.25)

for any a ∈ R
3 and l ∈ Z

3
∗. Combining (2.25) and (2.20), we obtain

B(fm, gn) = Π
{
g̃n cos〈m, x〉q(f̃m,∇) sin〈n, x〉q

}

= Π
{
g̃n〈f̃m, n〉q cos〈m, x〉q cos〈n, x〉q

}

=
〈f̃m,n〉q

2 Π
{
g̃n

(
cos〈m − n, x〉q + cos〈m + n, x〉q

)}

=
〈f̃m,n〉q

2

{
cos〈m − n, x〉qPm−n + cos〈m + n, x〉qPm+n

}
g̃n.

Step 2. To prove (2.19), we first show that

E2k−1 ⊃ H−
k+d, (2.26)

where H−
p ⊂ Hp denotes the subspace spanned by the functions cl and sl with

indices l ∈ Z
3
∗ such that either |l| ≤ p − 1 or |l| = p and there are at least

two non-zero components of l. The proof of (2.26) is based on the following
proposition.

Proposition 2.8. For any vector q = (q1, q2, q3) with positive components there

is a constant εq > 0 such that if m, n, l ∈ Z
3
∗ satisfy the conditions

l = m + n, m and n are not parallel, |n| ≤ εq|m|, (2.27)

then for any f ∈ Al and g ∈ Bl there are a, b ∈ span{Am,An,Bm,Bn} such that

B(a) + f, B(b) + g ∈ span{Am−n,Bm−n}. (2.28)

Postponing the proof of Proposition 2.8 until the end of this subsection, let
us prove (2.26). Take any vector l ∈ Z

3
∗ of length |l| = k + d with at least two

non-zero components. Let us choose non-parallel vectors m, n ∈ Z
3
∗ such that

l = m + n, |m| = k + d − 1, |n| = 1, |m − n| = k + d − 2. (2.29)

For instance, if l = (l1, l2, l3) and l1 ≥ 2, then we can take m = (l1−1, l2, l3) and
n = (1, 0, 0). If d ≥ 4 is sufficiently large, then the second and third relations
in (2.29) imply that |n| ≤ εq|m|. Therefore, by Proposition 2.8, for any f ∈ Al

and g ∈ Bl we can find functions a, b ∈ Hk+d−2 such that

B(a) + f, B(b) + g ∈ span{Am−n,Bm−n} ⊂ Hk+d−2. (2.30)

The definition of F(E2k−2) and the induction hypothesis imply that Al,Bl ⊂
E2k−1. Since l was arbitrary, we obtain (2.26).

Step 3. We can now prove (2.19) using the same argument as in the previous
step. In view of (2.26), it suffices to show that Al,Bl ⊂ E2k for any vector l ∈ Z

3
∗
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of length |l| = k + d with only one non-zero component. To this end, we choose
non-parallel vectors m, n ∈ Z

3
∗ such that (cf. (2.29))

l = m + n, |m| = k + d, |n| = 2, |m − n| = k + d,

and the vectors m, n, and m − n have at least two non-zero components. For
instance, if l = (l1, 0, 0) and l1 ≥ 2, then we can take m = (l1 − 1, 1, 0) and
n = (1,−1, 0). If d is sufficiently large, then |n| ≤ εq|m|, and using again
Proposition 2.8, for any f ∈ Al and g ∈ Bl we can construct a, b ∈ H−

k+d such
that

B(a) + f, B(b) + g ∈ span{Am−n,Bm−n} ⊂ H−
k+d.

Recalling the definition of F(E2k−1), we see that Al,Bl ⊂ E2k−1, and, hence,
(2.19) holds.

Proof of Proposition 2.8. We shall confine ourselves to the proof of existence of
a vector a ∈ span{Am,Bn} such that

B(a) + f ∈ span{Am−n,Bm−n}. (2.31)

Step 1. We seek a in the form

a = fm + gn, fm ∈ Am, gn ∈ Bn. (2.32)

Representing fm and gn in the form (2.20) and using relations (2.21) and (2.23),
we derive

B(fm + gn) = B(fm, fm) + B(fm, gn) + B(gn, fm) + B(gn, gn)

= cos〈m − n, x〉qPm−n

(
Amn(fm)g̃n − Anm(gn)f̃m

)

+ cos〈m + n, x〉qPm+n

(
Amn(fm)g̃n + Anm(gn)f̃m

)
.

Taking into account (2.24), we see that the desired assertion will be established
if we show that any vector c ∈ (m + n)⊥ can be represented in the form

c = Pm+n

(
〈f̃m, n〉q g̃n + 〈g̃n, m〉q f̃m

)
, (2.33)

where f̃m ∈ m⊥ and g̃n ∈ n⊥.

