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Abstract. The paper is devoted to studying the problem of ergodicity for the
complex Ginzburg–Landau (CGL) equation perturbed by an external random
force. We show that the conditions of a simple general result established in [22]

are fulfilled for the equation in question. As a consequence, we prove that the
corresponding family of Markov processes has a unique stationary distribution,
which possesses a mixing property. The result of this paper was announced in
the joint work with Sergei Kuksin [14].

1. Introduction. The objective of this paper is to prove the uniqueness of sta-
tionary measure for the complex Ginzburg–Landau (CGL) equation perturbed by
a random force. More precisely, we study the equation

u̇ − (ν + iα)∆u + iβ|u|2σu = h(x) + η(t, x), x ∈ D, (1)

where D ⊂ Rn is a bounded domain, h(x) is a deterministic function, and η(t, x)
is a random process white in time and smooth in the space variables. (See Sec-
tion 2.1 for the precise assumptions imposed on the right-hand side.) Equation (1)
is supplemented with the Dirichlet boundary condition and an initial condition at
the time t = 0. We show that if the distribution of η is sufficiently non-degenerate,
then the random dynamical system associated with (1) has a unique stationary
measure µ, and any other solution converges to µ in distribution as t → ∞.

The problem of ergodicity was studied by many authors for various classes of
randomly forced PDE’s. We refer the reader to the reviews [1, 10, 21] and to the
Introduction of [22] for a concise summary of the results obtained and the tech-
niques developed. Here we mention only three papers that are directly related to
the equation considered in the present article. Namely, Hairer [6] studied a real
Ginzburg–Landau equation on a multidimensional torus and proved the unique-
ness of stationary measure and an exponential mixing property for it, Odasso [19]
established similar results for a class of CGL equations with strong nonlinear dis-
sipation, and Debussche and Odasso [2] proved uniqueness and polynomial mixing
for a damped one-dimensional Schrödinger equation.

The method used in this paper is based on studying a pair of independent copies
of the Markov process generated by (1). This approach was applied in [22] to give a
simple proof of the uniqueness and a mixing property of stationary measure for the
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2D Navier–Stokes (NS) system in a bounded domain. The case of the CGL equation
is technically more complicated. However, the main ideas remain the same, and we
refer the reader to the Introduction of [22] for their informal explanation. Here we
only clarify the difference between the cases of NS and CGL equations.

We wish to show that the distributions of solutions for (1) converge to a unique
stationary measure in the Kantorovich–Wasserstein (KW) metric over the Sobolev
space H1

0 (see (2)). A crucial point of the proof is to estimate the distance between
the distributions of solutions to (1) issued from different initial data. This is done in
two steps. We first show that if the space of probability measures is endowed with
the KW metric over the space L2 (see (3)), then the arguments of [22] combined
with a new a priori estimate established in Proposition 2 yield a uniform (in time)
bound for the distance between solutions. The above argument does not apply to
the KW metric over H1

0 , because the a priori estimates available for higher Sobolev
norms of solutions for the CGL equation are not strong enough. To overcome
this difficulty, we prove that the Markov semigroup defined by (1) in the space of
measures possesses a regularising property (see Proposition 4). Combining it with
the bound for the KW distance over L2, we obtain the desired result.

Here is the plan of this paper. In Section 2, we state a well-known result on
correctness of the initial-boundary value problem for Eq. (1) and establish some a
priori estimates for solutions. The main result is presented in Section 3. To prove
it, we show that the conditions of Theorem 1.2 in [22] are satisfied for the model in
question. Finally, in the Appendix, we have compiled some auxiliary results used
in the main text.

Notation. Let X be a separable Banach space with a norm ‖ · ‖X . We denote
by BX(r) the closed ball in X of radius r centred at the origin. We always assume
that X is endowed with the Borel σ-algebra B(X) and denote by P(X) the set of
probability measures on (X,B(X)). We write Cb(X) and L(X) for the spaces of
bounded continuous and bounded Lipschitz continuous functions f : X → R and
endow them with the natural norms

‖f‖∞ = sup
u∈X

|f(u)|, ‖f‖L = sup
u∈X

|f(u)| + sup
u6=v

|f(u) − f(v)|
‖u − v‖X

.

If ξ is a random variable on a probability space (Ω,F , P), then we denote by D(ξ) or
P{ξ ∈ ·} the distribution of ξ. If a, b ∈ R, then a∨ b (a∧ b) stands for the maximum
(minimum) of a and b.

We deal with the spaces H , H1, and H2 introduced in Subsection 2.1 together
with corresponding norms ‖ · ‖, ‖ · ‖1, and ‖ · ‖2. If f ∈ Cb(H

1) and µ ∈ P(H1),
then (f, µ) denotes the integral of f over H1 with respect to µ. If µ1, µ2 ∈ P(H1),
then we write∗

‖µ1 − µ2‖∗L := sup
‖f‖L≤1

∣∣(f, µ1) − (f, µ2)
∣∣, (2)

|µ1 − µ2|∗L := sup
|g|L≤1

∣∣(g, µ1) − (g, µ2)
∣∣, (3)

where f ∈ L(H1), g ∈ L(H), and we denote by ‖ · ‖L and | · |L the norms in the
spaces L(H1) and L(H), respectively.

∗Any measure µ ∈ P(H1) can be extended to a measure on H by the formula µ(Γ) = µ(Γ∩H1),
and therefore the integral (g, µ) is well defined for any g ∈ Cb(H).
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2. Initial-boundary value problem.

