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Local dynamics for high-order

semilinear hyperbolic equations

L. R. Volevich and A. R. Shirikyan

Abstract. This paper is devoted to studying high-order semilinear hyperbolic equa-
tions. It is assumed that the equation is a small perturbation of an equation with
real constant coefficients and that the roots of the full symbol of the unperturbed
equation with respect to the variable τ dual to time are either separated from the
imaginary axis or lie outside the domain ν < |Re τ | < δ, where δ > ν � 0. In
the first case, it is proved that the phase diagram of the perturbed equation can be
linearized in the neighbourhood of zero using a time-preserving family of homeo-
morphisms and that the constructed homeomorphisms and their inverses are Hölder
continuous. In the other case, it is proved that the neighbourhood of zero in the
phase space of the equation contains a locally invariant smooth manifoldM which
includes all solutions uniformly bounded on the entire time axis and exponentially
attracts the solutions bounded on the half-axis. The manifoldM can be represented
as the graph of a non-linear operator that acts on the phase space and is a small per-
turbation of a pseudo-differential operator whose symbol can be written explicitly.
In this case, the dynamics on the invariant manifoldM is described by a hyperbolic
equation whose order coincides with the number of roots of the full symbol that lie
in the strip |Re τ | � ν.

Introduction

In the theory of ordinary differential equations (ODE), the behaviour of
solutions in the neighbourhood of a stationary point has been rather thoroughly
studied . We mention the well-known result of Grobman–Hartman on the lineariza-
tion of the phase diagram in the neighbourhood of a hyperbolic stationary point
(see [4], [20], [2], [10]).

Let us consider the system

u̇(t) = Pu(t) + εQ(u(t)), u(t) ∈ E, (0.1)

where E = Rm is the phase space, ε ∈ R is a small parameter, P is an m×m matrix
with real entries, and Q(u) : Rm → Rm is a smooth compactly supported function
vanishing at u = 0. We consider the Cauchy problem for equation (0.1),

u(0) = u0 ∈ Rm. (0.2)
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Let
Uε(t, ·) : Rm → Rm, u0 �→ u(t),

denote the resolving operator for problem (0.1), (0.2). For ε = 0, the operator
Uε(t, ·) is linear, and we denote it by U0(t). The Grobman–Hartman theorem asserts
that if the real parts of the eigenvalues of the matrix P are non-zero, then there is
a homeomorphism Φε : Rm → Rm, |ε| � 1, such that the relation

U0(t)Φε(u0) = Φε(Uε(t, u0))

(see Fig. 1, where u = Uε(t, u0)) holds for all t ∈ R and u0 ∈ Rm.

Figure 1. Linearization of the phase diagram

In the general case of a matrix P having roots on the imaginary axis, linearization
may not be possible, but, as follows from the results in [29] (also see [21] and [33]),
there is a smooth mc-dimensional manifold M (where mc is the number of pure
imaginary eigenvalues of P ) such that

(i) any solution uniformly bounded for t ∈ R lies on M, and the dynamics on
M is described by an equation of order mc,

(ii) any solution uniformly bounded for t � 0 (t � 0) is exponentially attracted
to M.

The above results are part of the general theory describing the behaviour of ODE
solutions in the neighbourhood of a stationary point. For a detailed presentation
of the corresponding part of ODE theory, see [2], [6], [9], [10], and [33], where, in
particular, questions related to asymptotic stability, exponential dichotomy, and
existence and smoothness of unstable, stable, and centre manifolds are studied. All
these results can be extended in some form to equations of the form (0.1) with
infinite-dimensional phase space E provided that P is a bounded linear operator
and Q(u) is a smooth function on E (see [5] and [28]). The condition that P
is bounded prohibits applying the resulting abstract theory to partial evolution
equations since the operator P arising in the reduction of these equations to systems
of the form (0.1) is a differential operator with respect to the spatial variables and
therefore is unbounded. Thus, the “natural” conditions on the operator P and
the non-linear function Q(u) in studying equation (0.1) in an infinite-dimensional
phase space are specified by concrete examples of partial differential equations.
These difficulties have been studied by many authors (see [1], [8], [11], [14]–[18],
[22]–[27], [31], and [34] and the references therein).

In this paper, we study semilinear hyperbolic equations of the form

P (∂)u(t, x) + εQ(ε, t, x, ∂mu(t, x)) = 0, x ∈ Rn, t ∈ R, (0.3)
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where ε ∈ R is a small parameter, ∂ = (∂t, ∂x1, . . . , ∂xn), ∂m = {∂α : |α| � m},
and ∂α = ∂α0t ∂α1x1 . . . ∂

αn
xn

. It is assumed that the operator

P (∂) = P (∂t, ∂x) =
∑
|α|�m

pα∂
α, pα ∈ R, (0.4)

is strictly hyperbolic and the non-linear term Q has the form

Q(ε, t, x, ∂mu) =
∑
|α|�m

qα(ε, t, x)∂αu + q(ε, t, x, ∂m−1u), (0.5)

where qα(ε, t, x) and q(ε, t, x, z) (z = {zβ : |β| � m − 1} ∈ Rd) are smooth real-
valued functions, and that q(ε, t, x, 0) ≡ 0. Along with the condition of strong
hyperbolicity, one of the following conditions is imposed on P (∂).

Condition (H). There is a δ > 0 such that

P (τ, ξ) �= 0 for |Re τ | < δ, (Im τ, iξ) ∈ Rn+1, (0.6)

where P (τ, ξ) is the full symbol of the operator P (∂t, ∂x).

Condition (Hc). There are δ and ν, δ > ν � 0, such that

P (τ, ξ) �= 0 for ν < |Re τ | < δ, (Im τ, iξ) ∈ Rn+1. (0.7)

In other words, it is assumed in Condition (H) that the roots of the polynomial
P (τ, ξ) are separated from the imaginary axis uniformly with respect to iξ ∈ Rn,
whereas, under Condition (Hc), the symbol P (τ, ξ) can have some roots in the
neighbourhood of the imaginary axis, but it is required that they should be sep-
arated from the other roots uniformly with respect to ξ. We shall prove that if
Condition (H) holds, then the phase diagram of equation (0.3) can be linearized in
an arbitrary finite neighbourhood of zero (for sufficiently small values of ε) using a
time-preserving family of homeomorphisms. Moreover, we shall show that if Q is
an operator of order m−1, then the linearizing homeomorphisms and their inverses
are Hölder continuous. For exact statements of these assertions, see §1.2.

In the case when Condition (Hc) holds, we shall prove that an arbitrary finite
neighbourhood of zero in the phase space of equation (0.3) contains a smooth
infinite-dimensional manifold M possessing properties similar to (i) and (ii) (see
above). Furthermore, it will be established that M is the graph of a smooth non-
linear operator that depends on mc functions (where mc

1 is the number of roots
lying in the strip |Re τ | � ν) and is a small non-linear perturbation of a pseudo-
differential matrix operator whose symbol can be expressed in terms of that of the
original equation. The exact statements of these assertions are given in §5.1.

Let us briefly describe the structure of this paper, which is in two parts. The
first part is devoted to proving Grobman–Hartman type theorems. In § 1, the main
results in the first part are stated (see Theorems 1.3 and 1.4) and some examples
are considered. In § 2, which is devoted to studying linear hyperbolic equations,

1Everywhere below, we shall assume that 1 � mc � m− 1.
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it is proved that the phase diagram of an equation with constant coefficients and
those of its small perturbations can be transformed into each other using a time-
preserving family of homeomorphisms. In § 3, Theorems 1.3 and 1.4 are proved. In
the Appendix (see § 4), some auxiliary assertions used in the main body of the text
are collected.

The second part is devoted to constructing the centre manifold for equation (0.3).
In § 5, the statements and sketches of the proofs of the main results are given (see
Theorems 5.1–5.3). The initial-value problem with growth conditions at infinity
for an equation with truncated non-linearity is studied in § 6, and § 7 is devoted to
proving Theorems 5.1–5.3. In the Appendix (see § 8), some auxiliary assertions are
collected.

The authors express their gratitude to A. L. Afendikov, A. Yu. Goritskii, and
A. I. Komech for discussions and valuable remarks and to M. Levitin for help in
preparing TEX files.

Notation. Let 0 < γ � 1, let J ⊂ R be an interval, let D be a domain in Rd,
let X and Y be Banach spaces, and let Ω be an open set in X. We shall use the
following function spaces.

The space C∞b (D) of infinitely continuously differentiable functions on D, which,
together with all their derivatives, are bounded.

The space C(J,X) of continuous functions on J with range in X.
The space C l,γ(Ω, Y ) of l-times continuously (Frechét) differentiable functions

f : Ω → Y whose lth derivatives satisfy Hölder’s condition with exponent γ and
whose seminorms

|f |Cl,γ := sup
u∈Ω

l∑
j=1

‖Djf(u)‖Lj(X,Y ) + sup
u,v∈Ω
u �=v

‖Dlf(u) −Dlf(v)‖Ll (X,Y )

‖u− v‖γX

are finite, where Lj(X, Y ) denotes the space of bounded j-linear forms from X to
Y (see [11], § 1.2.5). We note that if the domain Ω is bounded, then the norm

‖f‖Cl,γ := sup
u∈Ω

‖f(u)‖Y + |f |Cl,γ

is finite. In the case l = 0, we shall write Cγ(Ω, Y ).
The symbols Ci, i = 1, 2, . . . , will be used to denote all insignificant positive

constants.

PART I. THE GROBMAN–HARTMAN THEOREM

§ 1. Statement of linearization theorems and examples
In this section, we recall the theorem on the well-posedness of the Cauchy prob-

lem for non-linear hyperbolic equations (Proposition 1.1), state the main results of
the first part (Theorems 1.3 and 1.4), and consider some examples.

1.1. The Cauchy problem for equation (0.3). We shall assume that the oper-
ators P and Q in equation (0.3) satisfy the following conditions.
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Condition (P). The operator P (∂) has the form (0.4) and is strictly hyperbolic,
that is, it is solved with respect to the highest derivative with respect to t, and the
roots of the leading symbol

P 0(τ, ξ) =
∑
|α|=m

pατ
α0ξα

′
, α = (α0, α

′),

with respect to τ are pure imaginary and pairwise distinct for iξ ∈ Rn \ {0}.

Condition (Q). The operator Q has the form (0.5), where qα and q are real-valued
functions satisfying the relations qα ∈ C∞b ([−1, 1] × Rn+1

t,x ) and q ∈ C∞b ([−1, 1] ×
R
n+1
t,x × Bρ) for any ball Bρ = {z ∈ Rd : |z| � ρ}, and the condition q(ε, t, x, 0) ≡ 0

holds.

We consider the Cauchy problem for equation (0.3):

∂jt u(θ, x) = uj(x) ∈ H(m−1+k−j), j = 0, . . . , m− 1, (1.1)

where k � 0 is an integer and H(s) = H(s)(Rn) is the Sobolev space of order s with
the standard norm ‖ · ‖s. The phase space of equation (0.3) is defined using the
formula

Em−1,k =
m−1∏
j=0

H(m−1+k−j)

and is equipped with the norm

‖U‖m−1,k =

(m−1∑
j=0

‖uj‖2(m−1+k−j)
)1/2

, U = [u0, . . . , um−1].

Let Bm−1,k(ρ) denote the open ball in Em−1,k of radius ρ > 0 and centre zero.

Proposition 1.1. Suppose that Conditions (P) and (Q) hold. Then there is an
ε0 > 0 such that the following assertions are true for |ε| � ε0.

(i) For any ρ > 0 and an arbitrary integer k > n/2, there is a T > 0 such that
problem (0.3), (1.1) with Cauchy data [u0, . . . , um−1] ∈ Bm−1,k(ρ) has a (unique)
solution u(t, x) satisfying the relations

∂jtu ∈ C(J,H(m−1+k−j)), j = 0, . . . , m− 1, (1.2)

where J = [θ− T, θ + T ].
(ii) If ui(t, x), i = 1, 2, are two solutions of problem (0.3), (1.1), (1.2) with

J = Ji, where Ji ⊂ R, i = 1, 2, are closed intervals containing the point θ, then
u1(t, x) = u2(t, x) for t ∈ J1 ∩ J2 and x ∈ Rn.

Proposition 1.1 is a version of the theorem on the well-posedness of the Cauchy
problem for non-linear hyperbolic equations. For a proof, see, for example, [7],
Chapter 7.
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Remark 1.2. It follows from Proposition 1.1 that for any θ ∈ R and U0 =
[u0, . . . , um−1] ∈ Em−1,k, there are T±ε = T±ε (k, θ, U0) such that (T−ε , T+ε ) is
the maximum interval on which the solution corresponding to Cauchy data U0
is defined. In this case, if T+ε < +∞, then

lim
t→T+ε −0

‖D(t)u‖m−1,k = +∞,

where
D(t)u = [u(t, x), ∂tu(t, x), . . . , ∂m−1t u(t, x)] (1.3)

denotes the phase trajectory corresponding to u(t, x). Similarly, if T−ε > −∞, then

lim
t→T−ε +0

‖D(t)u‖m−1,k = +∞.

We denote by

Uε(t, θ, U0) : Em−1,k → Em−1,k, |ε| � ε0, t ∈ (T−ε , T+ε ), (1.4)

the operator mapping U0 = [u0, . . . , um−1] ∈ Em−1,k to the vector function (1.3),
where u(t, x) is the solution of problem (0.3), (1.1), (1.2) with J = (T−ε , T+ε ). For
ε = 0, equation (0.3) is linear, and its coefficients do not depend on (t, x). Therefore,
we have T±0 = ±∞, and (1.4) is an invertible linear operator depending only on
the difference t− θ. We denote it by U0(t− θ).