Step 2. To establish (2.33), we first show that the image of the bilinear
operator

Γ : m⊥ × n⊥ → R
3, (f̃ , g̃) 7→ 〈f̃ , n〉q g̃ + 〈g̃, m〉qf̃ ,

coincides with (m − n)⊥. Indeed, a simple calculation implies that

〈Γ(f̃ , g̃), m − n〉q = 0 for any f̃ ∈ m⊥, g̃ ∈ n⊥,

and therefore Γ(m⊥, n⊥) ⊂ (m − n)⊥. To prove the converse inclusion, it
suffices to show that Γ(m⊥, n⊥) contains a two-dimensional affine subspace. To
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this end, let us choose a vector g̃0 ∈ n⊥ such that 〈g̃0, m〉q = 1; this can be done
because m and n are not parallel. Then

Γ(g̃0, f̃) = 〈f̃ , n〉qg̃0 + f̃ .

Since g̃0 /∈ m⊥, the above relation implies that the affine subspace Γ(g̃0, m
⊥) is

two-dimensional.

Step 3. To conclude the proof of Proposition 2.8, we shall need the following
simple lemma; its proof is obvious.

Lemma 2.9. Let a, b ∈ R
3 be two nonzero vectors and let Nb ⊂ R

3 be the

orthogonal complement of b for the scalar product (·, ·). Then Pa(Nb) = a⊥ if

and only if 〈a, b〉q 6= 0.

Since the image of the bilinear application Γ coincides with (m − n)⊥, rep-
resentation (2.33) will be established if we show that

Pm+n(m − n)⊥ = (m + n)⊥. (2.34)

To prove (2.34), we denote by Sq : R
3 → R

3 the linear operator such that

〈a, b〉q = (Sqa, b) for any a, b ∈ R
3. (2.35)

Obviously, such an operator exists and is invertible. It follows from (2.35) that
for any vector a ∈ R

3 the subspace a⊥ coincides with the orthogonal complement
of Sqa with respect to the scalar product (·, ·). Therefore, in view of Lemma 2.9,
relation (2.34) holds if and only if

Kmn := 〈m + n, Sq(m − n)〉q 6= 0. (2.36)

Since all the norms in R
3 are equivalent and Sq is an invertible continuous

operator, we can find a constant Cq > 0 such that

Kmn = (Sq(m+n), Sq(m−n)) = (Sqm, Sqm)− (Sqn, Sqn) ≥ C−1
q |m|2−Cq|n|2.

Therefore, if |m| ≥ 2Cq|n|, then (2.36) holds. The proof is complete.

3 Proof of Theorem 2.4

3.1 Scheme of the proof

Let us fix constants R, T , and ε. As in the proof of Theorem 2.2, we shall say
that a system is ε-controllable if it is (ε, R)-controllable in time T . We need to
show that if (2.5) is ε-controllable, then so is (2.1).

Along with (2.1) and (2.5), let us consider the equation

u̇ + L(u + ζ(t)) + B(u + ζ(t)) = h(t) + η(t), (3.1)

where η and ζ are control functions. Suppose we can prove the following two
propositions.
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Proposition 3.1. Let u ∈ XT be a solution of (3.1) with η, ζ ∈ L∞(JT , E).
Then there are sequences of controls ηk ∈ L∞(JT , E) and of solutions uk ∈ XT

for Eq. (2.1) with η = ηk such that

uk(0) = u(0) for all k ≥ 1, (3.2)

‖uk(T ) − u(T )‖V → 0 as k → ∞. (3.3)

Proposition 3.2. Let u ∈ XT be a solution of (2.5) with η1 ∈ L∞(JT , E1),
where E1 = F(E). Then there are sequences of controls ηk, ζk ∈ L∞(JT , E) and

of solutions uk ∈ XT for Eq. (3.1) with η = ηk and ζ = ζk such that (3.2) holds

and

‖uk − u‖C(JT ,V ) → 0 as k → ∞. (3.4)

Propositions 3.1 and 3.2 imply the following results relating the control sys-
tems (2.1), (3.1), (2.5) (cf. properties (P1) and (P2) in the Introduction).

Extension: Equation (2.1) with η ∈ E is ε-controllable if and only if so is
Eq. (3.1) with η, ζ ∈ E.

Convexification: Equation (3.1) with η, ζ ∈ E is ε-controllable if and only if
so is Eq. (2.5) with η ∈ E1, where E1 = F(E).