2.1. Well-posedness and a priori estimates. Let D ⊂ Rn, n ≥ 1, be a bounded
domain with smooth boundary ∂D. Consider the problem

u̇ − (ν + iα)∆u + iβ|u|2σu = h(x) + η(t, x), (4)

u|∂D = 0, (5)

u(0, x) = u0(x). (6)

Here ν > 0, α > 0, β ≥ 0, and σ ≥ 0 are some constants, h(x) is a deterministic
function belonging to the Sobolev space of order 1, and η(t, x) is a random process
white in time and smooth in x. More precisely, we assume that

η(t, x) =
∂

∂t
ζ(t, x), ζ(t, x) =

∞∑

j=1

bjβj(x)ej(x), (7)

where {βj = β1
j + iβ2

j } is a sequence of complex-valued independent Brownian mo-

tions defined on a probability space (Ω,F , P) with right-continuous filtration Ft,
{ej} is a complete set of eigenvectors for the Dirichlet Laplacian in D with eigen-
values α1 < α2 ≤ α3 ≤ · · · , and bj ≥ 0 are real constants such that

B0 :=

∞∑

j=1

b2
j < ∞. (8)

Let H be the space of complex-valued square-integrable functions on D. We shall
regard it as a real Hilbert space with the scalar product

(u, v) = Re

∫

D

u(x)v(x) dx,

and the corresponding norm will be denoted by ‖u‖. Let H1 = H1
0 (D, C) and

H2 = H2(D, C) ∩ H1, where Hs(D, C) stands for the Sobolev space of order s in
the domain D and H1

0 (D, C) for the space of functions u ∈ H1(D, C) vanishing
on ∂D. The spaces H1 and H2 are endowed with the norms

‖u‖1 =

(∫

D

∣∣∇u(x)
∣∣2dx

) 1
2

, ‖u‖2 =

(∫

D

∣∣∆u(x)
∣∣2dx

) 1
2

.

From now on, we assume that

0 ≤ σ ≤ 2
n−2 for n ≥ 3, σ ≥ 0 for n = 1, 2. (9)

Let us define the following continuous functionals on H1:

H0(u) :=
1

2
‖u‖2 =

1

2

∫

D

|u(x)|2dx,

H1(u) :=

∫

D

(α

2
|∇u(x)|2 +

β

2σ + 2
|u(x)|2σ+2

)
dx.

If X is Banach space and J ⊂ R is a closed interval, then we denote by C(J, X) the
space of continuous functions f : J → X and by L2

loc(J, X) the space of measurable
functions f : J → X such that

∫
I ‖f(t)‖2

Xdt < ∞ for any finite subinterval I ⊂ J .
The following theorem establishes the well-posedness of (4) – (7). Its proof is

carried out by standard methods and can be found in [14] for the case h ≡ 0, σ = 1,
and 1 ≤ n ≤ 4. We refer the reader to [9, 18] for more general existence and
uniqueness results for SPDE’s.
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Theorem 1. Let u0 be an H1-valued F0-measurable random variable such that

EH1(u0) < ∞. Suppose that h ∈ H1(D, C), inequalities (9) are satisfied, and

B1 :=
∞∑

j=1

αjb
2
j < ∞, M :=

∞∑

j=1

b2
j ‖ej‖2

L∞ < ∞. (10)

Then the following statements hold.

(i) There is an Ft-adapted random process u(t) = u(t, x), t ≥ 0, whose almost

every trajectory belongs to the space

X := C(R+; H1) ∩ L2
loc(R+; H2)

and satisfies Eqs. (4) and (6) in the sense that

u(t) = u0 +

∫ t

0

(
(ν + iα)∆u(s) − iβ|u(s)|2σu(s)

)
ds + th + ζ(t), t ≥ 0,

where the left- and right-hand sides are regarded as elements of H.

(ii) The process u(t) constructed in (i) is unique in the sense that if ũ(t) is another

random process satisfying (i), then, with probability 1, we have u(t) = ũ(t) for

all t ≥ 0.
(iii) The random process H0(u(t)) and H1(u(t)) possess stochastic differentials,

which have the form

dH0(u(t)) =
(
−ν ‖u(t)‖2

1 + B0 + (u(t), h)
)
dt +

(
u(t), dζ(t)

)
, (11)

dH1(u(t)) =
(
αB1 + β(σ + 1)

∞∑

j=1

b2
j

(
|u|2σ, e2

j

)

− ν
{
α‖u‖2

2 + β(σ + 1)
(
|u|2σ, |∇u|2

)
+ βσ

(
|u|2(σ−1)u2, (∇u)2

)}

+
(
−α∆u + β|u|2σu, h

))
dt +

(
−α∆u + β|u|2σu, dζ

)
, (12)

where the constant B0 is defined in (8). Moreover, for any t ≥ 0, we have

E ‖u(t)‖2 + ν

∫ t

0

E ‖u(s)‖2
1ds ≤ E ‖u0‖2 +

(
B0 + (α1ν)−1‖h‖2

)
t, (13)

EH1(u(t)) +
ν

2

∫ t

0

E
{
α‖u(s)‖2

2 + β
(
|u(s)|2σ, |∇u|2

)}
ds

≤ EH1(u0) + C
(
B1 + ν−(2σ+1)‖h‖2σ+2

1 + 1
)
t, (14)

where C > 0 is a constant depending only on α and β.

2.2. Exponential martingale inequalities. For any function u(t) belonging to
the space X (see Theorem 1), we set

Eu(t) = ‖u(t)‖2 + ν

∫ t

0

‖u(s)‖2
1ds.

Proposition 1. Suppose that (9) and (10) holds. Then there exist positive con-

stants K and γ such that the solution u(t) of (4) – (6) constructed in Theorem 1

satisfies the inequality

P

{
sup
t≥0

(
Eu(t) − Kt

)
≥ ‖u0‖2 + ρ

}
≤ e−γρ for any ρ > 0. (15)
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Proof. We only outline the proof, which repeats the arguments used in [16, 13]. In
view of (11), we have

H0(u(t)) + ν

∫ t

0

‖u(s)‖2
1ds = H0(u0) + B0t +

∫ t

0

(u(s), h) ds +

∫ t

0

(
u(s), dζ(s)

)
.