1.2. Statement of results. Recall Condition (H) from the Introduction.

Theorem 1.3. Let Conditions (P), (Q), and (H) hold. Then for any ρ > 0 and
an arbitrary integer k > n/2, there is a constant ε0 > 0 and a family of continuous
maps

Φε(θ, U0) : R× Bm−1,k(ρ) → Em−1,k (1.5)

such that Φε(θ, 0) ≡ 0 and the following assertions are true for |ε| � ε0.
(i) If U0 = [u0, . . . , um−1] ∈ Bm−1,k(ρ) is a vector function such that

Uε(t, θ, U0) ∈ Bm−1,k(ρ) for t ∈ J,

where J ⊂ R is an interval containing the point θ ∈ R, then

U0(t− θ)Φε(θ, U0) = Φε(t,Uε(t, θ, U0)). (1.6)

(ii) For an arbitrary fixed θ ∈ R, the image Vε(ρ, θ) of the open ball Bm−1,k(ρ)
under the map Φε(θ, ·) is an open neighbourhood of zero in Em−1,k, and Φε(θ, ·)
specifies a homeomorphic map of Bm−1,k(ρ) onto Vε(ρ, θ).

(iii) The set Rθ × Vε(ρ, θ) =
{

(θ, U0) ∈ R × Em−1,k : U0 ∈ Vε(ρ, θ)
}
is open in

R× Em−1,k, and the inverse map

Φ−1ε (θ, U0) : Rθ ×Vε(ρ, θ) → Bm−1,k(ρ) (1.7)

is continuous for any fixed ε.
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We now consider the question of equivalence for the operator Uε(t, θ, ·) and the
resolving operator Vε(t, θ) of the Cauchy problem for the linear equation

Pε(t, x, ∂)u ≡
∑
|α|�m

(
pα + εqα(ε, t, x)

)
∂αu = 0. (1.8)

By definition, the linear operator Vε(t, θ), defined for all t, θ ∈ R, transforms
[u0, . . . , um−1] ∈ Em−1,k into the vector function (1.3), where u(t, x) is the solution
of problem (1.8), (1.1), (1.2) with J = R.

As is well known, if P is a strictly hyperbolic operator, then the roots τj(ξ),
j = 1, . . . , m, of the full symbol P (τ, ξ) lie in a strip |Re τ | � const for iξ ∈ Rn (for
example, see [7], Chapter 4, or [32], § 2.2). Let us set

σmax = max
j=1,...,m

sup
ξ∈iRn

|Re τj(ξ)|,

σmin = min
j=1,...,m

inf
ξ∈iRn

|Re τj(ξ)|.
(1.9)

We note that if the operator P (∂) satisfies Condition (H), then σmin � δ > 0.

Theorem 1.4. Let Conditions (P), (Q), and (H) be fulfilled. Then for any ρ > 0
and γ, 0 < γ < σmin/σmax, and an arbitrary integer k > n/2, there is a constant
ε0 = ε0(k, γ, ρ) > 0 and a family of continuous operators

Ψε(θ, U0) : R× Bm−1,k(ρ) → Em−1,k, |ε| � ε0, (1.10)

such that Ψε(θ, 0) ≡ 0, and the following assertions hold for |ε| � ε0.
(i) If U0 = [u0, . . . , um−1] ∈ Bm−1,k(ρ) is a vector function such that

Uε(t, θ, U0) ∈ Bm−1,k(ρ) for t ∈ J,

where J ⊂ R is an interval containing the point θ ∈ R, then

Vε(t, θ)Ψε(θ, U0) = Ψε(t,Uε(t, θ, U0)) for t ∈ J. (1.11)

(ii) For any fixed θ ∈ R, the image Wε(ρ, θ) of the open ball Bm−1,k(ρ) under
the map Ψε(θ, ·) is an open neighbourhood of zero in Em−1,k, and Ψε(θ, ·) specifies
a one-to-one map of Bm−1,k(ρ) onto Wε(ρ, θ). Moreover, the operator Ψε(θ, ·) and
its inverse operator Ψ−1ε (θ, ·) are Hölder continuous with exponent γ.

(iii) The set Rθ ×Wε(ρ, θ) =
{

(θ, U0) ∈ R × Em−1,k : U0 ∈Wε(ρ, θ)
}
is open in

R× Em−1,k, and the inverse map

Ψ−1ε (θ, U0) : Rθ ×Wε(ρ, θ) → Bm−1,k(ρ)

is continuous for any fixed ε.

The proofs of Theorems 1.3 and 1.4 are given in § 3.

Remark 1.5. As will be seen from the proofs of Theorems 1.3 and 1.4, for any ρ > 0,
there are ρ′, ρ′′ > 0 such that

Bm−1,k(ρ′) ⊂ Vε(ρ, θ), Wε(ρ, θ) ⊂ Bm−1,k(ρ′′), (1.12)

and ρ′ →∞ as ρ→∞. The proofs will also imply that if the non-linear operator Q
in (0.3) does not depend on t, then the linearizing operators Φε and Ψε do not depend
on θ.
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1.3. Examples. We present some examples of strictly hyperbolic operators satis-
fying Condition (H).

Example 1.6. Let a > 0, let b, σ ∈ R \ {0}, and let c ∈ Rn. We set

Pb,c(∂t, ∂x) = ∂t + c∂x + b, Pa,σ(∂t, ∂x) = ∂2t + σ∂t + (1 − a2∆), (1.13)

where ∆ is the Laplace operator. It is easy to see that (1.13) are strictly hyperbolic
operators satisfying Condition (H).

Example 1.7. Let a vector c ∈ Rn and real numbers aj, σj, j = 1, . . . , l, and b
be such that |c| < aj for all j, aj �= ak for j �= k, and b, σj �= 0. Then the strictly
hyperbolic operators

l∏
j=1

Paj,σj(∂t, ∂x), Pb,c(∂)
l∏

j=1

Paj,σj (∂t, ∂x)

satisfy Condition (H).

Example 1.8. Conditions (P) and (H) are stable with respect to small perturba-
tions of the symbol (see [32], Proposition 3.9). In other words, if an operator P (∂)
of order m satisfies these conditions and Q(∂) is an arbitrary operator of order m
with real coefficients, then P + νQ satisfies Conditions (P) and (H) for sufficiently
small ν ∈ R.

The next example shows that the estimate for the exponent γ in the condition
of Hölder continuity is exact in the case σmin = σmax.

Example 1.9. Let us consider the linear ODE

u̇ = −(1 + ε)u. (1.14)

In this case, we have σmin = σmax = 1, and the resolving operator of the Cauchy
problem for equation (1.14) has the form

Vε(t)u0 = e−(1+ε)tu0. (1.15)

Let a continuous operator Ψ : [0, ρ] → R satisfy the condition

U0(t)Ψ(u0) = Ψ(Uε(t)u0), 0 � u0 � ρ, t � 0, (1.16)

for some ε > 0 and ρ > 0. Then substituting (1.15) into (1.16) and setting u0 = ρ,
we obtain

e−tΨ(ρ) = Ψ(e−(1+ε)tρ),

whence it follows that

Ψ(u) = cu
1
1+ε , u > 0, c = Ψ(ρ)ρ−

1
1+ε .

Hence, the operator Ψ(u) is Hölder continuous with exponent γ = 1/(1 + ε), but
does not satisfy Lipschitz’ condition for any ε > 0.
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§ 2. Equivalence of linear equations
We shall show in this section that if Condition (H) holds, then the integral curves

of equation (1.8) can be mapped onto those of the equation

P (∂)u(t, x) = 0 (2.1)

using a time-preserving family of homeomorphisms. This assertion will be used in
the proof of Theorem 1 (see § 3).

2.1. Statement of the result. Recall the operators U0(t− θ) and Vε(t, θ) from
§§ 1.1 and 1.2, respectively.

Theorem 2.1. Let Conditions (P), (Q), and (H) hold. Then for any integer k � 0,
there is a constant ε0 = ε0(k) > 0 and a family of continuous maps

Lε(θ, U0) : R× Em−1,k → Em−1,k, |ε| � ε0, (2.2)

such that Lε(θ, 0) ≡ 0 and the following assertions are true for |ε| � ε0.
(i) U0(t− θ)Lε(θ, U0) = Lε(t,Vε(t, θ)U0) for all t, θ ∈ R and U0 ∈ Em−1,k.
(ii) For any fixed θ ∈ R, the operator Lε(θ, U0) specifies a homeomorphic map of

Em−1,k onto itself. Moreover, the inverse operator

L−1ε (θ, U0) : Rθ × Em−1,k → Em−1,k

is jointly continuous with respect to the variables (θ, U0).

Remark 2.2. As will be seen from the proof of the theorem, for any ρ > 0, there
are ρ′, ρ′′ > 0 such that the inclusion

Bm−1,k(ρ′) ⊂ Lε(θ,Bm−1,k(ρ)) ⊂ Bm−1,k(ρ′′) (2.3)

holds for the image of the ball Bm−1,k(ρ) under the map Lε, and ρ′ →∞ as ρ →∞.
The proof will also imply the if the coefficients qα do not depend on t, then the
operators Lε do not depend on θ.

Theorem 2.1 will be proved in § 2.4. To elucidate the main ideas of the proof,
we consider the special case (see § 2.2) in which all roots of the symbol P (τ, ξ) are
stable, that is, lie in the left half-plane. Furthermore, we shall need some results
in [3] relating to the property of exponential dichotomy for equation (1.8). They
are presented in § 2.3.

2.2. Proof of Theorem 2.1. The case of stable roots. We shall assume in
this section that the roots τj(ξ), j = 1, . . . , m, of the full symbol P (τ, ξ) satisfy
the condition

Re τj(ξ) � −σmin for iξ ∈ Rn, j = 1, . . . , m.

(1) As is shown in [32], Theorem 6.1, the inequality

‖Vε(t, θ)U0‖m−1,k � C1e
−µ(t−θ)‖U0‖m−1,k, t � θ, (2.4)
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holds for |ε| � ε0 � 1, where 0 < µ < σmin and the constant C1 > 0 does not
depend on U0. For given θ ∈ R and ε, |ε| � ε0, we define the seminorm in Em−1,k
by the formula

|U0|(ε,θ) =

(∫ +∞
θ

‖Vε(t, θ)U0‖2m−1,k dt
)1/2

, U0 ∈ Em−1,k. (2.5)

Let us show that the seminorm (2.5) is equivalent to ‖ · ‖m−1,k. More precisely,
there is a constant K > 1 not depending on ε or θ such that the inequality

K−1‖U0‖m−1,k � |U0|(ε,θ) �K‖U0‖m−1,k, U0 ∈ Em−1,k, (2.6)

holds. Indeed, by (2.4), we have

|U0|2(ε,θ) =

∫ +∞
θ

‖Vε(t, θ)U0‖2m−1,k dt � C21(2µ)−1‖U0‖2m−1,k.

To prove the reverse inequality, we need the following lemma.

Lemma 2.3. Suppose that Conditions (P) and (Q) hold. Then there are constants
ε0 > 0, κ > 0, and C > 0 such that the inequality

‖Vε(t, θ)U0‖m−1,k � C eκ|t−θ|‖U0‖m−1,k, t, θ ∈ R, U0 ∈ Em−1,k, (2.7)

holds for |ε| � ε0. More precisely, the operator Vε(t, θ)U0 is continuous in (t, θ, U0).

Inequality (2.7) was established in [12], Lemma 23.2.1. The continuity of Vε is
proved in the same way as assertion (iii) in Proposition 4.2.

We interchange t and θ in (2.7) and replace U0 by Vε(t, θ)U0, which results in

‖U0‖m−1,k � C2‖Vε(t, θ)U0‖m−1,k, |t− θ| � 1,

where the constant C2 > 0 does not depend on ε or U0. It follows that

|U0|2(ε,θ) �
∫ θ+1

θ

‖Vε(t, θ)U0‖2m−1,k dt � C−22 ‖U0‖2m−1,k,

which completes the proof of (2.6).
(2) Let us denote by Sε(θ) the sphere in Em−1,k of radius 1 (relative to the

norm | · |(ε,θ)) with centre zero:

Sε(θ) =
{
U0 ∈ Em−1,k : |U0|(ε,θ) = 1

}
.

We claim that for any non-zero solution u(t, x) of problem (1.8), (1.1), there is a
unique instant of time T such that

U(T ) ∈ Sε(T ), (2.8)
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where U(t) = D(t)u is the phase trajectory corresponding to the solution u(t, x)
(see (1.3)). Indeed, by the inequality

|U(θ)|2(ε,θ) =

∫ +∞
θ

‖U(t)‖2m−1,k dt >
∫ +∞
θ′

‖U(t)‖2m−1,k dt = |U(θ′)|2(ε,θ′),

where θ < θ′, the function |U(θ)|(ε,θ) is monotone increasing. Moreover, (2.4)
and (2.6) imply that

lim
θ→+∞

|U(θ)|(ε,θ) = 0, lim
θ→−∞

|U(θ)|(ε,θ) = +∞.

Therefore there is a unique T ∈ R satisfying the condition |U(T )|(ε,T ) = 1, which
is equivalent to (2.8).

For given ε, θ ∈ R and U0 ∈ Em−1,k, we denote by Tε(θ, U0) the T satisfying (2.8),
where U(t) = Vε(t, θ)U0. We define the desired map (2.2) by the formula

Lε(θ, U0) =

{ |Vε(T, θ)U0|−1(0,T ) U0(θ − T )Vε(T, θ)U0 for U0 �= 0,

0 for U0 = 0,
(2.9)

where T = Tε(θ, U0). Equivalently, if U0 ∈ Em−1,k lies on Sε(θ), then Lε(θ, U0)
is defined as the intersection point of the ray {λU0, λ > 0} and the sphere 2 S0 =
S0(θ). If the non-zero vector function U0 ∈ Em−1,k does not lie on Sε(θ), then the
map Lε(θ, U0) is defined in the following way: the vector U(T ), T = Tε(θ, U0),
which lies on the trajectory passing through U0 at time θ and satisfies (2.8) is
mapped to the sphere S0 using contraction or stretching, and the resulting function
is acted on by the operator U0(θ − T ), = Tε(θ, U0) (see Fig. 2, where Sε = Sε(T ),
A = Vε(T, θ)U0, and B = |Vε(T, θ)U0 |−1(0,T )Vε(T, θ)U0).

Figure 2. The map Lε(θ, U0)

(3) We claim that the map (2.9) possesses all the required properties. To this
end, we need three auxiliary lemmas.

2The norm | · |(ε,θ) does not depend on θ for ε = 0, and so neither does the sphere S0(θ).
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Lemma 2.4. (i) The modulus of the difference Tε(θ, U0)− θ is uniformly bounded
for any ρ > 1 if θ ∈ R and ρ−1 � ‖U0‖m−1,k � ρ.