The claim of Theorem 2.4 is a straightforward consequence of the above as-
sertions. Thus, to establish Theorem 2.4, it suffices to prove Propositions 3.1
and 3.2. Their proofs are given in the next two subsections.

3.2 Proof of Proposition 3.1

Recall that P and Q stand for the orthogonal projections in H onto the sub-
spaces E and E⊥, respectively. Let us set

v(t) = Pu(t), w(t) = Qu(t) for t ∈ JT .

It is clear that v ∈ C(JT , E) and w ∈ XT (E). Moreover, the function w is a
solution of the equation

ẇ + LEw + Q
(
B(w) + B(v + ζ, w) + B(w, v + ζ)

)
= f(t),

where we set
f = Q

(
h − B(v + ζ) − L(v + ζ)

)
.

Let us choose a sequence vk ∈ C1(JT , E) such that

‖vk − (v + ζ)‖L4(JT ,V ) → 0 as k → ∞, (3.5)

vk(0) = v(0), vk(T ) = v(T ) for all k ≥ 1. (3.6)

Consider the equation

ż + LEz + Q
(
B(z) + B(vk, z) + B(z, vk)

)
= fk(t), (3.7)
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where
fk = Q

(
h − B(vk) − Lvk

)
.

Using (3.5), (1.16), and the fact that dimE < ∞, it is easy to show that

‖fk − f‖L2(JT ,H) → 0 as k → ∞. (3.8)

Theorem 1.8 combined with (3.5) and (3.8) implies that, for sufficiently large
k ≥ 1, Eq. (3.7) has a unique solution wk ∈ XT (E) that satisfies the initial
condition

wk(0) = w(0). (3.9)

Moreover, since the resolving operator associated with (3.7) is Lipschitz contin-
uous, we see that

‖wk − w‖XT → 0 as k → ∞. (3.10)

We now set uk = vk + wk. The construction implies that the function uk

belongs to the space XT and satisfies Eq. (2.1) with the function

η(t) = ηk(t) := v̇k(t) + P
(
Luk(t) + B(uk(t)) − h(t)

)
,

which belongs to L∞(JT , E). Furthermore, it follows from (3.9) and the first
relation in (3.6) that the initial condition (3.2) is also verified. Finally, the
second relation in (3.6) and convergence (3.10) imply that

‖uk(T ) − u(T )‖V = ‖wk(T ) − w(T )‖V ≤ ‖wk − w‖XT → 0 as k → ∞.

The proof of Proposition 3.1 is complete.

3.3 Proof of Proposition 3.2

Step 1. Without loss of generality, we can assume that η1(t) is piecewise con-
stant. Indeed, suppose that Proposition 3.2 is proved in this case, and let
u ∈ XT be a solution of (2.5), (2.2) with some η1 ∈ L∞(JT , E1). Then there is
a sequence ηm ∈ L∞(JT , E1) of piecewise constant functions such that

‖ηm − η1‖L2(JT ,H) → 0 as m → ∞.

Applying Theorem 1.8 with E = {0}, we see that, for sufficiently large m ≥ 1,
problem (2.5), (2.2) with η1 replaced by ηm has a unique solution um ∈ XT ,
which converges to u in XT as m → ∞. In particular, for any ε > 0 there
is a piecewise constant function η̃1 ∈ L∞(JT , E1) and a solution ũ ∈ XT of
problem (2.5), (2.2) with η1 = η̃1 such that

‖ũ − u‖XT < ε/2. (3.11)

By assumption, Proposition 3.2 is true for the piecewise constant function η1.
Therefore there are sequences of control functions ηk, ζk ∈ L∞(JT , E) and of
solutions uk ∈ XT for problem (2.1), (2.2) with ζ = ζk and η = ηk such that

‖uk − ũ‖XT → 0 as k → ∞.
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Combining this with (3.11), for any ε > 0 we can find ηε, ζε ∈ L∞(JT , E) and a
solution uε ∈ XT of problem (2.1), (2.2) with ζ = ζε and η = ηε such that

‖uε − u‖XT < ε.

Since ε > 0 is arbitrary, we obtain the required assertion.

Step 2. We now prove the proposition for piecewise constant functions η1(t).
A simple iteration argument combined with Theorem 1.8 shows that it suffices
to consider the case in which there is only one interval of constancy. Thus, we
assume that u ∈ XT is a solution of (2.5), (2.2) with η(t) ≡ η1 ∈ E1.

We claim that there is a function η ∈ E and a sequence ζk ∈ L∞(JT , E)
such that problem (3.1), (2.2) with ζ = ζk has a unique solution uk ∈ XT , which
satisfies (3.4). We shall need the following lemma whose proof is given in the
Appendix (see Section 4.2).