Setting K = 2
(
B0 + (να1)

−1‖h‖2
)
, we easily show that

Eu(t) ≤ ‖u0‖2 + Kt + 2

∫ t

0

(
u(s), dζ(s)

)
− ν

2

∫ t

0

‖u(s)‖2
1ds. (16)

Let us define a martingale by the formula

Mt = 2

∫ t

0

(
u(s), dζ(s)

)

and note that its quadratic variation satisfies the inequality

〈M〉t = 4

∞∑

j=1

b2
j

∫ t

0

{(
u(s), ej

)2
+

(
u(s), iej

)2}
ds ≤ 4 b2

α1

∫ t

0

‖u(s)‖2
1ds,

where b = maxj bj . Combining this inequality with (16), we obtain

Eu(t) ≤ ‖u0‖2 + Kt +
(
Mt − γ〈M〉t

2

)
,

where γ = α1ν
4b2 . It follows that

P

{
sup
t≥0

(
Eu(t) − Kt

)
− ‖u0‖2 ≥ ρ

}
≤ P

{
sup
t≥0

(
Mt − γ〈M〉t

2

)
≥ ρ

}

≤ P

{
sup
t≥0

exp
(
γMt − γ2〈M〉t

2

)
≥ ρ

}
. (17)

Since exp
(
γMt−γ2〈M〉t/2

)
is a supermartingale with mean value not exceeding 1,

the classical supermartingale inequality (see Theorem III.6.11 in [17]) implies that
the probability on the right-hand side of (17) can be estimated from above by e−γρ.

We now consider the functional

Ju(t) = H1(u(t)) + νIu(t),

where

Iu(t) =
1

2

∫ t

0

{
α‖u(s)‖2

2 + β
(
|u(s)|2σ, |∇u(s)|2

)}
ds.

Proposition 2. Suppose that (10) holds and that σ ≤ 2
n−2 ∧ 1. Then there is a

constant p ≥ 2 such that for any T > 0 and ρ > 0 the solution u(t) of (4) – (6)
satisfies the inequality

P

{
sup

0≤t≤T
Ju(t) ≥ H1(u0) + C ‖u0‖p + K + ρ

}
≤ exp(−γρ2/p), (18)

where C, K and γ are positive constants not depending on u0 and ρ.

Proof. We repeat the scheme used in the proof of Proposition 1. The difference is
that the quadratic variation of the corresponding martingale cannot be estimated
by Iu(t).

Step 1. In view of (12) and the inequality
∣∣(|u|2(σ−1)u2, (∇u)2

)∣∣ ≤
(
|u|2σ, |∇u|2

)
,



6 ARMEN SHIRIKYAN

we have

H1(u(t)) + 2νIu(t) ≤ H1(u0) + Ft + Mt, (19)

where

Ft = αB1t +

∫ t

0

(
−α∆u + β|u|2σu, h

)
ds + β(σ + 1)

∞∑

j=1

b2
j

∫ t

0

(
|u|2σ, e2

j

)
ds,

Mt =

∫ t

0

(
−α∆u + β|u|2σu, dζ

)
.

Suppose we have found p ≥ 2 such that

|Ft| ≤ ν
2 Iu(t) + C1t, (20)

〈M〉t ≤ C2 Iu(t) + C3

∫ t

0

‖u‖pds. (21)

Here and henceforth, we denote by Ci unessential positive constants. Combin-
ing (19) – (21), we see that

sup
0≤t≤T

Ju(t) ≤ H1(u0) + C4 + C5 sup
0≤t≤T

‖u(t)‖p + sup
0≤t≤T

(
Mt − c〈M〉t

2

)
, (22)

where c > 0 is sufficiently small. In view of (15), there are positive constants K1

and γ1 such that

P

{
sup

0≤t≤T
‖u(t)‖p ≥ ‖u0‖p + K1 + ρ

}
≤ exp(−γ1ρ

2/p). (23)

Furthermore, as in the proof of Proposition 1, the supermartingale inequality implies
that

P

{
sup

0≤t≤T

(
Mt − c〈M〉t

2

)}
≤ exp(−cρ). (24)

Comparing (22) – (24), we arrive at the desired inequality (18).

Step 2. We now prove (20) and (21). Using the Hölder inequality, the Sobolev
embedding theorems, and the second condition in (10), we derive

∣∣∣∣
∫ t

0

(
−α∆u + β|u|2u, h

)
ds

∣∣∣∣ ≤
∫ t

0

(
α‖u‖2‖h‖ + β

∥∥u
∥∥2σ+1

L2σ+2

∥∥h
∥∥

L2σ+2

)
ds

≤ ν

4
Iu(t) + C6

(
ν−1‖h‖2 + ν−(2σ+1)‖h‖2σ+2

1

)
t,

∞∑

j=1

b2
j

∫ t

0

(
|u|2σ, e2

j

)
ds ≤ M

∫ t

0

∥∥u
∥∥2σ

L2σds ≤ ν

4β(σ + 1)
Iu(t) + C7t.

These inequalities imply (20).
To prove (21), we write

〈M〉t =

∞∑

j=1

b2
j

∫ t

0

{(
−α∆u + β|u|2σu, ej

)2
+

(
−α∆u + β|u|2σu, iej

)2}
ds

≤ 2α2B0

∫ t

0

‖u‖2
2ds + 4β2M

∫ t

0

∥∥u
∥∥4σ+2

L2σ+1ds. (25)

Thus, the required inequality (21) will be established if we show that
∥∥u

∥∥4σ+2

L2σ+1 ≤
(
|u|2σ, |∇u|2

)
+ C8 ‖u‖p. (26)
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To simplify formulas, we confine ourselves to the case n = 4 and σ = 1. In view of
the Gagliardo–Nirenberg inequality (see Theorem 6.4.1 in [7]), we have

‖u‖6
L3 =

∥∥u2
∥∥3

L3/2 ≤ C9

∥∥u2
∥∥5/3

L1

∥∥u2
∥∥4/3

1
≤ C10 ‖u‖10/3

(
|u|2, |∇u|2

)2/3
.