(ii) There are constants C > 0 and κ > 0 not depending on ε or θ such that the
inequality

Tε(θ, U0) � θ + κ−1 ln ‖U0‖m−1,k + C (2.10)

holds if Tε(θ, U0) < θ.

Proof. (i) The function Tε(θ, U0) was defined as the unique solution of the equation

Fε(T, θ, U0) := |Vε(T, θ)U0|2(ε,T ) − 1 = 0. (2.11)

Consequently, by (2.6) we have

K−1 � ‖Vε(T, θ)U0‖m−1,k � K, T = Tε(θ, U0). (2.12)

Note that the norm ‖Vε(t, θ)U0‖m−1,k tends to zero as t− θ → +∞ and to infinity
as t− θ → −∞, and the convergence is uniform for ρ−1 � ‖U0‖m−1,k � ρ in both
cases. These properties and formula (2.12) imply that the difference Tε(θ, U0) − θ
is uniformly bounded.

(ii) It follows from (2.7) that

‖Vε(t, θ)U0‖m−1,k � C2e
κ(θ−t)‖U0‖m−1,k, t � θ.

Setting t = Tε(θ, U0) in this inequality and using (2.12), we obtain

− lnK � κ(θ − Tε(θ, U0)) + lnC2 + ln‖U0‖m−1,k,

whence follows the desired inequality (2.10).

Lemma 2.5. The function Tε(θ, U0) is continuous in (θ, U0) ∈ R × Em−1,k \ {0}.

Proof. Suppose that sequences {θi} ⊂ R and {Ui0} ⊂ Em−1,k converge to θ ∈ R
and U0 ∈ Em−1,k, respectively. We set Ti = Tε(θi, Ui0). By Lemma 2.4, the
difference Ti − θi is uniformly bounded with respect to i. Consequently, there is a
subsequence {Tik} converging to some limit T ′ ∈ R. On setting T = Tik , θ = θik ,
and U0 = Uik0 in (2.11) and passing to the limit as k →∞, we conclude that T ′ is a
solution of (2.11). By the uniqueness of this solution, it follows that T ′ = Tε(θ, U0)
and that the entire sequence {Ti} converges to T ′.

Lemma 2.6. For any fixed ε, θ ∈ R and U0 ∈ Em−1,k \ {0}, the relation 3

Tε(θ, U0) = T0(Lε(θ, U0)) (2.13)

holds

Proof. By definition, T0(Lε(θ, U0)) is the unique solution of the equation

|U0(T − θ)Lε(θ, U0)|(0,T ) = 1. (2.14)

3The function Tε(θ, U0) does not depend on θ for ε = 0, and we denote it by T0(U0).
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By (2.9), we have

U0(T − θ)Lε(θ, U0) = |Vε(T, θ)U0|−1(0,T )Vε(T, θ)U0

for T = Tε(θ, U0). It remains to note that the right-hand side of this equation
satisfies (2.14).

(4) Next, we show that the operator Lε(θ, U0) defined by formula (2.9) possesses
all the required properties.

The continuity of Lε(θ, U0) for U0 �= 0 is a simple consequence of Lemmas 2.3
and 2.5. Let us prove that Lε(θ, U0) is continuous at any point of the form (θ, 0).
For this, note that if ‖U0‖m−1,k � 1, then T = Tε(θ, U0) < θ, and therefore,
by (2.4), the inequality

‖U0(θ − T )V0‖m−1,k � C1e
−µ(θ−T )‖V0‖m−1,k (2.15)

holds for any V0 ∈ Em−1,k. It follows from (2.6) that

|Vε(T, θ)U0|(0,T ) � K−1‖Vε(T, θ)U0‖m−1,k. (2.16)

Substituting V0 = Vε(T, θ)U0 into (2.15) and taking (2.16) into account, we arrive
at the estimate

‖Lε(θ, U0)‖m−1,k � C1K e−µ(θ−T ). (2.17)

Formulae (2.10) and (2.17) imply that

‖Lε(θ, U0)‖m−1,k � C1K exp
(
µκ−1 ln ‖U0‖m−1,k + µC

)
� C3(κ, µ) ‖U0‖µ/κm−1,k,

and therefore Lε(θ, U0) is continuous at (θ, 0).
We now complete the proof of Theorem 2.1 for the case of stable roots.

Proof. (i) The desired relation is trivial for U0 = 0. Suppose that U0 �= 0 and fix
some arbitrary t, θ ∈ R. Direct verification shows that

Tε(θ, U0) = Tε(t,Vε(t, θ)U0). (2.18)

Setting T = Tε(θ, U0) and V0 = Vε(t, θ)U0 and using the group property of the
operators Vε and relation (2.18), we find

U0(t− θ)Lε(θ, U0) = |Vε(T, θ)U0|−1(0,T )U0(t− T )Vε(T, θ)U0

= |Vε(T, t)V0|−1(0,T )U0(t− T )Vε(T, t)V0
= Lε(t, V0).

(ii) We define the operator

Kε(θ, U0) =

{ |U0(T − θ)U0|−1(ε,T )Vε(θ, T )U0(T − θ)U0 for U0 �= 0,

0 for U0 = 0



452 L. R. Volevich and A. R. Shirikyan

by analogy with (2.9), where T = T0(U0), and prove that it is the inverse of Lε(θ, U0)
for any fixed θ.

Let us set T = Tε(θ, U0) and T ′ = T0(Lε(θ, U0)). By Lemma 2.7, we have
T = T ′. Therefore

U0(T ′ − θ)Lε(θ, U0) = |Vε(T, θ)U0|−1(0,T )Vε(T, θ)U0,

|U0(T ′ − θ)Lε(θ, U0)|(ε,T ) = |Vε(T, θ)U0|−1(0,T ),

whence it follows that Kε(θ, Lε(θ, U0)) = U0. The relation Lε(θ,Kε(θ, U0)) = U0
is proved in a similar manner.

Thus, the operator Lε(θ, ·) specifies a one-to-one map of the space Em−1,k
onto itself. Repeating literally the above argument, it is possible to prove that
L−1ε (θ, U0) = Kε(θ, U0) is jointly continuous with respect to the variables (θ, U0).

2.3. The property of exponential dichotomy. For µ, θ ∈ R and integers
k, l � 0, we define the space

Fl,k,[µ](R±(θ)) =
{
u(t, x) : eµt∂jt u ∈ Cb(R±(θ), H(l+k−j)), j = 0, . . . , l

}
,

where R±(θ) = [θ,±∞), and endow it with the norm

El,k,[µ](u,R±(θ)) = sup
±(t−θ)�0

eµ(t−θ)El,k(u, t),

where

E2l,k(u, t) =
l∑

j=0

‖∂jt u(t, ·)‖2(k+l−j).

Consider equation (1.8) with a strictly hyperbolic operator P (∂) satisfying
Condition (H). We set C±(δ) :=

{
τ ∈ C : ± Re τ � δ

}
and denote the numbers of

the roots of the symbol P (τ, ξ) in the half-planes C−(σmin) and C+(σmin) by ms

and mu, respectively.

Proposition 2.7. Suppose that Conditions (P), (Q), and (H) are satisfied. Then
for any µ, 0 � µ < σmin, and an arbitrary integer k � 0, there are positive constants
ε0 = ε0(k, µ) and C = C(k, µ) such that the following assertions are true for
|ε| � ε0.

(i) For any vector function Us = [u0, . . . , ums−1] ∈ Ems−1,k+mu , equation (1.8)
has a unique solution u ∈ Fm−1,k,[µ](R+(θ)) satisfying the initial conditions

∂jt u(θ, x) = uj(x) ∈ H(m−1+k−j), j = 0, . . . , ms − 1. (2.19)

This solution satisfies the inequality

Em−1,k,[µ](u,R+(θ)) � C

ms−1∑
j=0

‖uj‖(m−1+k−j). (2.20)
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Similarly, for an arbitrary vector function Uu = [u0, . . . , umu−1] ∈ Emu−1,k+ms,
equation (1.8) has a unique solution u ∈ Fm−1,k,[−µ](R−(θ)) satisfying the initial
conditions

∂jt u(θ, x) = uj(x) ∈ H(m−1+k−j), j = 0, . . . , mu − 1. (2.21)

This solution satisfies the inequality

Em−1,k,[−µ](u,R−(θ)) � C

mu−1∑
j=0

‖uj‖(m−1+k−j). (2.22)

(ii) The operator

Vs
ε (t, θ) : Ems−1,k+mu → Em−1,k (2.23)

transforming Us into the vector function (1.3), where u ∈ Fm−1,k,[µ](R+(θ)) is the
solution of problem (1.8), (2.19), is continuous with respect to (t, θ, Us). Similarly,
the operator

Vu
ε (t, θ) : Emu−1,k+ms → Em−1,k (2.24)

transforming Uu into the vector function (1.3), where u ∈ Fm−1,k,[−µ](R−(θ)) is the
solution of problem (1.8), (2.21), is continuous in (t, θ, Uu).

Assertion (i) of Proposition 2.7 was established in [3], Theorem 4.1. The conti-
nuity of (2.23) and (2.24) is proved in the same way as assertion (iii) in Proposi-
tion 4.2 (see § 4).

For an arbitrary θ ∈ R, we denote by Esm−1,k(θ) and Eum−1,k(θ) the corresponding
stable and unstable subspaces of Em−1,k. By definition, they consist of the vector
functions [u0, . . . , um−1] satisfying the respective relations

[u0, . . . , um−1] = Vs
ε (θ, θ)[u0, . . . , ums−1],

[u0, . . . , um−1] = Vu
ε (θ, θ)[u0, . . . , umu−1].

The assertion below was established in [3], Theorem 5.3.

Proposition 2.8. Under the hypotheses of Proposition 2.7, the direct decomposi-
tion

Em−1,k = Esm−1,k(ε, θ) � Eum−1,k(ε, θ) (2.25)

holds for any θ ∈ R and ε, |ε| � ε0. In this case, the projections Ps
ε (θ) and

Pu
ε (θ) corresponding to (2.25) are continuous with respect to θ in the strong operator

topology.4 and their norms are uniformly bounded with respect to (θ, ε).

4Recall that a sequence of linear maps Lk : X → Y (where X and Y are Banach spaces)
converges to zero in the strong operator topology if Lku→ 0 in Y for any u ∈ X.
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2.4. Proof of Theorem 2.1. The general case. We begin by presenting the
scheme of the proof. The operator Vs

ε (t, θ) defined for t � θ can be extended to the
half-line t � θ by setting

Vs
ε (t, θ) = Vε(t, θ)Vs

ε (θ, θ), t � θ. (2.26)

The operator Vu
ε (t, θ) can similarly be extended to t � θ. By the direct decompo-

sition (2.25), the operator Vε(t, θ) can be represented in the form

Vε(t, θ) = Vs
ε (t, θ)QmsPs

ε (θ) + Vu
ε (t, θ)QmuPu

ε (θ), (2.27)

where we set

Ql : Em−1,k → El−1,k+m−l, [u0, . . . , um−1] �→ [u0, . . . , ul−1

for l = 1, . . . , m. The first and second terms on the right-hand side of (2.27) corre-
spond to the dynamics on the families of stable and unstable subspaces Esm−1,s(θ)
and Eum−1,s(θ), respectively. Note that

Vs
ε (t, t)QmsU0 = U0 for U0 ∈ Esm−1,k(t), t ∈ R, (2.28)

whence
Vs
ε (t, θ)Qms = Vs

ε (t, t)
[
QmsVs

ε (t, θ)
]
Qms .

Hence, the dynamics on the stable and unstable subspaces is specified by the fam-
ily of operators QmsVs

ε (t, θ) : Ems−1,k+mu → Ems−1,k+mu , which is exponentially
asymptotically stable as t − θ → +∞,

‖QmsVs
ε (t, θ)Us‖ms−1,k+mu � C e−µ(t−θ)‖Us‖ms−1,k+mu, t � θ. (2.29)

Repeating the arguments in § 2.2, we can construct a family of continuous operators

Ls
ε(θ, Us) : R× Ems−1,k+mu → Ems−1,k+mu (2.30)

satisfying the relation

QmsUs
0 (t− θ)Ls

ε(θ, Us) = Ls
ε(t,QmsVs

ε (t, θ)Us), t, θ ∈ R, (2.31)

where Us
0 (t) denotes the operator Vs

ε (t, 0)|ε=0. A similar family

Lu
ε (θ, Uu) : R× Emu−1,k+ms → Emu−1,k+ms (2.32)

can be constructed for the operators QmuVu
ε (t, θ) specifying the dynamics on the

unstable subspaces. The desired map (2.2) is defined as the “sum” of the operators
Ls
ε and Lu

ε ,

Lε(θ, U0) = Us
0(0)Ls

ε(θ,QmsPs
ε (θ)U0) + Uu

0 (0)Lu
ε (θ,QmuPu

ε (θ)U0), (2.33)

where Uu
0 (t) = Vu

ε (t, 0)|ε=0. All the required properties can easily be verified.
We now proceed to the details of the proof, for which the auxiliary assertion

below will be needed.
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Proposition 2.9. Let Conditions (P), (Q), and (H) be fulfilled. Then for an arbi-
trary integer k � 0, there is a constant ε0 = ε0(k) > 0 and a family of continuous
maps Ls

ε (see (2.30)) such that the identity Ls
ε(θ, 0) ≡ 0 holds and the following

assertions are true for |ε| � ε0.
(i) Relation (2.31) holds for any t, θ ∈ R and Us ∈ Ems−1,k+mu.
(ii) For an arbitrary fixed θ ∈ R, the operator Ls

ε(θ, ·) specifies a homeomorphic
map of Ems−1,k+mu onto itself. Moreover, the inverse operator

Ks
ε (θ, Us) : R× Ems−1,k+mu → Ems−1,k+mu

is jointly continuous in the variables (θ, Us).

Remark 2.10. (1) We do not give a proof of Proposition 2.9 since the scheme given
in § 2.2 for Vε applies word-for-word to the operators QmsVs

ε . Indeed, the proof
of Theorem 2.1 in the case of stable roots was based on the continuity of the
operator Vε(t, θ)U0 with respect to (t, θ, U0) and on inequalities (2.4) and (2.7). The
joint continuity of the operator QmsVs

ε with respect to the variables (t, θ, Us) was
established in Proposition 2.7. Inequality (2.29) is an analogue of (2.4), and (2.26)
and (2.7) imply that

‖QmsVs
ε (t, θ)Us‖ms−1,k+mu � C eκ(θ−t)‖Us‖ms−1,k+mu, t � θ.