Lemma 3.3. Let E ⊂ U be a finite-dimensional space and E1 = F(E). Then

for any η1 ∈ E1 there are vectors ζ1, . . . , ζm, η ∈ E and positive constants

λ1, . . . , λm whose sum is equal to 1 such that

B(u) − η1 =

m∑

j=1

λj

(
B(u + ζj) + Lζj

)
− η for any u ∈ V . (3.12)

Relation (3.12) implies that the function u ∈ XT satisfies the equation

∂tu + Lu +

m∑

j=1

λj

(
B(u + ζj) + Lζj

)
= h(t) + η. (3.13)

Following a classical idea in the theory of control, we now fix an integer k ≥ 1
and consider the function

ζk(t) = ζ(kt/T ), (3.14)

where ζ(t) is a 1-periodic function defined by the relation

ζ(s) = ζj for 0 ≤ s − (λ1 + · · · + λj−1) < λj , j = 1, . . . , m.

Equation (3.13) can be rewritten as

∂tu + L(u + ζk(t)) + B(u + ζk(t)) = h(t) + η + fk(t), (3.15)

where fk = fk1 + fk2,

fk1(t) = Lζk(t) −
m∑

j=1

λjLζj , (3.16)

fk2(t) = B(u(t) + ζk(t)) −
m∑

j=1

λjB(u(t) + ζj). (3.17)
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It follows from the definition of ζk and inequality (1.16) that the functions fk

belong to the space L∞(JT , H) and satisfy the inequality

sup
k≥1

‖fk‖L∞(JT ,H) < ∞. (3.18)

Setting ûk = u − Kfk, where the operator K is defined by (1.8), we conclude
from (3.15) that ûk ∈ XT is a solution of the equation

∂tûk + L(ûk + ζk) + B(ûk + ζk) + B(ûk + ζk, Kfk) + B(Kfk, ûk + ζk)

= h + η − B(Kfk). (3.19)

We wish to consider (3.1) as a perturbation of (3.19) and to apply Remark 1.9.
To this end, we note that

‖ûk‖XT + ‖ζk‖L∞(JT ,E) + ‖B(Kfk)‖L2(JT ,H) + ‖Kfk‖XT ≤ R,

where R > 0 does not depend on k. Therefore, by Remark 1.9, there is ε > 0
depending only R such that if functions v ∈ L4(JT , H1) and f ∈ L2(JT , H)
satisfy the inequalities

‖v − Kfk‖L4(JT ,H1) ≤ ε, ‖f + B(Kfk)‖L2(JT ,H) ≤ ε, (3.20)

then the equation

∂tz + L(z + ζk) + B(z + ζk) + B(z + ζk, v) + B(v, z + ζk) = h + η + f (3.21)

has a unique solution z ∈ XT satisfying the initial condition z(0) = u0. Suppose
we have shown that

‖Kfk‖C(JT ,V ) + ‖B(Kfk)‖L2(JT ,H) → 0 as k → ∞. (3.22)

In this case, the functions v ≡ 0 and f ≡ 0 satisfy condition (3.20) for sufficiently
large k, and we can conclude that problem (3.1), (2.2) with ζ = ζk has a unique
solution uk ∈ XT , and

‖uk − ûk‖XT → 0 as k → ∞. (3.23)

Since ‖Kfk‖C(JT ,V ) → 0 as k → ∞ (see (3.22)), convergence (3.23) and the
definition of ûk imply that (3.4) holds. Thus, it remains to prove (3.22).

Step 3. To prove (3.22), we note that (1.16) implies the inequality

‖B(Kfk)‖L2(JT ,H) ≤ C1‖Kfk‖3/2
L6(JT ,H1)‖Kfk‖1/2

L2(JT ,H2).

Since the sequence {fk} is bounded in L2(JT , H) (see (3.18)), Proposition 1.2
implies that ‖Kfk‖L2(JT ,H2) is bounded by a constant not depending on k.
Therefore convergence (3.22) will be established if we show that

‖Kfk‖C(JT ,V ) → 0 as k → ∞. (3.24)
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Step 4. To prove (3.24), note that, in view of interpolation inequalities for
Sobolev spaces, we have

‖Kfk‖2
C(JT ,V ) ≤ C2‖Kfk‖1/7

C(JT ,U∗)‖Kfk‖6/7

C(JT ,H3/2)
, (3.25)

where U∗ denotes the dual space of U endowed with the norm ‖v‖U∗ = ‖L−1v‖.
It is a matter of straightforward verification to show that

‖Lre−tL‖L(H) ≤ C3t
−r for r ≥ 0, t > 0.