This implies inequality (26) with p = 10.

3. Uniqueness of stationary distribution and mixing.

3.1. Main result. Throughout this section, we shall assume that the parameter
σ ≥ 0 satisfies the inequalities (cf. (9))

σ ≤ 2
n for n ≥ 3, σ < 1 for n = 2, σ ≤ 1 for n = 1. (27)

Let us denote by (ut, Pu) the family of Markov processes associated with the prob-
lem (4) – (6) and parametrised by the deterministic initial condition u0 = u ∈ H1.
Let

P (t, u, Γ) = Pu{ut ∈ Γ}, u ∈ H1, Γ ∈ B(H1),

be the transition function for the family (ut, Pu) and let Pt : Cb(H
1) → Cb(H

1)
and P ∗

t : P(H1) → P(H1) be the corresponding Markov semigroups. Recall that
µ ∈ P(H1) is called a stationary measure for (ut, Pu) if P ∗

t µ = µ for all t ≥ 0. The
following theorem is the main result of this paper.

Theorem 2. Suppose that h ∈ H1(D, C), conditions (10) and (27) are satisfied,

and

bj 6= 0 for all j ≥ 1. (28)

Then for any ν > 0 the Markov family (ut, Pu) has a unique stationary measure.

Moreover, the measure µ is mixing in the sense that, for any λ ∈ P(H1), we have

‖P ∗
t λ − µ‖∗L → 0 as t → ∞.

A proof of Theorem 2 is given in the next subsection. Here we outline the main
ideas. To simplify the presentation, in what follows we confine ourselves to the case
n = 3 or 4, which is the most difficult.

Let (u t, IPu ) be a pair of independent copies of the family (ut, Pu). In other
words, (ut, IPu ) is a family of Markov processes in H

1 = H1 ×H1 whose transition
function is given by the formula

P (t,u , Γ × Γ′) = P (t, u, Γ)P (t, u′, Γ′)

for any u = (u, u′) ∈ H and Γ, Γ′ ∈ P(H1). Let Gm = BH1 (1/m) × BH1(1/m),
where BH1 (r) stands for the closed ball in H1 of radius r centred at the origin.
Denote by τm the first hitting time of Gm:

τm = min{t ≥ 0 : ut ∈ Gm}.
In view of Theorem 1.2 in [22], the required result will be established if we show
that the following two properties hold.

(P1) For any u = (u, u′) ∈ H
1 and m ≥ 1, we have

IPu{τm < ∞} = 1.

(P2) There is a constant T > 0 and sequence δm > 0 going to zero as m → ∞ such
that

sup
t≥T

∥∥P (t, u, ·) − P (t, u′, ·)
∥∥∗

L
≤ δm for any u ∈ Gm. (29)
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Proof of (P1) literally repeats the arguments used in [22] for the case of the 2D
Navier–Stokes system, and we shall not dwell on it. Let us sketch the proof of (P2)
(cf. Step 4 in [22, Section 3.1]).

Let us denote by (Ω,F , P) the probability space associated with the problem
(4) – (7), and let ut(ω, u) be the solution of (4), (5) issued from the initial point
u ∈ H1. The proof of (P2) is based on the two propositions below. The first of them
enables one to estimate the distance between the distributions of solutions for (4),
(5) with different initial points. This type of results were obtained in [11, 12]
for discrete-time forces and in [4] for white noise and were developed later in a
number of works. Our presentation is close to that of the papers [15, 6], in which
the closeness of distributions is described with the help of transformation of the
underlying probability space.

Proposition 3. For any δ > 0 there is ε > 0 such that, for any u ∈ BH1(ε), one

can find a measurable transformation Ψu : Ω → Ω satisfying the inequalities

sup
t≥0

P
{
‖ut(ω, u) − ut(Ψu(ω), 0)‖ ≥ δ

}
≤ δ, (30)

‖P − Ψu∗(P)‖var ≤ δ, (31)

where Ψu∗(P) stands for the image of P under the transformation Ψu and ‖ · ‖var is

the total variation norm.

In other words, if the initial function u ∈ H1 is sufficiently small, then with
high probability the solution is close (in the L2-norm) to the trajectory starting
from zero and corresponding to a different value of the random parameter, which is
denoted by Ψu(ω). Moreover, the transformation ω 7→ Ψu(ω) almost preserves the
probability measure P.

Using (30) and (31), one easily shows that

sup
t≥0

|D(ut) −D(ũt)|∗L ≤ 5δ, (32)

where ut = ut(ω, u), ũt = ut(ω, 0), and | · |∗L stands for the dual Lipschitz metric for
the norm in H (see Notation). It follows from (32) that, for any initial functions
u, u′ ∈ BH1(ε), the distributions of the corresponding solutions ut and u′

t satisfy
the inequality

sup
t≥0

|D(ut) −D(u′
t)|∗L ≤ 10δ, (33)

where δ = δ(ε) > 0 goes to zero with ε.
Inequality (33) and a priori estimates for solutions imply that (29) will be es-

tablished if we prove the continuity of the Markov semigroup P ∗
t for appropriate

norms. For any measure µ ∈ P(H1), we set

H1(µ) =

∫

H1

H1(u)µ(du).