(2) A similar assertion is true for QmuVu
ε (t, θ), and we denote the corresponding

operators by Lu
ε and Ku

ε .
Let us define the operator Lε by formula (2.33). Then the continuity of Lε(θ, U0)

follows from that of the operators on the right-hand side of (2.33), and the relation
Lε(θ, 0) ≡ 0 is obvious.

Proof. (i) Applying the operator Us
0(0) to (2.31) and using (2.28) with ε = 0, we

obtain

Us
0 (t− θ)Ls

ε(θ, Us) = Us
0(0)Ls

ε(t,QmsVs
ε (t, θ)Us). (2.34)

Furthermore, we note that

Vs
ε (t, θ)QmsPs

ε (θ) = Vε(t, θ)Ps
ε (θ) = Ps

ε (t)Vε(t, θ).

Setting Us = QmsPs
ε (θ)U0 in (2.34) and using (2.26), we arrive at the relation

U0(t− θ)Us
0 (0)Ls

ε(θ,QmsPs
ε (θ)U0) = Us

0 (t− θ)Ls
ε(θ,QmsPs

ε (θ)U0)

= Us
0 (0)Ls

ε(θ,QmsVs
ε (t, θ)QmsPs

ε (θ)U0)

= Us
0 (0)Ls

ε(θ,QmsVε(t, θ)Ps
ε (θ)U0)

= Us
0 (0)Ls

ε(θ,QmsPs
ε (t)Vε(t, θ)U0). (2.35)

Similarly,

U0(t− θ)Uu
0 (0)Lu

ε (θ,QmuPu
ε (θ)U0) = Uu

0 (0)Lu
ε (θ,QmuPu

ε (t)Vε(t, θ)U0). (2.36)
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Adding together (2.35) and (2.36) and taking (2.33) into account, we derive the
desired relation.

(ii) By analogy with (2.33), we set

Kε(θ, U0) = Us
ε (θ, θ)Ks

ε (θ,QmsPs
0U0) + Uu

ε (θ, θ)Ku
ε (θ,QmuPu

0U0), (2.37)

where Ks
ε and Ku

ε are the operators defined in Proposition 2.9 and Remark 2.10
and Ps

0 and Pu
0 denote the projections Ps

ε (θ) and Pu
ε (θ) for ε = 0. It is easy to

see that the operator (2.37) from R × Em−1,k to Em−1,k is jointly continuous with
respect to the variables (θ, U0). Hence, assertion (ii) will be proved if we can show
that Lε(θ, ·) and Kε(θ, ·) are mutually inverse maps for any θ.

For example, let us verify the relation

Kε(θ, Lε(θ, U0)) = U0, U0 ∈ Em−1,k. (2.38)

For this purpose, we note that

Ps
0Lε(θ, U0) = Us

0 (0)Ls
ε(θ,QmsPs

ε (θ)U0).

This property together with assertion (ii) in Proposition 2.9 and the relation
QmsUs

0 (0)Us = Us implies that

Ks
ε (θ,QmsPs

0Lε(θ, U0)) = Ks
ε (θ, Ls

ε(θ,QmsPs
ε (θ)U0)) = QmsPs

ε (θ)U0,

and therefore, by (2.28),

Vs
ε (θ, θ)Ks

ε (θ,QmsPs
0Lε(θ, U0)) = Ps

ε (θ)U0.

Similarly,

Vu
ε (θ, θ)Ku

ε (θ,QmuPu
0Lε(θ, U0)) = Pu

ε (θ)U0.

Adding together these relations, we obtain (2.38).
The relation

Lε(θ,Kε(θ, U0)) = U0, U0 ∈ Em−1,k,

can be proved in just the same simple manner. Theorem 2.1 is proved completely.

§ 3. Proof of the main results
This section is devoted to proving Theorems 1.3 and 1.4. We first present an aux-

iliary assertion on global linearization for an equation with truncated non-linearity
and then show that Theorems 1.3 and 1.4 are a simple consequence of this and
Theorem 2.1.

3.1. Reducing Theorems 1.3 and 1.4 to linearizing an equation with
truncated non-linearity. We write the function q (see (0.5)) in the form

q(ε, t, x, ∂m−1u) = q(ε, t, x, ∂m−1x u, ∂m−2x ∂tu, . . . , ∂
m−1
t u),
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where ∂kx = {∂αx : |α| � k}, and set

Qρ(ε, t, U) = χ
(
ρ2 − ‖U‖2m−1,k

)
q(ε, t, x, ∂m−1x u0, ∂

m−2
x u1, . . . , um−1) (3.1)

for given ρ > 0 and k � 0, where U = [u0, . . . , um−1] ∈ Em−1,k, χ(s) ∈ C∞(R),
χ(s) = 0 for s � −1, and χ(s) = 1 for s � 0. The properties of the function Qρ

needed in what follows are listed in Proposition 4.1.
Let us consider the following equation obtained from (0.3) by replacing the non-

linearity q(ε, t, x, ∂m−1u) by Qρ(ε, t, U(t)), where U(t) = D(t)u:

Pε(t, x, ∂)u + εQρ(ε, t, U(t)) = 0. (3.2)

By Proposition 4.2 stated below, the Cauchy problem for equation (3.2) with |ε| � 1
is well posed, that is, for any θ ∈ R and an arbitrary vector function [u0, . . . , um−1] ∈
Em−1,k, there is a unique solution of (3.2) satisfying the relations

∂jt u ∈ C(R, H(m−1+k−j)), j = 0, . . . , m− 1, (3.3)

and the initial conditions

∂jt u(θ, x) = uj(x) ∈ H(m−1+k−j), j = 0, . . . , m− 1. (3.4)

We write the resolving process for problem (3.2)–(3.4) (see Proposition 4.2) in the
form

Uρ
ε (t, θ, U0) : Rt × Rθ × Em−1,k → Em−1,k.

To prove Theorems 1.3 and 1.4, we need the following assertion. Recall the
numbers σmin and σmax from (1.9).

Theorem 3.1. Let Conditions (P), (Q), and (H) hold. Then for any ρ > 0 and γ,
0 < γ < σmin/σmax, and an arbitrary integer k > n/2, there is a constant
ε0 = ε0(k, γ, ρ) > 0 and a family of continuous operators

Nε,ρ(θ, U0) : R× Em−1,k → Em−1,k, |ε| � ε0, (3.5)

such that Nε,ρ(θ, 0) ≡ 0 and the following assertions hold for |ε| � ε0.
(i) Vε(t, θ)Nε,ρ(θ, U0) = Nε,ρ(t,Uρ

ε (t, θ, U0)) for all t, θ ∈ R and U0 ∈ Em−1,k.
(ii) The operator Nε,ρ(θ, ·) specifies a one-to-one map of Em−1,k onto itself for

any fixed θ ∈ R. Moreover, the operator Nε,ρ(θ, ·) and its inverse N−1ε,ρ (θ, ·) are
Hölder continuous with exponent γ.

(iii) The inverse operator N−1ε,ρ (θ, U0) : Rθ × Em−1,k → Em−1,k is jointly contin-
uous in the variables (θ, U0).

Theorem 3.1 will be proved in §§ 3.2 and 3.3.

Proof of Theorem 1.4. Let us fix some arbitrary ρ > 0 and γ, 0 < γ < σmin/σmax,
and an arbitrary integer k > n/2 and take a sufficiently small constant ε0 > 0 such
that the assertion of Theorem 3.1 holds for |ε| � ε0. We define the operator Ψε as
the restriction of Nε,ρ to the set R× Bm−1,k(ρ),

Ψε(θ, U0) = Nε,ρ(θ, U0), θ ∈ R, U0 ∈ Bm−1,k(ρ).
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Clearly, we have Ψε(θ, 0) ≡ 0, and the operator Ψε(θ, U0) is jointly continuous with
respect to its variables and is invertible for any fixed θ, and the inverse operator Ψ−1ε

coincides with the restriction of N−1ε,ρ to the image Wε(θ, ρ) of the ball Bm−1,k(ρ)

under the map Nε,ρ(θ, ·). Consequently, the operator Ψ−1ε (θ, U0) is also jointly
continuous with respect to its variables. Since equations (0.3) and (3.2) coincide
in the ball Bm−1,k(ρ), the desired assertion (i) follows from Theorem 3.1 (i). The
set Wε(θ, ρ) is the image of an open ball under a homeomorphism and therefore is
also open. Hölder continuity of the operator Ψε(θ, ·) and its inverse follows from
analogous properties of Nε,ρ. It remains to note that the set Rθ × Wε(θ, ρ) is
the inverse image of the open ball Bm−1,k(ρ) under the continuous map N−1ε,ρ and
therefore is open.

Proof of Theorem 1.3. We fix some arbitrary ρ > 0 and γ, 0 < γ < σmin/σmax,
and an arbitrary integer k > n/2 and choose a sufficiently small constant
ε0 > 0 such that the assertions of Theorems 2.1 and 3.1 hold for |ε| � ε0. Let
us define the operator Φε as the restriction of the composite of Lε and Nε,ρ to the
set R× Bm−1,k(ρ),

Φε(θ, U0) = Lε(θ, Nε,ρ(θ, U0)), θ ∈ R, U0 ∈ Bm−1,k(ρ).

As in the proof of Theorem 4.1, all the required properties can be verified easily.

Remark 3.2. The proof of Theorem 3.1 will be used to show that the operator Nε,ρ

satisfies the inequality

‖Nε,ρ(θ, U0)− U0‖m−1,k � const � 1 for all θ ∈ R, U0 ∈ Em−1,k. (3.6)

An example from the theory of ordinary differential equations shows that the
estimate for the Hölder exponent γ is exact in the class of operators satisfying
condition (3.6). Namely, let us consider the system

u̇1 = u1 + εq(u2),

u̇2 = u3, (3.7)

u̇3 = 4u3 + 4u2,

where ε > 0 and

q ∈ C∞0 (R), q � 0, q(u) = u2 for |u| � 1. (3.8)

In this case, we have σmin = 1 and σmax = 2. Let Uε(t, u
0) : R3 → R3, t ∈ R,

u0 ∈ R, denote the resolving operator in the Cauchy problem for the system (3.7).
As shown in [30], § 4, there is a unique homomorphism N : R3 → R3 for |ε| � 1
that satisfies the conditions

U0(t)N(u0) = N(Uε(t, u
0)), t ∈ R, u0 ∈ R3,

|N(u0) − u0| � const � 1, u0 ∈ R3,
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where | · | denotes the norm in R3. We claim that N does not satisfy Hölder’s
condition with exponent γ = 1/2. Indeed, according to [2], § 34, the operator N
has the form

N(u0) = u0 + ε

∫ +∞
0

U0(−τ)[q(u2(τ, u
0)), 0, 0] dτ, (3.9)

where u2(τ, u
0) is the second component of the vector function Uε(t, u

0). In partic-
ular, setting u0 = (1/2)[0, 0, v], 0 < v � 1, we can write

N1(u
0) = ε

∫ +∞
0

e−τ q(τe2τv) dτ

for the first component of (3.9). Suppose that N satisfies Hölder’s condition with
exponent γ = 1

2 . Then

|N1(u0)| � const |v|1/2. (3.10)

On the other hand, denoting the unique solution of the equation τe2τv = 1 by
h(v) > 0, we readily conclude that

h(v) +
1

2
ln v → +∞ as v → +0. (3.11)

Therefore, by (3.8), we have

N1(u
0) � ε

∫ h(v)

0

e−τ (τe2τv)2 dτ � ε

6
(vh(v))1/2.

The resulting inequality contradicts (3.10).

3.2. Proof of Theorem 3.1. We shall need an auxiliary assertion (see Proposi-
tion 3.3 below). To state it, we take equation (3.2) with the function Qρ replaced
by another function Rρ of the form (3.1),

Pε(t, x, ∂)v + εRρ(ε, t, V (t)) = 0. (3.12)

Here V (t) = V (t, ·) = D(t)v and

Rρ(ε, t, V ) = χ
(
ρ2 − ‖V ‖2m−1,k

)
r(ε, t, x, ∂m−1x v0, ∂

m−2
x v1, . . . , vm−1), (3.13)

where V = [v0, . . . , vm−1] ∈ Em−1,k and r(ε, t, x, z) is a smooth function. As in the
case of equation (3.2), we consider the solutions of equation (3.12) that satisfy the
conditions

∂jt v ∈ C(R, H(m−1+k−j)), j = 0, . . . , m− 1. (3.14)

For a given µ � 0 and arbitrary integers k, l � 0, we define the space

Fl,k,[µ,−µ] =
{
u(t, x) : e−µ|t|∂jt u ∈ Cb(R, H

(l+k−j)), j = 0, . . . , l
}

(3.15)

equipped with the norm

El,k,[µ,−µ](u) = sup
t∈R

e−µ|t|El,k(u, t). (3.16)

If µ = 0, then we write Fl,k and El,k(u) instead of Fl,k,[µ,−µ] and El,k,[µ,−µ](u).
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Proposition 3.3. Let Conditions (P), (Q), and (H) hold and let the function
r(ε, t, x, z) in (3.13) satisfy the same conditions as q(ε, t, x, z). Then for any ρ > 0,
κ > σmax, and µ, 0 < µ < σmin, and an arbitrary integer k > n/2, there are
constants ε0 > 0 and C > 0 such that the following assertions are true for |ε| � ε0.

(i) For any θ ∈ R and U0 = [u0, . . . , um−1] ∈ Em−1,k, there is a unique solution
v(t, x) =: FQρ,Rρ(θ, U0) of (3.12), (3.14) such that

v ∈ Fm−1,k,[κ,−κ] , u− v ∈ Fm−1,k, (3.17)

where u(t, x) is the solution of (3.2)–(3.4).
(ii) Let vi = FQρ,Rρ(θi, Ui0), i = 1, 2, where θi ∈ R and Ui0 ∈ Em−1,k. Then

Em−1,k,[κ,−κ](v1 − v2) � C
(
‖U10 − U20‖m−1,k + ‖U10 − U20‖γm−1,k

)
, (3.18)

where γ = µ/κ.
(iii) Let sequences {θi} ⊂ R and {Ui0} ⊂ Em−1,k converge to the respective limits

θ ∈ R and U0 ∈ Em−1,k and let vi = FQρ,Rρ(θi, Ui0) and v = FQρ,Rρ(θ, U0). Then

Em−1,k,[κ,−κ](vi − v) → 0 for i →∞. (3.19)

We assume that Proposition 3.3 is established and complete5 the proof of
Theorem 3.1.