Combining this with (3.18), for any t ∈ JT we derive

‖Kfk(t)‖H3/2 ≤ C4

∫ t

0

∥∥L3/4e−(t−s)L
∥∥
L(H)

‖fk(s)‖ ds

≤ C5

(
sup
k≥1

‖fk‖L∞(JT ,H)

)∫ t

0

(t − s)−3/4ds ≤ C6. (3.26)

Furthermore, integrating by parts, we write

Kfk(t) = Fk(t) − Gk(t), (3.27)

where

Fk(t) =

∫ t

0

fk(s) ds, Gk(t) =

∫ t

0

Le−(t−s)LFk(s) ds.

The definition of the norm in U∗ implies that

‖Gk‖C(JT ,U∗) ≤ max
t∈JT

∫ t

0

‖e−(t−s)L‖L(H)‖Fk(s)‖ ds ≤ ‖Fk‖L1(JT ,H). (3.28)

Suppose we have shown that

‖Fk‖C(JT ,H) → 0 as k → ∞. (3.29)

Then combining (3.25) – (3.29), we arrive at (3.24).

Step 5. We now prove (3.29). We shall show that for any piecewise con-
stant H2-valued function u on JT , the sequence {Fk} converges to zero in the
space C(JT , H). If this assertion is established, then a simple approximation
argument combined with inequality (1.16) shows (3.29) is true for any u ∈ XT .

Convergence (3.29) will be established if we prove the following assertions:

(i) The family {Fk} ⊂ C(JT , H) is relatively compact.

(ii) For any t ∈ JT , the sequence {Fk(t)} goes to zero in H as k → ∞.

To prove (i), note that, in view of (3.18), the family {Fk} is uniformly equicon-
tinuous on JT . Therefore, by the Arzelà–Ascoli theorem, it suffices to show that
there exists a compact set K ⊂ H such that

Fk(t) ∈ K for all t ∈ JT , k ≥ 1.
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This assertion follows from the fact that, for piecewise constant functions u, the
image of fk is contained in a finite set not depending on k.

We now prove (ii). Let us denote by Jq = [tq−1, tq], q = 1, . . . , L, the intervals
of constancy of u. We fix any integer r, 1 ≤ r ≤ L, and for any t ∈ Jr+1 write

Fk(t) =

∫ t

0

fk(s) ds =

r∑

q=1

∫ tq

tq−1

fk(s) ds +

∫ t

tr

fk(s) ds.

Thus, to prove (ii), it suffices to show that, for any q, q = 1, . . . , L, and t ∈ Jq,
we have ∫ t

tq−1

fk(s) ds → 0 as k → ∞.

This can be done by a straightforward computation (cf. [Jur97, Chapter 3]).
The proof of Proposition 3.2 is complete.

4 Appendix

4.1 A version of the implicit function theorem

Let X and Y be Banach spaces and let Z = X × Y . We denote by BX(x, δ)
the closed ball in X of radius δ centred at x and by BZ(z) the closed ball in Z
of radius 1 centred at z. Let F : Z → Y be a C2 function. We write F ′

y(z)
for its Fréchet derivative with respect to y at a point z and denote by |F |z
the C2 norm of the restriction of F to BZ(z). The following result can be
established by repeating the arguments used in a standard proof of the implicit
function theorem (for instance, see [Tay97, Chapter 1]).

Proposition 4.1. For any R > 0 there are positive constants C and δ such

that the following statements hold:

(i) Let ẑ = (x̂, ŷ) ∈ Z be any point such that the linear operator F ′
y(ẑ) is

invertible and

|F |ẑ ≤ R,
∥∥(

F ′
y(ẑ)

)−1∥∥
L(Y )

≤ R.

Then there is a unique C2 function f : BX(x̂, δ) → Y such that

F (x, f(x)) = 0 for x ∈ BX(x̂, δ).

(ii) The function f satisfies the inequality

‖f(x1) − f(x2)‖Y ≤ C ‖x1 − x2‖X for x1, x2 ∈ BX(x̂, δ).
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4.2 Proof of Lemma 3.3

In view of the definition F(E), there are vectors ζ̃1, . . . , ζ̃k, η̃ ∈ E and con-
stants αj > 0, j = 1, . . . , k, such that

η1 = η̃ −
k∑

j=1

αjB(ζ̃j).

Let us set m = 2k, η = η̃,

λj =
αj

2α , ζj =
√

α ζ̃j for j = 1, . . . , k,

λj =
αj−k

2α , ζj = −√
α ζ̃j−k for j = k + 1, . . . , m,

where α = α1 + · · ·+αk. It is a matter of direct verification to show that (3.12)
holds.
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