Proposition 4. For any positive constants C and γ there is δ > 0 such that if

measures µ1, µ2 ∈ P(H1) satisfy the inequalities

H1(µ1) ∨H1(µ2) ≤ C, |µ1 − µ2|∗L ≤ δ, (34)

then

‖P ∗
1 µ1 − P ∗

1 µ2‖∗L ≤ γ. (35)
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Combining Proposition 4 with inequality (33), we conclude that Property (P2)
holds with T = 1.

The rest of this section is organised as follows. In Section 3.2, we give a detailed
proof of the fact that Propositions 3 and 4 imply Property (P2). Propositions 3
and 4 are established in Sections 3.3 and 3.4, respectively.

3.2. Verification of Property (P2). Step 1. Let u = (u, u′) ∈ Gm and let ut

and u′
t be the solutions of (4), (5) issued from u and u′, respectively. To prove (29)

with T = 1, it suffices to show that

sup
t≥0

∣∣D(ut) −D(u′
t)

∣∣∗
L
→ 0 as m → ∞, (36)

and the convergence is uniform with respect to u ∈ Gm. Indeed, it follows from (14)
and the Gronwall inequality that

sup
t≥0

H1(vt) ≤ C for v ∈ BH1 (1),

where vt stands for the solution of (4), (5) with the initial condition v. There-
fore, applying Proposition 4 to the measures µ1 = D(ut) and µ2 = D(u′

t) with an
arbitrary t ≥ 0 and using (36), we conclude that

sup
t≥1

∥∥D(ut) −D(u′
t)

∥∥∗

L
→ 0 as m → ∞ uniformly in u ∈ Gm.

This is equivalent to (29).

Step 2. Convergence (36) will be established if we show that

sup
t≥0

∣∣D(ut) −D(ũt)
∣∣∗
L
→ 0 as ‖u‖1 → 0, (37)

where ũt stands for the solution of (4), (5) with zero initial condition. To prove this,
we use Proposition 3. Applying Lemma 3.4 in [22] to the random variables ut(ω)
and ũt(ω) and to the transformation Ψu defined in Proposition 3, we see that

sup
t≥0

∣∣D(ut) −D(ũt)
∣∣∗
L
≤ 3δ + 2‖P − Ψu∗(P)‖var for any u ∈ BH1(ε),

where ε = ε(δ) > 0 is sufficiently small. Combining this inequality with (31), we
conclude that (32) holds for u ∈ BH1 (ε). Since δ > 0 is arbitrary, we arrive at (37).

3.3. Proof of Proposition 3. We first note that the underlying probability space
(Ω,F , P) plays no role in the statement of Theorem 2. Therefore, we can assume
from the very beginning that it possesses the following properties:

• Ω coincides with the space of functions u ∈ C(R+, H) that vanish at t = 0;
• Ω is endowed with the topology of uniform convergence on the compact inter-

vals J ⊂ R+, and B(Ω) stands for the Borel σ-algebra on Ω;
• P is the distribution of the random process ζ defined in (7) and F is the

completion of B(Ω) with respect to P.

In this case, we can assume, without loss of generality, that

ζ(t) = ωt for all ω ∈ Ω and t ≥ 0.

The proof of Proposition 4 is divided into several steps.

Step 1: Construction of Ψu. We shall need an auxiliary result on solvability of
the projection of (4) to subspaces of finite codimension. For any N ≥ 1, denote
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by HN the 2N -dimensional vector space spanned by {ej, iej, 1 ≤ j ≤ N} and by H⊥
N

its orthogonal complement in H . Consider the problem

ẇ − (ν + iα)∆w + F⊥
N (v + w) = QNh + QNη, (38)

w(0) = w0. (39)

Here w0 ∈ H⊥
N and v ∈ C(R+, HN ) are given functions, F⊥

N : H1 → H⊥
N is a con-

tinuously differentiable function defined as F⊥
N (u) = iβQN (|u|2σu), and we denote

by PN and QN the orthogonal projections in H onto the subspaces HN and H⊥
N ,

respectively.

Lemma 1. Under the conditions of Theorem 1, there is a set Ω0 ∈ F of full measure

such that the following assertions hold for any ω ∈ Ω0.

(i) For any v ∈ C(R+, HN ) and w0 ∈ H⊥
N , problem (38), (39) has a unique

solution wt that belongs to the space

XN := C(R+, H1 ∩ H⊥
N ) ∩ L2

loc(R+, H2 ∩ H⊥
N ).

(ii) The function wt depends only on the restrictions of v and QNω to the inter-

val [0, t].
(iii) Let W(·, ·, ω) : C(R+, HN) × H⊥

N → XN be the operator defined as

W(v, w0, ω) =

{
w if ω ∈ Ω0,

0 if ω ∈ Ω \ Ω0,

where w ∈ XN is the solution of (38), (39). Then W is uniformly Lipschitz

continuous in (v, w0) on bounded subsets for any fixed ω ∈ Ω and is measurable

with respect to (v, w0, ω).

The proof of Lemma 1 is similar to that of Theorem 1 and is omitted. In what
follows, we denote by Wt(v, w0, ω) the value of the function W(v, w0, ω) at time t.

To construct Ψu : Ω → Ω, let us choose a smooth function θ on R such that
θt = 1 for t ≤ 0 and θt = 0 for t ≥ 1. For any u ∈ H1, we set

FN (u) = iβPN(|u|2σu), vt(ω) = PNut(ω, u), wt(ω) = QNut(ω, u),

where ut(ω, u) denotes the solution of (4), (5) issued from u. We now define Ψu by
the relations

PNΨu(ω) = PNω − PN

(
θu − (ν + iα)Θ∆u

)
+

∫ t

0

Ds(ω, u) ds, (40)

QNΨu(ω) = QNω, (41)

where ω ∈ Ω, Θt =
∫ t

0 θsds, and

Ds(ω, u) = FN (vs − θsPNu + Ws(v − θPNu, 0, ω)) − FN (vs + Ws(v, QNu, ω)).