Let us define the desired map (3.5) by the formula

Nε,ρ(θ, U0) = D(θ)
(
FQρ,Rρ(θ, U0)|Rρ≡0

)
,

where D(θ) is the operator defined in (1.3). The relation Nε,ρ(θ, 0) ≡ 0 is obvious.
By assertion (iii) in Proposition 3.3, the operator Nε,ρ is jointly continuous with
respect to the variables (θ, U0).

Proof of (i). Let us fix some arbitrary θ and U0 = [u0, . . . , um−1] ∈ Em−1,k
and denote by u(t, x) the solution of problem (3.2)–(3.4). We set v(t, x) =
FQρ,Rρ(θ, U0)|Rρ≡0. Let U(t) and V (t) be the phase trajectories corresponding
to the solutions u(t, x) and v(t, x). It follows from assertion (i) of Proposition 3.3
that

v = FQρ,Rρ(t, U(t))|Rρ≡0, t ∈ R,
and therefore

V (t) = D(t)
(
FQρ,Rρ(θ, U0)|Rρ≡0

)
= D(t)

(
FQρ,Rρ(t, U(t))|Rρ≡0

)
,

whence the desired relation follows.

Proof of (ii) and (iii). Simple verification shows that

N−1ε,ρ (θ, U0) := D(θ)
(
FRρ,Qρ(θ, U0)|Rρ≡0

)
is the inverse operator of Nε,ρ(θ, ·) for any fixed θ ∈ R. Consequently, Hölder con-
tinuity of the operators Nε,ρ(θ, ·) and N−1ε,ρ (θ, ·) follows from inequality (3.18), and

the joint continuity of N−1ε,ρ with respect to the variables (θ, U0) from assertion (iii)
of Proposition 3.3.

5We repeat the argument used in [28].
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3.3. Proof of Proposition 3.3. (i) We seek the function v(t, x) in the form

v = u + w, w ∈ Fm−1,k. (3.20)

Substituting (3.20) into (3.12) and taking (3.2) into consideration, we derive the
equation

Pε(t, x, ∂)w = εM(U,W ), M(U,W ) = Qρ(ε, t, U)− Rρ(ε, t, U + W ) (3.21)

for w(t, x), where U = D(t)u and W = D(t)w. Using the contraction mapping
principle, we see that equation (3.21) is uniquely soluble for |ε| � 1 in the space
Fm−1,k.

Let us consider the operator A transforming the function z ∈ Fm−1,k into the
solution w ∈ Fm−1,k of the equation

Pε(t, x, ∂)w = εM(U, Z), Z = D(t)z. (3.22)

We show that the operator A is well defined and transforms the space Fm−1,k
into itself. Indeed, by Proposition 4.1 (i), if z ∈ Fm−1,k, then M(U, Z) ∈ F0,k.
Therefore, according to Proposition 4.3 with µ = 0, equation (3.22) has a unique
solution w ∈ Fm−1,k for |ε| � 1.

We now prove that A is a contraction map. Let wi = A(zi), i = 1, 2. Then the
function w = w1 − w2 ∈ Fm−1,k satisfies the equation

Pε(t, x, ∂)w = ε
(
M(U, Z2)−M(U, Z1)

)
,

where Zi = D(t)zi, i = 1, 2. Consequently, by inequality (4.8) with µ = θ = 0, we
have

Em−1,k(w) � C1|ε|E0,k(M(U, Z1) −M(U, Z2)). (3.23)

Application of inequality (4.2) with γ = 1 to the right-hand side of (3.23) results in

E0,k(M(U, Z1)−M(U, Z2)) � C2Em−1,k(z1 − z2).

Comparing this estimate with (3.23), we arrive at the inequality

Em−1,k(A(z1)− A(z2)) � C1C2|ε|Em−1,k(z1 − z2),

whence it follows that A(z) is a contraction map.
We have thus established the existence and uniqueness of the solutionw ∈ Fm−1,k

of equation (3.21), which implies the desired assertion.
(ii) We claim that if vi = FQρ,Rρ(θ, Ui0), i = 1, 2, then

Em−1,k,[µ,−µ](S(θ)(w1 −w2)) � C3‖U10 − U20‖γm−1,k, (3.24)

where wi = vi − ui and ui(t, x) is the solution of problem (3.2)–(3.4) with Cauchy
data Ui0. Indeed, let us set w = w1 − w2, Ui = D(t)ui, and Wi = D(t)wi. Then
the function w(t, x) ∈ Fm−1,k,[µ,−µ] is a solution of the equation

Pε(t, x, ∂)w = εh(t, x), h(t, x) = Rρ(ε, t, U2 + W2)− Rρ(ε, t, U1 + W1). (3.25)
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By inequality (4.2),

‖h(t, ·)‖k � C4
(
‖U2(t, ·)− U1(t, ·)‖γm−1,k + ‖W2(t, ·)−W1(t, ·)‖m−1,k

)
,

whence it follows that h ∈ F0,k,[µ,−µ] and

E0,k,[µ,−µ](S(θ)h) � C4 sup
t∈R

(
e−µ|t−θ|

[
‖U2(t, ·)− U1(t, ·)‖γm−1,k

+ ‖W2(t, ·)−W1(t, ·)‖m−1,k
])

� C4

(
Eγ

m−1,k,[κ,−κ]
(
S(θ)(u2 − u1)

+ Em−1,k,[µ,−µ](S(θ)w)
))

. (3.26)

According to (4.6),

Em−1,k,[κ,−κ](S(θ)(u2 − u1)) � K2‖U20 − U10‖m−1,k. (3.27)

Substituting (3.27) into (3.26), we obtain

E0,k,[µ,−µ](S(θ)h) � C5
(
‖U20 − U10‖γm−1,k + Em−1,k,[µ,−µ](S(θ)w)

)
. (3.28)

By Proposition 4.3, the solution w ∈ Fm−1,k,[µ,−µ] of (3.25) satisfies the inequality

Em−1,k,[µ,−µ](S(θ)w) � K3|ε|E0,k,[µ,−µ](S(θ)h). (3.29)

Comparing (3.28) and (3.29), we arrive at the inequality

Em−1,k,[µ,−µ](S(θ)w) � K3C5|ε|
(
‖U20 − U10‖γm−1,k + Em−1,k,[µ,−µ](S(θ)w)

)
,

whence follows (3.24) for |ε| � 1.
Next, we prove (3.18). By the representation (3.20) for the functions vi, i = 1, 2,

Em−1,k,[κ,−κ](S(θ)(v1 − v2))

� Em−1,k,[κ,−κ](S(θ)(u1 − u2)) + Em−1,k,[µ,−µ](S(θ)(w1 − w2)).

Therefore the desired estimate is a consequence of (3.24) and (3.27).
(iii) We denote the solution of problem (3.2)–(3.4) with Cauchy data U0 by u(t, x)

and the solution of the same problem with the initial point θi and Cauchy data Ui0

by ui(t, x). In view of Proposition 4.2, it follows that

Ui(θ) → U(θ) = U0 in Em−1,k for i →∞, (3.30)

where Ui(t) = D(t)ui and U(t) = D(t)u. Since the solution v(t, x) of (3.12), (3.14)
that satisfies conditions (3.17) is unique, we have

vi = FQρ,Rρ(θ, Ui(θ)) for all i.

Therefore, by (3.18),

Em−1,k,[κ,−κ](S(θ)(vi − v)) � C
(
‖Ui(θ) − U0‖m−1,k + ‖Ui(θ) − U0‖γm−1,k

)
.

Comparing this inequality with (3.30), we obtain (3.19). The proof of Proposi-
tion 3.3 is complete.
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§ 4. Appendix
4.1. Truncated non-linearity. Recall the functionQρ(ε, t, U) from formula (3.1).

Proposition 4.1. The assertions below hold for any ε ∈ [−1, 1] and ρ > 0 and
an arbitrary integer k > n/2.

(i) The operator Qρ(ε, t, U) : Rt × Em−1,k → H(k) is infinitely Frechét differ-
entiable, and all the derivatives are uniformly bounded with respect to (ε, t, U) ∈
[−1, 1]×Rt × Em−1,k for any fixed ρ > 0.

(ii) For any γ, 0 < γ � 1, there is a K1 = K1(ρ, k, γ) > 0 such that

‖Qρ(ε, t, U)‖(k) � K1min
{
ρ, ‖U‖m−1,k

}
, (4.1)

‖Qρ(ε, t, U)−Qρ(ε, t, V )‖(k) � K1
(
‖U1 − V1‖m−1,k + ‖U2 − V2‖γm−1,k

)
, (4.2)

where U, V ∈ Em−1,k, U = U1 + U2, and V = V1 + V2.

Proof. We confine ourselves to proving (4.2) since assertions of type (i) are well
known in theory of partial differential equations (for example, see [7], Chapter 7, § 3).
As to inequality (4.1), it follows readily from the property that the function Qρ is
compactly supported and its derivative is uniformly bounded.

For γ = 1 (4.2) is a simple consequence of the mean value formula. It is not
obvious that any number in the interval (0, 1) can serve as γ.

(4.2) is trivial for min
{
‖U‖m−1,k, ‖V ‖m−1,k

}
� ρ. Therefore it can be assumed

that ‖U‖m−1,k � ρ. We first suppose that ‖V ‖m−1,k � 3ρ. Let Q′ρ denote the
derivative of Qρ with respect to U . Then, by the mean value theorem and the
uniform boundedness of Q′ρ, we have

‖Qρ(ε, t, U)−Qρ(ε, t, V )‖(k) � C1‖U − V ‖m−1,k. (4.3)

We note that if ‖U2 − V2‖m−1,k � 1, then

‖U − V ‖m−1,k � ‖U1 − V1‖m−1,k + ‖U2 − V2‖m−1,k
� ‖U1 − V1‖m−1,k + ‖U2 − V2‖γm−1,k, (4.4)

and if ‖U2 − V2‖m−1,k � 1, then

‖U − V ‖m−1,k � 4ρ � 4ρ
(
‖U1 − V1‖m−1,k + ‖U2 − V2‖γm−1,k

)
. (4.5)

Comparing (4.3)–(4.5), we obtain (4.2).
We now suppose that ‖V ‖m−1,k � 3ρ. Then ‖U −V ‖m−1,k � 2ρ, and therefore6

‖U1 − V1‖m−1,k + ‖U2 − V2‖γm−1,k � ργ .

This together with (4.1) implies that

‖Qρ(ε, t, U)−Qρ(ε, t, V )‖(k) = ‖Qρ(ε, t, U)‖(k) � C2ρ

� C2ρ
1−γ(‖U1 − V1‖m−1,k + ‖U2 − V2‖γm−1,k

)
.

The proposition is proved.

6Without loss of generality, we assume that ρ � 1.
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4.2. The Cauchy problem with truncated non-linearity. Recall the num-
ber σmax from (1.9).

Proposition 4.2. Let Conditions (P) and (Q) be fulfilled. Then for any ρ > 0
and κ > σmax and an arbitrary integer k > n/2, there are constants ε0 > 0 and
K2 > 0 such that the following assertions are true for |ε| � ε0.

(i) For any θ ∈ R and an arbitrary set of Cauchy data [u0, . . . , um−1] ∈ Em−1,k,
problem (3.2)–(3.4) has a unique solutions u(t, x). If ui(t, x), i = 1, 2, are two
solutions of this problem that correspond to Cauchy data Ui0 ∈ Em−1,k, then

Em−1,k(u1 − u2, t) � K2 e
κ|t−θ|‖U10 − U20‖m−1,k. (4.6)

(ii) The operator Uρ
ε (t, θ, U0) : Rt × Rθ × Em−1,k → Em−1,k transforming U0 =

[u0, . . . , um−1] into the vector function (1.3) is infinitely Frechét differentiable with
respect to U0 for any fixed t and θ.

(iii) The operator Uρ
ε is continuous in (t, θ, U0) ∈ Rt ×Rθ × Em−1,k.

Proof. We shall prove only assertion (iii) since (i) and (ii) are consequences of
general results on ordinary differential equations in a Banach space.

Let sequences {ti}, {θi} ⊂ R and {Ui0} ⊂ Em−1,k converge to the respective
limits t, θ ⊂ R and U0 ⊂ Em−1,k. We denote the solution of problem (3.2)–(3.4)
by u(t, x) and the corresponding phase trajectory by U(t) (see (1.3)). Then, by the
group property of the operators Uρ

ε (t, θ, U0), we have

Uρ
ε (ti, θi, Ui0)− Uρ

ε (t, θ, U0) =
(
Uρ
ε (ti, θi, Ui0) −Uρ

ε (ti, θi, U0)
)

+
(
Uρ
ε (ti, θi, U0)− Uρ

ε (ti, θi, U(θi))
)

+
(
U(ti) − U(t)

)
.

Application of (4.6) yields the inequality

‖Uρ
ε (ti, θi, Ui0)−Uρ

ε (t, θ, U0)‖m−1,k
� const

(
‖Ui0 − U0‖m−1,k + ‖U(θ) − U(θi)‖m−1,k

)
+ ‖U(ti) − U(t)‖m−1,k,

whose right-hand side tends to zero as i →∞.

4.3. Hyperbolic operators in function spaces with exponential weight
with respect to ttt. We consider the non-homogeneous equation

Pε(t, x, ∂)u ≡
∑
|α|�m

(
pα + εqα(ε, t, x)

)
∂αu = f(t, x). (4.7)

Recall the space Fl,k,[µ,−µ] and the norm El,k,[µ,−µ](u) from (3.15) and (3.16). The
following assertion was proved in [3], Theorem 2.7.

Proposition 4.3. Suppose that Conditions (P), (Q), and (H) hold. Then, for any
µ, 0 � µ < σmin, and an arbitrary integer k � 0, there are positive constants ε0 =
ε0(k, µ) and K3 = K3(k, µ) such that equation (4.7) possesses a unique solution u ∈
Fm−1,k,[µ,−µ] for an arbitrary right-hand side f ∈ F0,k,[µ,−µ] if |ε| � ε0. This
solution satisfies the inequality

Em−1,k,[µ,−µ](S(θ)u) � K3E0,k,[µ,−µ](S(θ)f), θ ∈ R, (4.8)

where S(θ) is the shift operator with respect to t (that is, S(θ)w(t, x) = w(t+θ, x)).
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PART II. THE CENTRE MANIFOLD THEOREM

§ 5. Main results and scheme of proofs
5.1. Statement of results. We consider equation (0.3) with operators P and
Q satisfying Conditions (P) and (Q) in § 1.1. Recall that the phase space Em−1,k
of (0.3) is defined as the direct product of the Sobolev spaces H(m−1+k−j), j =
0, . . . , m− 1, with the norm

‖U‖m−1,k =

(m−1∑
j=0

‖uj‖2(m−1+k−j)
)1/2

, U = [u0, . . . , um−1],

and Bm−1,k(ρ) denotes an open ball of radius ρ > 0 with centre zero in Em−1,k.
Also recall the resolving operator of the Cauchy problem for equation (0.3) from
§ 1.1 (see (1.4)).

For an operator P (∂) satisfying Condition (Hc) (see Introduction), the number
of roots of the full symbol P (τ, ξ) that lie in the strip |Re τ | � ν is denoted by mc.
We set mh = m−mc. The following theorem is the main result in the second part
of this paper.

Theorem 5.1. Let Conditions (P), (Q), and (Hc) hold. Let γ ∈ R and an integer
l � 1 satisfy the inequalities

0 < γ < 1, lν + γ < δ. (5.1)

Then, for an arbitrary integer k > n/2 and any ρ > 0 and µ ∈ (ν, δ/l), there are
constants ε0 > 0 and C > 0 and a family of continuous operators7

Rj(ε; θ, u0, . . . , umc−1) : Rθ ×Bmc−1,k+mh(ρ) → H(m−1+k−j), j = mc, . . . , m− 1,

such that Rj(ε; θ, 0) = 0 and the following assertions are true for |ε| � ε0.
(i)Local invariance. The family of manifolds

M(θ, ρ) =
{

[u0, . . . , um−1] ∈ Bm−1,k(ρ) : uj

= Rj(ε; θ, u0, . . . , umc−1), j �mc

}
(5.2)

is compatible with the action of the resolving operator Uε(t, θ, ·). In other words,
if U0 ∈ M(θ, ρ) and Uε(t, θ, U0) ∈ Bm−1,k(ρ) for t ∈ J and an interval J ⊂ R
containing the point θ, then Uε(t, θ, U0) ∈M(t, ρ) for t ∈ J .

(ii)Attraction property. Let the initial point θ and Cauchy data U0 ∈ Bm−1,k(ρ)
satisfy the condition Uε(t, θ, U0) ∈ Bm−1,k(ρ1) for t � θ and some ρ1 < ρ. Then
there are T � θ and V0 ∈M(T, ρ) such that

‖Uε(t, θ, U0)−Uε(t, T, V0)‖m−1,k � Ce−µ(t−θ), t � T. (5.3)

A similar assertion is true if the phase trajectory Uε(t, θ, U0) belongs to Bm−1,k(ρ1)
on the semi-axis t � θ. Moreover, if the phase trajectory D(t)u of a solution

7The number ε is regarded as a parameter.
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defined throughout the time axis is entirely contained in the ball Bm−1,k(ρ), then
D(t)u ∈M(t, ρ) for all t ∈ R.

(iii) Smoothness. For any fixed ε and θ, the operator Rj(ε; θ, ·) belongs to

the class C l,γ(Bmc−1,k+mh(ρ), H(m−1+k−j)) and the norm ‖Rj‖Cl,γ is uniformly
bounded with respect to (ε, θ).

We now proceed to describe the operators Rj(ε; θ, ·). For this we need a class of
symbols of pseudo-differential operators. Such symbols appear in the factorization
of strictly hyperbolic polynomials satisfying Condition (Hc).

Let Sj denote the set of functions p(ε, y, ξ) that are defined and infinitely differ-
entiable for (ε, y, ξ) ∈ [−1, 1]×Rn+1

y × iRn and satisfy the following conditions:
(i)

[p]j,α,β := sup
(ε,y,ξ)

|∂αξ ∂βz p(ε, y, ξ)|〈ξ〉|α|−j <∞

for any multi-indices α and β, where 〈ξ〉 =
(
1 + |ξ1|2 + · · ·+ |ξn|2

)1/2
;

(ii) there is a function p0(ε, y, ξ) ∈ C∞([−1, 1]× Rn+1
y × (iRn \ {0})) positively

homogeneous of order j with respect to ξ such that

[p− χp0]j−1,α,β <∞ for any multi-indices α, β,

where χ(ξ) ∈ C∞(iRn), χ(ξ) = 0 for |ξ| < 1, and χ(ξ) = 1 for |ξ| > 2.
With every symbol p(ε, y, ξ) we associate the pseudo-differential operator

p(ε, t, x, ∂x)u(x) = (2π)−n/2
∫
Rn

eixζp(ε, t, x, iζ)û(ζ) dζ,

where û(ζ) denotes the Fourier transform

û(ζ) = (2π)−n/2
∫
Rn

e−ixζu(x) dx

of the function u(x).
Consider the symbol

Pε(t, x, τ, ξ) =
∑
|α|�m

(pα + εqα(ε, t, x)) ηα, η = (τ, ξ). (5.4)

According to [32], Theorem 3.10, the symbol (5.4) can be factorized for |ε| � 1,

Pε(y, τ, ξ) = Pc(ε, y, τ, ξ)P ′c(ε, y, τ, ξ),

where Pc and P ′c have the form

Pc(ε, y, τ, ξ) =
mc∑
j=0

(pcj(ξ) + εqcj(ε, y, ξ))τmc−j, pcj, qcj ∈ Sj ,

P ′c(ε, y, τ, ξ) =

mh∑
j=0

(p′cj(ξ) + εq′cj(ε, y, ξ))τmh−j, p′cj, q
′
cj ∈ Sj .
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For ε = 0, the roots of Pc lie in the strip |Re τ | � ν and those of P ′c outside the
strip |Re τ | < δ. In what follows, we shall assume that the coefficient of Pc in τmc

is identically equal to unity. The symbols Pc and P ′c are uniquely defined by this
assumption.

We denote by

Rj(ε, t, x, τ, ξ) =
mc−1∑
i=0

rij(ε, t, x, ξ)τ i, j = mc, . . . , m− 1,

the remainder on dividing the polynomial τ j by Pc(ε, t, x, τ, ξ). It is easy to show
that

rij(ε, y, ξ) ∈ Sj−i, i = 0, . . . , mc − 1,

and therefore the corresponding pseudo-differential operator rij(ε, t, x, ∂x) defines

a continuous map of H(m−1+k−i) into H(m−1+k−j).

Theorem 5.2. Let the assumptions of Theorem 5.1 hold. Then for each ε there
are continuous linear operators

Bj(ε; θ, u0, . . . , umc−1) : Rθ × Bmc−1,k+mh(ρ) → H(m−1+k−j), j = mc, . . . , m− 1,

such that Bj(ε; θ, 0) = 0 and the representation

Rj(ε; θ, u0, . . . , umc−1) =

=
mc−1∑
i=0

rij(ε, θ, x, ∂x)ui(x) + εBj (ε; θ, u0, . . . , umc−1) (5.5)

holds for |ε| � ε0. Furthermore, the following assertions are true.
(i) The operators Bj satisfy a Lipschitz condition with respect to [u0, . . . , umc−1]

for any fixed θ ∈ R, with Lipschitz constant uniformly bounded with respect to (ε, θ).
(ii) If the non-linear term q(ε, y, ∂m−1u) (see (0.5)) does not depend on the

derivatives ∂αu for |α| = m − 1, then Bj are continuous operators from

Rθ × Bmc−1,k+mh(ρ) to H(m+k−j), and assertion (i) with H(m−1+k−j) replaced by

H(m+k−j) holds for them.

Theorems 5.1 and 5.2 will be proved in § 7. Here we give only sketches of the
proofs (see § 5.2).

Definition. The manifold

Mρ =
{

[θ, u0, . . . , um−1] ∈ R× Bm−1,k(ρ) : [u0, . . . , um−1] ∈M(θ, ρ)
}

(5.6)

embedded in the extended phase space R×Em−1,k is called the centre manifold of
equation (0.3).

By the property of local invariance (see Theorem 5.1), the neighborhood of any
point of the centre manifold Mρ consists of integral curves of problem (0.3), (1.2).
In this connection, the problem of describing the dynamics on Mρ arises. The
reduction principle below provides a partial solution of this problem.
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Theorem 5.3. The following assertions are true under the assumptions of Theo-
rem 5.1 for sufficiently small values of ε.

(i) Let the solution u(t, x) of problem (0.3), (1.2) satisfy the condition D(t)u ∈
M(t, ρ) for t ∈ J . Then u(t, x) satisfies the equation

Pc(ε, t, x, ∂)u− εBmc(ε; t, u, ∂tu, . . . , ∂
mc−1
t u) = 0. (5.7)

(ii) Suppose that the non-linear term q(ε, t, x, ∂m−1u) does not depend on the
derivatives ∂αu, |α| = m− 1. Let a function u(t, x) for which

∂jtu ∈ C(I,H(m−1+k−j)), j = 0, . . . , mc − 1, (5.8)

where I ⊂ R is an interval, satisfy the conditions that the vector function

Dc(t)u := [u(t, ·), ∂tu(t, ·), . . ., ∂mc−1t u(t, ·)]

lies entirely in Bmc−1,k+mh(ρ) and equation (5.7) holds. Let I1 ⊂ I be an arbitrary
interval on which the curve

[u(t, ·), . . ., ∂mc−1t u(t, ·), umc(t, ·), . . . , um−1(t, ·)],

where uj = Rj(ε; t, u, . . . , ∂
mc−1
t u) for j � mc, is contained in the ball Bm−1,k(ρ).

Then u(t, x) is the solution of problem (0.3), (1.2) with J = I1, and D(t)u ∈M(t, ρ)
for t ∈ I1.

Remark 5.4. By Theorem 5.3, if the non-linear term q in (0.5) does not depend
on the derivatives of order m − 1, then the dynamics on the centre manifold is
described by problem (5.7), (5.8). We note that the left-hand side of (5.7) is a
small Lipschitzian perturbation of the strictly hyperbolic operator Pc(ε, y, ∂), and
therefore the Cauchy problem for equation (5.7) is well posed (for example, see [19]).
The question of an “explicit” description of the dynamics on the centre manifold
in the general case remains open. If q depends on the highest derivatives, then the
perturbation εBmc in equation (5.7) is of order mc = ordPc and, in view of the
hyperbolicity, is not subordinate to the principal linear part.

5.2. Sketches of the proofs of Theorems 5.1 and 5.2. In this subsection, we
present the main ideas used in constructing the centre manifold and studying its
properties. For detailed proofs, see §§ 6 and 7.

Passage to an equation with truncated non-linearity. We note that all assertions
in Theorems 5.1 and 5.2 relate to solutions whose phase trajectories are contained
in the ball Bm−1,k(ρ). Therefore the original equation (0.3) can be replaced by
an equation with truncated non-linearity. Namely, repeating the constructions in
§ 3.1, we define the function Qρ(ε, t, U) for a given ρ > 0 and an arbitrary integer
k > n/2 using formula (3.1). Instead of (0.3), we shall study the equation

Pε(t, x, ∂)u + εQρ(ε, t,D(t)u) = 0, (5.9)

where the symbol Pε(t, x, η) and the vector function D(t)u are defined in (5.4)
and (1.3), respectively. We shall show (Theorem 7.1) that the “global versions”
of the assertions in Theorems 5.1 and 5.2 are true for equation (5.9). Since equa-
tions (0.3) and (5.9) coincide on solutions whose phase trajectories are contained
in Bm−1,k(ρ), this will imply Theorems 5.1 and 5.2.
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Initial-value problem with growth conditions at infinity. Following the standard
scheme for constructing the centre manifold (for example, see [24], [26], [33]), we
consider the following initial-value problem for equation (5.9) with a given θ ∈ R:

∂jt u ∈ C(R, H(m−1+k−j)), j = 0, . . . , m− 1, (5.10)

∂jt u(θ, x) = uj(x) ∈ H(m−1+k−j), j = 0, . . . , mc − 1. (5.11)

We have set mc < m initial conditions for an equation of order m. The missing
mh = m−mc conditions are replaced by a constraint on the growth rate as |t| → ∞.
Namely, it is assumed that the energy Em−1,k(u, t) of the solution grows no faster

than eµ|t|, where ν < µ < δ. In other words, we seek a solution belonging to
the class Fm−1,k,[µ,−µ] (see (3.15)). It will be shown (Theorem 6.1) that problem
(5.9)–(5.11) has a unique solution u(y) ∈ Fm−1,k,[µ,−µ] for |ε| � 1. Let

G(ε; θ, ·) : [u0, . . . , umc−1] �→ u(t, x)
(
Emc−1,k+mh → Fm−1,k,[µ,−µ]

)
(5.12)

denote the corresponding resolving operator.

Constructing the family of invariant manifolds. We define the operators

Rj(ε; θ, u0, . . . , umc−1) =
(
∂jtG(ε; θ, u0, . . . , umc−1)

)∣∣∣
t=θ

(5.13)

and set (compare (5.2))

M(θ) =
{

[u0, . . . , um−1] ∈ Em−1,k :

uj = Rj(ε; θ, u0, . . . , umc−1), j � mc

}
. (5.14)

Hence, the vector function U0 = [u0, . . . , um−1] belongs to the manifold M(θ) if
and only if it is the set of Cauchy data for a solution u(y) ∈ Fm−1,k,[µ,−µ] of
equation (5.9). We denote by

Uρ
ε (t, θ, ·) : Em−1,k → Em−1,k, t, θ ∈ R, |ε| � 1,

the resolving operator of the Cauchy problem for (5.9), (5.10). It readily follows
from (5.14) (see Theorem 7.1) that the family M(θ) is compatible with the action
of the operator Uρ

ε , that is, if U0 ∈M(θ) for some θ ∈ R, then Uρ
ε (t, θ, U0) ∈M(t)

for any t ∈ R.