Step 2: Proof of (30). Lemma 1 implies that problem (4) – (6) is equivalent to
the following system for the components (vt, wt) of the solution ut:

v̇ − (ν + iα)∆v + FN (v + Wt(v, Qu0, ω)) = PNh + PNη,

ẇ − (ν + iα)∆w + F⊥
N (v + w) = QNh + QNη,

v0 = PNu0, w0 = QNu0.

Let us set

pt = PNut(Ψu(ω), 0), qt = QNut(Ψu(ω), 0).
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Repeating literally the arguments used in [22] (see Step 7 in Section 3.1), we easily
show that

pt(ω) = PN

(
ut(ω, u) − θtu

)
for a.e. ω ∈ Ω. (42)

Combining this with (41), we see that, for almost every ω, the conditions of Propo-
sition 5 with T = 1 (see Section 4.1) are satisfied for the pair of solutions ut(ω, u)
and ut(Ψu(ω), 0). Therefore, combining (59) and (42), we obtain

‖ut − ũt‖2 ≤ C exp
(
C

∫ 1

0

(
‖us‖4σ

1 + ‖ũs‖4σ
1

)
ds

)
‖PNu‖2

+ exp
(
−ναN+1t + C

∫ t

0

(
‖us‖2

1 + ‖ũs‖2
1

)
ds

)
‖QNu‖2, (43)

where ũt(ω) = ut(Ψu(ω), 0) and C > 0 is a constant. Let us choose N ≥ 1 so large
that

ναN+1 ≥ 4Cν−1K, (44)

where K > 0 is the constant in (15). Introduce the event

Γ(ρ, u) =

{∫ 1

0

(
‖us‖4σ

1 + ‖ũs‖4σ
1

)
ds ≥ ρ or sup

t≥0

∫ t

0

(
‖us‖2

1 + ‖ũs‖2
1

)
ds ≥ ρ

}
.

Propositions 1 and 2 and inequality (31) (which is proved below) imply that

P
(
Γ(ρ, u)

)
→ 0 as ρ → ∞ uniformly in u ∈ BH1(1). (45)

Furthermore, it follows from (15), (18) and (43) that, on the complement of Γ(ρ, u),
we have

sup
t≥0

‖ut − ũt‖ ≤ Cρ‖u‖ for u ∈ BH1 (1),

where Cρ > 0 does not depend on u. Combining this with (45), we see that
inequality (30) holds with a constant δ = δ(ε) > 0 going to zero with ε.

Step 3: Proof of (31). We follow the scheme used in [4, 13]. Let us write Ψu in
the form

Ψu(ω) = ωt +

∫ t

0

ϕs(ω, u) ds,

where ϕt is an HN -valued function defined as

ϕt(ω, u) = −θ̇tPNu + (ν + iα)θt∆PNu + Dt(ω, u).

Introduce the functions

u1 = vt − θtPNu + Wt(v − θPNu, 0, ω), u2 = vt + Wt(v, QNu, ω).

Let us fix a parameter ρ > 0 and define a truncating function χρ by the following
rule: χρ

t (ω, u) = 1 if
∫ t∧1

0

(
‖u1‖4σ

1 + ‖u2‖4σ
1

)
ds ≤ ρ, C

(
Eu1

(t) + Eu2
(t)

)
≤ 2Kt + ρ,

where K and C are the constants in inequality (15) and Proposition 5, respectively,
and χρ

t (ω, u) = 0 otherwise. Along with Ψu, let us consider the transformation

Φu(ω) = ωt +

∫ t

0

ds(ω, u) ds, dt(ω, u) = χρ
t (ω, u)ϕt(ω, u).
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In view of the triangle inequality and an elementary property of the total variation
distance, we have

‖P − Ψu∗(P)‖var ≤ ‖P − Φρ
u∗(P)‖var + ‖Φρ

u∗(P) − Ψu∗(P)‖var

≤ ‖P − Φρ
u∗(P)‖var + P{Φρ

u 6= Ψu}. (46)

Propositions 1 and 2 and the definition of χρ imply that

P{Φρ
u 6= Ψu} → 0 as ρ → ∞ uniformly in u ∈ BH1(1). (47)

To estimate the first term on the right-hand side of (46), we use Proposition 6 (see
Section 4.1). We claim that if N is such that inequality (44) holds with a sufficiently
large C > 0, then

‖dt(ω, u)‖ ≤ CN,ρ(1 + t)r
(
‖u1‖ + ‖u2‖

)(
θt‖PNu‖ + e−ct‖QNu‖

)
, (48)

where CN,ρ, c, and r are some positive constants not depending on u. If this
inequality is established, then

Λ(N, ρ, u) := exp

(
6

∫ ∞

0

‖K−1ds(ω, u)‖2ds

)
≤ exp

(
C′

N,ρ‖u‖2
1

)
.

Thus, condition (63) is satisfied, and (64) implies that, for any fixed ρ > 0,

‖P − Φρ
u∗(P)‖var ≤ 1

2

(√
Λ(N, ρ, u) − 1

)1/2 → 0 as ‖u‖1 → 0.

Combining this with (46) and (47), we arrive at inequality (31) in which δ → 0 as
‖u‖1 → 0. Thus, it remains to prove (48).

To this end, first note that

‖dt(ω, u)‖ ≤ C1θt‖PNu‖ + χρ
t (ω, u) ‖FN(u1) − FN (u2)‖, (49)

where we denote by Ci, i = 1, 2 . . . , unessential positive constants that may depend
on N and ρ. Since dim HN < ∞, we have

‖FN (u1) − FN (u2)‖ ≤ C2‖FN (u1) − FN (u2)‖L1

≤ C3

∫

D

(
|u1|2σ + |u2|2σ

)
|u1 − u2| dx

≤ C3

(∥∥u1

∥∥
L4σ +

∥∥u2

∥∥2σ

L4σ

)
‖u1 − u2‖. (50)

Using the Sobolev embedding theorems and the Gagliardo–Nirenberg inequality, we
easily show that if χρ

t (ω, u) = 1, then

∥∥ui

∥∥2σ

L4σ ≤ C4(1 + t)r‖ui‖1, i = 1, 2,

where r = r(σ, n) > 0 is a constant. Combining this with (49) and (50), we derive

‖dt(ω, u)‖ ≤ C5

(
θt‖PNu‖ + (1 + t)r

(
‖u2‖1 + ‖u2‖1

)
‖u1 − u2‖

)
.

Substituting (59) into this inequality, we arrive at (48).
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3.4. Proof of Proposition 4. Let us fix two measures µ1, µ2 ∈ P(H1) that sat-
isfy (34). In view of the Kantorovich–Rubinstein theorem (see Theorem 11.8.2
in [3]), there exist H1-valued random variables ui0, i = 1, 2, with distribution µi

such that
E ‖u10 − u20‖ ≤ δ. (51)

Let us denote by ui(t, x), i = 1, 2, the solution of (4) – (6) with u0 = ui0.

Step 1. To prove (35), we first estimate ‖u1(1)−u2(1)‖1. Let us note that almost
every realization of the function u = u1 − u2 belongs to the space X and satisfies
the deterministic equation

u̇ − (ν + iα)∆u + g(u1, u2) = 0, (52)

where g(u1, u2) = iβ(|u1|2σu1 − |u2|2σu2). Moreover, the boundary and initial
conditions (5) and (6) with u0 = u10 − u20 are also verified. Taking the scalar
product in H of (52) with the function 2(1 − νt∆)u, we obtain

∂tN0(u) − ν‖u‖2
1 + 2νN1(u) + 2

(
g(u1, u2), (1 − νt∆)u

)
= 0, (53)

where we set

N0(u) = ‖u‖2 + νt‖u‖2
1, N1(u) = ‖u‖2

1 + νt‖u‖2
2.

Using the Hölder inequality and the Sobolev embedding theorems, we derive

2
∣∣(g(u1, u2), (1 − νt∆)u

)∣∣ ≤ C1

∫

D

(
|u1|2σ + |u2|2σ

) (
|u|2 + νt|u| |∆u|

)
dx

≤ C2

(
‖u1‖2σ

1 + ‖u2‖2σ
1

) (
‖u‖ ‖u‖1 + νt‖u‖1‖u‖2

)

≤ C3

(
‖u1‖2σ

1 + ‖u2‖2σ
1

)
N0(u) + νN1(u).

Substitution of this inequality into (53) results in

∂tN0(u) ≤ C3

(
‖u1‖2σ

1 + ‖u2‖2σ
1

)
N0(u).

Applying the Gronwall inequality, we obtain

‖u1(1) − u2(1)‖2
1 ≤ ν−1‖u10 − u20‖2 exp

{
C3

∫ t

0

(
‖u1‖2σ

1 + ‖u2‖2σ
1

)
ds

}

≤ ν−1D(u1, u2) ‖u10 − u20‖2, (54)

where

D(u1, u2) = exp
{
C3 sup

0≤t≤1

(
‖u1(t)‖2σ

1 + ‖u2(t)‖2σ
1

)}
.

Step 2. We now take any function f ∈ L(H1) with norm ‖f‖L ≤ 1 and note that
∣∣(f, P ∗

1 µ1 − P ∗
1 µ2

)∣∣ =
∣∣E

{
f(u1(1)) − f(u2(1))

}∣∣

≤ E
(
‖u1(1) − u2(1)‖1 ∧ 2

)
. (55)

Introduce the event

ΓR = {H1(u10) ∨H1(u20) ≥ R or D(u1, u2) ≥ R}.
It follows from the first inequality in (34) and Proposition 2 that P(ΓR) → 0 as
R → ∞. Choosing a sufficiently large R, we conclude from (54) and (55) that

∣∣(f, P ∗
1 µ1 − P ∗

1 µ2

)∣∣ ≤ δ
2 + E

(
IΓR‖u1(1) − u2(1)‖1

)

≤ δ
2 + ν−1R E ‖u10 − u20‖.

Combining this with (51) and recalling that f was arbitrary, we arrive at the re-
quired result.
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4. Appendix.

4.1. Foiaş–Prodi type estimate. In this subsection, we study problem (4) – (6)
in which η is a deterministic function of the form (cf. (7))

η(t, x) =
∂

∂t
ζ(t, x), (56)

where ζ is a continuous function from R+ to H1. Recall that {ej} ⊂ H is the
complete set of eigenfunctions for the Dirichlet Laplacian in the domain D, HN is
the 2N -dimensional subspace generated by {ej, iej, 1 ≤ j ≤ N}, and H⊥

N is the
orthogonal complement of HN in H . Denote by PN : H → HN and QN : H → H⊥

N

the corresponding orthogonal projections.
The following result provides a Foiaş–Prodi type estimate for the difference be-

tween two solutions whose projections to HN coincide (cf. [5]).