Attraction property. We note that if the energy Em−1,k(u, t) of a solution u(t, x) of

problem (5.9), (5.10) is uniformly bounded (or grows no faster than eµ|t| as |t| → ∞),
then u ∈ Fm−1,k,[µ,−µ], and therefore the corresponding phase trajectory D(t)u
belongs to M(t) for any t ∈ R. The fact that a solution whose energy is bounded
on a semi-axis is attracted to a solution lying on the manifold (compare (5.6))

M =
{

[θ, u0, . . . , um−1] ∈ R× Em−1,k : [u0, . . . , um−1] ∈M(θ)
}

is harder to establish. We outline the proof of this property on the basis of the
solubility of the non-homogeneous equation

Pε(t, x, ∂)u(t, x) = h(t, x) (5.15)

in the function space with exponential weight eµt or e−µt.
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Let the energy Em−1,k(u, t) of a solution u(y) of problem (5.9), (1.2) with J =
[θ,+∞) be uniformly bounded. An approximating solution is sought in the form

v(t, x) = ζ(t)u(t, x) + w(t, x), (5.16)

where ζ(t) ∈ C∞(R), ζ(t) = 0 for t � θ, and ζ(t) = 1 for t � θ + 1. Substitut-
ing (5.16) into (5.9) and taking the fact that u(y) satisfies (5.9) into account, we
obtain the equation

Pε(t, x, ∂)w(t, x) = g(t, x)− ε
(
Qρ(ε, t, V (t)) − ζ(t)Qρ(ε, t, U(t))

)
(5.17)

for the function w(t, x), where U(t) = D(t)u, V (t) = D(t)v, and

g(t, x) = −
m∑
l=1

1

l!
Dl

tζ(t)P (l)ε (t, x, ∂)u(t, x), P (l)ε (t, x, η) = ∂lτPε(t, x, η). (5.18)

We shall show (Theorem 7.1) that equation (5.17) has a unique solution u(y) belong-
ing to the space

Fm−1,k,[µ] =
{
f(t, x) : eµt∂jt f ∈ Cb(R, H

(m−1+k−j)), j = 0, . . . , m− 1
}
.

This together with (5.16) will imply that the norm of the difference U(t) − V (t)
in Em−1,k decreases as e−µt as t → +∞ and the norm of V (t) increases no faster
than eµ|t| as |t| → ∞, and therefore V (t) ∈ M(t) for all t ∈ R.

Smoothness. We shall establish the smoothness of Rj(ε; θ, ·) as a consequence of
similar properties of the resolving operator G(ε; θ, ·). The existence of the first
derivative and its Hölder property are fairly easy to prove. Namely, for a given
solution u(y) ∈ Fm−1,k,[µ,−µ] of problem (5.9), (5.11), we consider the linearized
equation

Pε(t, x, ∂)v + ε(DQρ)(ε, t,D(t)u)D(t)v = 0 (5.19)

supplemented with the initial conditions

∂jt v(θ, x) = vj(x) ∈ H(m−1+k−j), j = 0, . . . , mc − 1, (5.20)

where (DQρ)(ε, t, U)W is the value of the derivative of the function Qρ(ε, t, U) with
respect to U on the vector W = [w0, . . . , wm−1]. We shall show (see § 6.3) that
problem (5.19), (5.20) is uniquely soluble in the space Fm−1,k,[µ,−µ] and that the

solution v(1)(y) coincides with the value of the derivative of the operator G(ε; θ, ·)
on the vector [v0, . . . , vmc−1],

v(y) = (DG)(ε; θ, u0, . . . , umc−1)[v0, . . . , vmc−1].

The proof of the existence of the derivatives of order i � 2 for the operator
G(ε; θ, ·) is somewhat more complicated. This comes down to the fact that the ith
linearization of equation (5.9) is not generally soluble in the space Fm−1,k,[µ,−µ].
For example, the second linearization has the form

Pε(t, x, ∂)v + ε(DQρ)(ε, t, U(t))V (t) = −ε(D2Qρ)(ε, t, U(t))[V1(t), V1(t)], (5.21)
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where U(t) = D(t)u, V (t) = D(t)v, V1(t) = D(t)v(1), and (D2Qρ)(ε, t, U)[W,W ]
is the value of the second derivative of the function Qρ(ε, t, U) with respect to U

on the vector W = [w0, . . . , wm−1]. We note here that the H(k)-norm of the right-
hand side of equation (5.21) can grow as e2µ|t| as t →∞. Therefore the solution of
equation (5.21) does not necessarily belong to Fm−1,k,[µ,−µ]. However, if µ is not
very large (say µ < δ/2, whence it follows that ν < µ, 2µ < δ), then equation (5.21)
has a unique solution v(y) ∈ Fm−1,k,[2µ,−2µ] satisfying the initial conditions8

∂jt v(θ, x) = 0, j = 0, . . . , mc − 1. (5.22)

We shall prove that the operator G(ε; θ, ·) regarded as a map from Emc−1,k+mh
to Fm−1,k,[µ′,−µ′], where 2µ < µ′ < δ, is twice continuously differentiable and that
the value of its second derivative on the vector [v0, . . . , vmc−1] coincides with the
solution v(y) of problem (5.21), (5.22).

Similarly, the ith linearization of equation (5.9) involves terms growing as eiµ|t|

as t → ∞. In this case, if µ < δ/i and G(ε; θ, ·) is regarded as an operator from
Emc−1,k+mh to Fm−1,k,[µ′,−µ′], where iµ < µ′ < δ, then the ith derivatives exists,
and its value on the vector [v0, . . . , vmc−1] coincides with the solution of the ith
linearization supplemented with the additional initial conditions (5.22) (see [16],
[33] and § 6.4).

The structure of the operators Rj(ε; θ, ·). Let

G(ε, θ) : Emc−1,k+mh × F0,k,[µ,−µ] → Fm−1,k,[µ,−µ]

denote the operator transforming the vector function [u0, . . . , umc−1, h] into the
solution

u(y) ∈ Fm−1,k,[µ,−µ]
of problem (5.15), (5.11). As was shown in [3], § 5, this operator is well defined and
continuous for |ε| � 1. Note that

G(ε; θ, u0, . . . , umc−1) = G(ε, θ)[u0, . . . , umc−1, 0] + εG(ε, θ)[0, . . . , 0, f ], (5.23)

where
f(t, x) = Qρ(ε, t,D(t)G(ε; θ, u0, . . . , umc−1)). (5.24)

Applying the operator ∂jt to (5.23) and setting t = θ, we find

Rj(ε; θ, u0, . . . , umc−1) = ∂jt
(
G(ε, θ)[u0, . . . , umc−1, 0]

+ εG(ε, θ)[0, . . . , 0, f ]
)∣∣∣

t=θ
. (5.25)

The representation (5.5) follows from (5.25) and the analogue of formula (5.5) in
the case of linear equations (see [3], § 5.3).

8It is easy to see that if the resolving operator G(ε; θ, ·) has a second derivative, then its value
on an arbitrary vector function [v0, . . . , vmc−1] satisfies zero initial conditions.
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§ 6. An initial-value problem with growth conditions at infinity

This section is devoted to investigating problem (5.9)–(5.11). We shall prove that
it is uniquely soluble in the space Fm−1,k,[µ,−µ] and that the resolving operator is
smooth in the corresponding spaces. The results obtained will be used in proving
Theorems 5.1 and 5.2 (see § 7).

6.1. Statement of results. Recall that the space Fl,k,[µ,−µ] and the correspond-
ing norm El,k,[µ,−µ](·) were defined in (3.15) and (3.16). We set S(θ)w(t, x) =
w(t + θ, x) for given θ ∈ R and w(t, x).

Theorem 6.1. Let Conditions (P), (Q), and (Hc) hold. Then for any ρ > 0 and
µ ∈ (ν, δ) and an arbitrary integer k > n/2, there is a constant ε0 > 0 such that
the following assertions are true for |ε| � ε0.

(i) For any θ ∈ R and arbitrary initial data [u0, . . . , umc−1] ∈ Emc−1,k+mh ,
problem (5.9)–(5.11) has a unique solution

u(y) ∈ Fm−1,k,[µ,−µ].

(ii) If u1, u2 ∈ Fm−1,k,[µ,−µ] are two solutions corresponding to the initial points
θ1, θ2 ∈ R, |θ1 − θ2| � 1, and the initial data U1, U2 ∈ Emc−1,k+mh , then

Em−1,k,[µ,−µ]
(
S(θ1)(u1−u2)

)
� C‖U1−U2‖mc−1,k+mh + b(θ1, U1; |θ1−θ2|), (6.1)

where the constant C > 0 and the continuous function b(θ1, U1; r) � 0 of the variable
r ∈ [0, 1] depend on the parameters k, ρ, and µ, and b(θ1, U1; r) tends to zero as
r → 0.

Theorem 6.1 will be proved in § 6.2.
Recall the operator G(ε; θ, u0, . . . , umc−1) from § 5.2 (see formula (5.12)). In

particular, the inequality (6.1) implies that this operator is jointly continuous in
the variables (θ, u0, . . . , umc−1).

Theorem 6.2. Let Conditions (P), (Q), and (Hc) and inequality (5.1) hold, where
l � 1 is an integer. Then there is an ε0 > 0 such that the operator G(ε; θ, ·) with
|ε| � ε0 belongs to the class C l,γ

(
Emc−1,k+mh ,Fm−1,k,[µ′,−µ′]

)
, where µ′ = lµ + γ,

and the seminorm |G|Cl,γ is uniformly bounded with respect to (ε, θ).

The proof of Theorem 6.2 is given in §§ 6.3 and 6.4.

6.2. Proof of theorem 6.1. We shall need the following assertion on the solu-
bility of linear equations in Fm−1,k,[µ,−µ]. See [3], § 4, for a proof.

Proposition 6.3. Under the assumptions of Theorem 6.1, for any µ ∈ (ν, δ) and
an arbitrary integer k � 0, there are constants ε0 > 0 and C > 0 such that,
for |ε| � ε0, problem (5.15), (5.11) with right-hand side h ∈ F0,k,[µ,−µ] and initial
conditions [u0, . . . , umc−1] ∈ Emc−1,k+mh has a unique solution u(y) ∈ Fm−1,k,[µ,−µ]
satisfying the inequality

Em−1,k,[µ,−µ](S(θ)u) � C

(mc−1∑
j=0

‖uj‖(m−1+k−j) + E0,k,[µ,−µ](S(θ)h)

)
. (6.2)



Local dynamics for semilinear equations 473

Proof. (i) To simplify the notation we assume that θ = 0. The existence of a solu-
tion is proved by the contraction mapping principle. Recall that D(t)w denotes the
phase trajectory corresponding to the function w = w(t, x) (see (1.3)). Consider the
operator A transforming v(y) ∈ Fm−1,k,[µ,−µ] into the solution u(y) ∈ Fm−1,k,[µ,−µ]
of the equation

Pε(t, x, ∂)u(t, x) = −εQρ(ε, t,D(t)v) (6.3)

with initial conditions (5.11). It is clear that the fixed point of the operator A is
the desired solution.

By Lemma 8.2, the right-hand side of (6.3) belongs to F0,k,[µ,−µ]. Therefore,
by Proposition 6.3, problem (6.3), (5.11) has a unique solution u ∈ Fm−1,k,[µ,−µ]
for |ε| � 1. Consequently, the operator

A : Fm−1,k,[µ,−µ] → Fm−1,k,[µ,−µ]

is well defined. Moreover, if ui = A(vi), then the difference u = u1 − u2 satis-
fies (5.15) with right-hand side

h(t, x) = ε
(
Qρ(ε, t,D(t)v2)−Qρ(ε, t,D(t)v1)

)

and has zero Cauchy data up to order mc − 1. Therefore, by (6.2),

Em−1,k,[µ,−µ](u) � C E0,k,[µ,−µ](h). (6.4)

By Lemma 8.2, we have

E0,k,[µ,−µ](h) � C1 |ε|Em−1,k,[µ,−µ](v1 − v2).

Substituting this estimate into (6.4), we find

Em−1,k,[µ,−µ](u1 − u2) � C2 |ε|Em−1,k,[µ,−µ](v1 − v2),

whence it follows that A is a contraction operator for |ε| � 1 and consequently has
a fixed point u(y).

The uniqueness of this solution follows from (6.1), which is established below.
(ii) The difference u = u1 − u2 satisfies (5.15) with right-hand side

h(t, x) = ε
(
Qρ(ε, t,D(t)u2)−Qρ(ε, t,D(t)u1)

)
. (6.5)

Consequently, by (6.2),

Em−1,k,[µ,−µ](S(θ2)u)

� C

(mc−1∑
j=0

‖∂jt u(θ2, ·)‖(m−1+k−j)+ E0,k,[µ,−µ](S(θ2)h)

)
. (6.6)

Let us estimate the right-hand side of (6.6). We set

uij(x) = ∂jt ui(θi, x), i = 1, 2, j = 0, . . . , mc − 1.
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Then
∂jt u(θ2, x) =

(
∂jt u1(θ2, x)− u1j(x)

)
+
(
u1j(x)− u2j(x)

)
,

which implies that

‖∂jtu(θ2, ·)‖(m−1+k−j) � b1(θ1, U1; |θ1 − θ2|) + ‖u1j − u2j‖(m−1+k−j), (6.7)

where the function b1(θ1, U1; r) � 0 continuous in r � 0 tends to zero as r → 0.
Furthermore, by Lemma 8.2, (6.5) satisfies the inequality

E0,k,[µ,−µ](S(θ2)h) � C1 |ε|Em−1,k,[µ,−µ](S(θ2)u). (6.8)

For |ε| � 1, the substitution of (6.7) and (6.8) into (6.6) results in

Em−1,k,[µ,−µ](S(θ2)u) � C

(mc−1∑
j=0

‖u1j − u2j‖(m−1+k−j) + b1(θ1, U1; |θ1 − θ2|)
)
.