Proposition 5. Let n ≥ 3 and σ ≤ 2
n , let h ∈ H1(D, C), and let u1, u2 ∈ X =

C(R+, H1) ∩ L2
loc(R+, H2) be two solutions of problem (4), (56) that correspond to

deterministic functions ζ1, ζ2 ∈ C(R+, H1). Suppose that

PNu1(t) = PNu2(t) for t ≥ T , (57)

QN ζ1(t) = QNζ2(t) for t ≥ 0, (58)

where T ≥ 0 and N ≥ 1 is an integer. Then there is a constant C > 0 not depending

on u1, u2, T , and N such that

∥∥QN (u1(t) − u2(t))
∥∥2 ≤ exp

{
−ναN+1t + q(t)

} ∥∥QN (u1(0) − u2(0))
∥∥2

+ Ceq(T )

∫ t

0

(
‖u1(s)‖4σ

1 + ‖u2(s)‖4σ
1

)∥∥PN (u1(s) − u2(s))
∥∥2

1
ds, (59)

where we set

q(t) = C

∫ t

0

(
‖u1(s)‖2

1 + ‖u2(s)‖2
1

)
ds.

Proof. The difference u = u1 −u2 belongs to the space X and satisfies the equation

u̇ − (ν + iα)∆u + g(u1, u2) = ζ̇1 − ζ̇2, (60)

where g(u1, u2) = iβ(|u1|2σu1 − |u2|2σu2). Let us set v = PNu and w = QNu and
take the scalar product in H of Eq. (60) with the function 2w. Using (58), we derive

∂t‖w‖2 + 2ν ‖w‖2
1 + 2(g(u1, u2), w) = 0. (61)

The Hölder inequality implies that

∣∣(g(u1, u2), w)
∣∣ ≤ C1

∫

D

(
|u1|2σ + |u2|2σ

) (
|w|2 + |v| |w|

)
dx

≤ C1

(∥∥u1

∥∥2σ

L2qσ +
∥∥u2

∥∥2σ

L2qσ

) (∥∥w
∥∥2

L2p +
∥∥v

∥∥
Lr

∥∥w
∥∥

L
2n

n−2

)
, (62)

where we set

p =
n

n(1 − σ) + 2σ
, q =

n

σ(n − 2)
, r =

2n

n + 2 − 2σ(n − 2)
.

In view of the Sobolev embedding theorems and the Gagliardo–Nirenberg inequality
(see Theorem 6.4.1 in [7]), we have

∥∥w
∥∥

L2p ≤ C2‖w‖θ‖w‖1−θ
1 ,

∥∥v
∥∥

Lr ≤ C3‖v‖1,
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where θ = σ + 1 − nσ
2 . Substitution of these inequalities into (62) results in

∣∣(g(u1, u2), w)
∣∣ ≤ C4

(
‖u1‖2σ

1 + ‖u2‖2σ
1

) (
‖w‖2θ‖w‖2(1−θ)

1 + ‖v‖1‖w‖1

)

≤ ν

2
‖w‖2

1 + C5

(
‖u1‖2

1 + ‖u2‖2
1

)
‖w‖2 + C6

(
‖u1‖4σ

1 + ‖u2‖4σ
1

)
‖v‖2

1.

Combining this with (61) and using the inequality ‖w‖2
1 ≥ αN+1‖w‖2, we obtain

∂t‖w‖2 +
(
ναN+1 − 2C5(‖u1‖2

1 + ‖u2‖2
1)

)
‖w‖2

1 ≤ 2C6

(
‖u1‖4σ

1 + ‖u2‖4σ
1

)
‖v‖2

1.

Applying the Gronwall inequality and recalling that v(t) = 0 for t ≥ T in view
of (57), we arrive at (59).

4.2. Girsanov theorem. Let (Ω,F , P) be the probability space described in the
beginning of Section 3.3 and let {Ft, t ≥ 0} be the natural filtration on Ω augmented
with respect to (F , P) (see [8]). Suppose that N ≥ 1 is an integer and dt(ω) is an
HN -valued measurable function on R+ × Ω that is adapted to Ft and satisfies the
condition

E

∫ t

0

‖ds‖2ds < ∞ for any t ≥ 0.

Consider a transformation of Ω defined as

Φ(ω) = ω +

∫ t

0

ds(ω) ds.

Let K be a bounded linear operator in H defined by the relations Kej = bjej and
K(iej) = ibjej for all j ≥ 1. In view of condition (28), the operator K is injective
and its inverse K−1 is well defined on HN . The following result is a straightforward
consequence of the Girsanov theorem (see [20]).

Proposition 6. Suppose that

Λ := E exp

(
6

∫ ∞

0

‖K−1ds‖2ds

)
< ∞. (63)

Then the total variation distance between P and Φ∗(P) admits the estimate

‖P − Φ∗(P)‖var ≤ 1
2

(√
Λ − 1

)1/2
. (64)

Proof. We define a Brownian motion in HN by the formula Bt(ω) = K−1PNωt and
introduce the measurable function

ρ(ω) = exp

(
−

∫ ∞

0

K−1ds(ω) dBs −
1

2

∫ ∞

0

‖K−1ds(ω)‖2ds

)
.

In view of the Girsanov theorem (see Theorem 8.6.4 in [20]), the function ρ is the
density (with respect to P) of a probability measure on Ω, and the random process

B̂t(ω) = Bt(ω) +

∫ t

0

K−1ds(ω), ds

is a Brownian motion with respect to the measure P̂(dω) = ρ(ω)P(dω). It follows

that the distribution of Φ(ω) under the law P̂ coincides with P. Therefore,

‖P − Φ∗(P)‖var = sup
Γ∈F

|P(Γ) − P{Φ(·) ∈ Γ}|

= sup
Γ∈F

|P̂{Φ(·) ∈ Γ} − P{Φ(·) ∈ Γ}| ≤ ‖P̂ − P‖var.
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Using a well-known formula for the total variation distance, we derive

‖P̂ − P‖var =
1

2

∫

Ω

|ρ − 1| dP ≤ 1

2

(∫

Ω

(ρ − 1)2dP

) 1
2

≤ 1

2

(∫

Ω

ρ2dP − 1

) 1
2

. (65)

It remains to note that the integral on the right-hand side of (65) can be estimated

by
√

Λ.
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