It remains to note that the norms Em−1,k,[µ,−µ](S(θ)u) are equivalent for θ ∈ R
with bounded constants of equivalence if θ varies in a finite interval.

6.3. Proof of Theorem 6.2 in the case l = 1l = 1l = 1. We note that problem (5.19),
(5.20) has a unique solution v(y) ∈ Fm−1,k,[µ,−µ] for any function u(t, x) satisfying
(5.10) and arbitrary initial data [v0, . . . , vmc−1] ∈ Emc−1,k+mh . This assertion can
easily be proved using the arguments in § 6.2. Let

G1(ε; θ, u0, . . . , umc−1) : Emc−1,k+mh → Fm−1,k,[µ,−µ]

be a bounded linear operator transforming the vector [v0, . . . , vmc−1] into the solu-
tion v ∈ Fm−1,k,[µ,−µ] of problem (5.19), (5.20) with u = G(ε; θ, u0, . . . , umc−1). For
simplicity, in what follows we shall assume that θ = 0 and drop the parameter θ in
the notation for the operators G and G1.

By the converse of Taylor’s theorem (see [13] or [11], § 1.2.5), the existence of
the derivative of the operator

G(ε; ·) : Emc−1,k+mh → Fm−1,k,[µ′,−µ′], µ′ = µ + γ,

the Hölder property of the derivative, and the uniform boundedness of the seminorm
|G|C1,γ will be proved if we can show that

G(ε;U0 + V0) = G(ε;U0) + G1(ε;U0)V0 +F1(ε;U0, V0), (6.9)

where U0 = [u0, . . . , umc−1], V0 = [v0, . . . , vmc−1], and the operator F1 satisfies the
inequality

E0,k,[µ′,−µ′](F1(ε;U0, V0)) � const ‖V0‖1+γmc−1,k+mh . (6.10)

We set

ũ(y) = G(ε;U0 + V0), u(y) = G(ε;U0), v(1)(y) = G1(ε;U0)V0.
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Direct verification shows that w := ũ − u − v(1) = F1(ε;U0, V0) is the solution of
the problem

Pε(t, x, ∂)w(t, x) = −εh(t, x), (6.11)

∂jtw(0, x) = 0, j = 0, . . . , mc − 1, (6.12)

where

h(t, x) = h1(t, x) + h2(t, x),

h1(t, x) = Qρ(ε, t,D(t)ũ)−Qρ(ε, t,D(t)u)− (DQρ)(ε, t,D(t)u)D(t)(ũ − u),

h2(t, x) = (DQρ)(ε, t,D(t)u)D(t)w.

By (6.2) with θ = 0 and µ = µ′, we have

Em−1,k,[µ′,−µ′](w) � C |ε|E0,k,[µ′,−µ′](h). (6.13)

Let us estimate the right-hand side of (6.13). According to Lemma 8.1,

‖h1(t, ·)‖(k) � C1‖D(t)(ũ− u)‖1+γm−1,k.

This inequality and (6.1) with θ1 = θ2 = 0 imply that

E0,k,[µ′,−µ′](h1) � C2

mc−1∑
j=0

‖vj‖1+γ(m−1+k−j). (6.14)

Next, by the uniform boundedness of the derivative of Qρ,

E0,k,[µ′,−µ′](h2) � C3Em−1,k,[µ′,−µ′](w). (6.15)

Substituting (6.14) and (6.15) into (6.13) with h = h1 + h2, we obtain

Em−1,k,[µ′,−µ′](w) � C4

mc−1∑
j=0

‖vj‖1+γ(m−1+k−j),

which is equivalent to (6.10).

6.4. Proof of Theorem 6.2 in the case l � 2l � 2l � 2. Despite the title of this section,
we confine ourselves to the case l = 2. The proof for arbitrary l � 3 is technically
rather complicated, but does not involve any fundamentally new ideas. For detailed
proofs of similar assertions in the case of ordinary differential equations and abstract
equations in Banach spaces, see [16] and [33].

As in § 6.3, let us assume that θ = 0. We want to prove that the operator

G(ε; ·) : Emc−1,k+mh → Fm−1,k,[µ′,−µ′], µ′ = 2µ + γ,
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is twice continuously differentiable in the sense of Fredchét, the second derivative
satisfies Hölder’s condition with exponent γ, and the seminorm |G|C2,γ is uniformly
bounded.

We note that problem (5.21), (5.22) (with U(t) = D(t)u, V (t) = D(t)v, and
V1(t) = D(t)v(1)) has a unique solution v(y) ∈ Fm−1,k,[2µ,−2µ] (compare 6.3) for
any function u(t, x) satisfying (5.10). Let

G2(ε; u0, . . . , umc−1) : Emc−1,k+mh → Fm−1,k,[2µ,−2µ]

denote the bounded quadratic operator transforming [v0, . . . , vmc−1] into the solu-
tion v ∈ Fm−1,k,[2µ,−2µ] of problem (5.21), (5.22) with u = G(ε; u0, . . . , umc−1).

By the converse of Taylor’s theorem, we have to show that

G(ε;U0 + V0) = G(ε;U0) + G1(ε;U0)V0 +
1

2
G2(ε;U0)[V0, V0] + F2(ε;U0, V0),

where U0 = [u0, . . . , umc−1], V0 = [v0, . . . , vmc−1], and the operator F2 satisfies the
inequality

E0,k,[µ′,−µ′](F2(ε;U0, V0)) � const ‖V0‖2+γmc−1,k+mh . (6.16)

We set v(2)(y) = G2(ε;U0)[V0, V0]. Then

w := ũ− u− v(1) − 1

2
v(2) = F2(ε;U0, V0)

is the solution of problem (6.11), (6.12) with9 h = h1 + h2 + h3,

h1(t, x) = Qρ(ε, t, ũ)−Qρ(ε, t, u)− (DQρ)(ε, t, u)(ũ− u)

− 1

2
(D2Qρ)(ε, t, u)[ũ− u, ũ− u],

h2(t, x) = (DQρ)(ε, t, u)w,

h3(t, x) =
1

2

(
(D2Qρ)(ε, t, u)[ũ− u, ũ− u]− (D2Qρ)(ε, t, u)[v(1), v(1)]

)
.

Therefore, by (6.2), the function w(y) satisfies inequality (6.13) with µ′ = 2µ + γ.
Let us estimate the right-had side of (6.13). Using Lemma 8.1 and inequality (6.1),
it is easy to prove that (compare the derivation of (6.14))

E0,k,[µ′,−µ′](h1) � C1

mc−1∑
j=0

‖vj‖2+γ(m−1+k−j). (6.17)

The function h2(t, x) satisfies (6.15) with µ′ = 2µ+ γ. To estimate the norm of h3,
note that

h3(t, x) =
1

2
(D2Qρ)(ε, t, u)[ũ− u− v(1), ũ− u + v(1)].

Comparing this relation with (6.9) and (6.10), we conclude that h3 satisfies an
inequality of type (6.17). This fact and formula (6.13) imply the desired inequal-
ity (6.16). Other details are left to the reader.

9To simplify the formulae, we shall drop the operator D(t) up to the end of this section. It
will always be clear from the context where it must stand.
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§ 7. Proof of the main results
This section is devoted to the proof of Theorems 5.1 – 5.3. We first show (see

Theorem 7.1) that the global versions of the assertions in Theorems 5.1 and 5.2 are
true for the equation with truncated non-linearity (5.9). Theorems 5.1 and 5.2
are then deduced as a simple consequence. Finally, the results obtained and the
uniqueness of the solution of the Cauchy problem for strictly hyperbolic equations
with Lipschitzian non-linearity are used to prove Theorem 5.3.

7.1. The centre manifold for the equation with truncated non-linearity.
Recall that Uρ

ε (t, θ, U0) denotes the resolving operator of the Cauchy problem (5.9),
(5.10), (1.1). By Proposition 4.2, if |ε| � 1, then this operator is defined for
all t, θ ∈ R.

Theorem 7.1. Suppose that Conditions (P), (Q), and (Hc) and inequalities (5.1),
where l � 1 is an integer, hold. Then for any ρ > 0 and µ ∈ (ν, δ/l) and an
arbitrary integer k > n/2, there is a constant ε0 > 0 and a family of continuous
operators

Rj(ε; θ, u0, . . . , umc−1) : Rθ × Emc−1,k+mh → H(m−1+k−j),

j = mc, . . . , m− 1,
(7.1)

such that Rj(ε; θ, 0) = 0 and the following assertions are true for |ε| � ε0.
(i) The family of manifolds M(θ) defined by formula (5.14) is compatible with

the action of the resolving operator Uρ
ε (t, θ, ·) in the sense that if U0 ∈ M(θ) for

some θ ∈ R, then Uρ
ε (t, θ, U0) ∈M(t) for all t ∈ R.

(ii) If u(t, x) ∈ Fm−1,k,[µ,−µ] satisfies equation (5.9), then D(t)u ∈ M(t) for all
t ∈ R.

(iii) If the energy Em−1,k(u, t) of a solution u(t, x) of problem (5.9), (5.10) grows
no faster than eµt as t → +∞, then there is a solution v(t, x) ∈ Fm−1,k,[µ,−µ]
of (5.9) such that D(t)v ∈M(t) for all t ∈ R and

Em−1,k(u− v, t) � C e−µ(t−θ)Em−1,k(u, θ), t � θ, (7.2)

where the constant C > 0 does not depend on t, θ, or u(y). A similar assertion
holds for solutions whose energy grows no faster than e−µt as t → −∞.

(iv) For any fixed ε and θ, the operator Rj(ε; θ, ·) belongs to the class

C l,γ(Emc−1,k+mh , H
(m−1+k−j)), and the seminorm |Rj|Cl,γ is uniformly bounded

with respect to (ε, θ).
(v) There are continuous linear operators

Bj(ε; θ, u0, . . . , umc−1) : Rθ × Emc−1,k+mh → H(m−1+k−j),

j = mc, . . . , m− 1,
(7.3)

such that Bj(ε; θ, 0) = 0 and the representation (5.5) holds. Moreover, the opera-
tors Bj satisfy the global Lipschitz condition

‖Bj(ε; θ, U0)− Bj(ε; θ, V0)‖(m−1+k−j) � const ‖U0 − V0‖mc−1,k+mh (7.4)

for a fixed θ ∈ R, where U0, V0 ∈ Emc−1,k+mh .
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(vi) If the non-linear term q(ε, t, x, ∂m−1u) in (0.5) does not depend on the
(m−1)th derivatives, then assertion (v) holds withH(m−1+k−j) (see (7.3) and (7.4))
replaced by H(m+k−j).

Proof. We define Rj by formula (5.13), where G(ε; θ, U0) is the resolving operator of
problem (5.9)–(5.11) (see (5.12)). Then, by uniqueness, we have G(ε; θ, 0) = 0, and
consequently Rj(ε; θ, 0) = 0. Moreover, (6.1) implies that G is jointly continuous
with respect to the variables (θ, U0), and therefore Rj also possesses this property.
We now prove assertions (i)–(vi).

(i) Suppose that U0 ∈ M(θ) for some θ ∈ R and set u = G(ε; θ, U0). We have to
prove that

∂jt u(t, ·) = Rj(ε; t,Dc(t)u) for all t ∈ R. (7.5)

As is easily seen, (7.5) follows from the relation

u(t, x) = G(ε; t,Dc(t)u), t ∈ R, (7.6)

which is a consequence of the uniqueness of the solution of problem (5.9)–(5.11).
(ii) Let u ∈ Fm−1,k,[µ,−µ] be the solution of equation (5.9). Then (7.6) holds,

whence follows the desired assertion.
(iii) Suppose that a solution u(y) of problem (5.9), (5.10) satisfies the inequality

Em−1,k(u, t) � const eµt, t � 0. (7.7)

An approximating solution v(y) is sought in the form (5.16). Substitution of v(y)
into (5.9) for the unknown function w(y) gives equation (5.17) with U(t) = D(t)u
and V (t) = D(t)v, and the function g(t, x) has the form (5.18). Let us show that
this equation is uniquely soluble in Fm−1,k,[µ] and that the solution w(y) satisfies
the inequality

Em−1,k,[µ](w) := sup
t∈R

eµtEm−1,k(w, t) � constEm−1,k(u, θ).

To this end, we need the following auxiliary assertion, which is a consequence of
Theorem 2.6 in [3].

Proposition 7.2. Under the assumptions of Theorem 7.1, for any µ ∈ (ν, δ) and
an arbitrary integer k � 0, there are constants ε0 > 0 and C > 0 such that equa-
tion (5.15) with right-hand side h ∈ F0,k,[µ] has a unique solution u(y) ∈ Fm−1,k,[µ]
for |ε| � ε0. This solution satisfies the inequality

Em−1,k,[µ](S(θ)u) � E0,k,[µ](S(θ)h) for any θ ∈ R. (7.8)

Let us consider the operator A transforming z ∈ Fm−1,k,[µ] into the solution
w ∈ Fm−1,k,[µ] of the equation

Pε(t, x, ∂)w(t, x) = g(t, x)− εg1(t, x), (7.9)

where
g1(t, x) = Qρ(ε, t,D(t)(ζu + z))− ζ(t)Qρ(ε, t,D(t)u).
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We shall show that the operator A is well defined for |ε| � 1 and is a contraction
operator on the space Fm−1,k,[µ]. This will imply that A has a fixed point w(y),
which is precisely the desired solution.

We note that the right-hand side of equation (7.9) belongs to the space F0,k,[µ]
and satisfies the inequality

E0,k,[µ](S(θ)(g − εg1)) � C1
(
Em−1,k(u, θ) + |ε|Em−1,k,[µ](S(θ)z)

)
(7.10)

for any function u(t, x) satisfying (5.10), where C1 > 0 is a constant. Indeed, it is
clear that g and g1 are continuous functions on R with range in H(k). Therefore it
suffices to establish (7.10). By Proposition 4.3,

Em−1,k(u, t) � C2 e
κ|t−θ|Em−1,k(u, θ), t ∈ R, (7.11)

where C2 and κ are positive constants. Relations (7.11) and (5.18) imply that the
function g(t, x) satisfies the inequality

‖g(t, ·)‖(k) � C3Em−1,k(u, θ), θ � t � θ + 1, (7.12)

on the closed interval [θ, θ + 1] and vanishes outside it. To estimate g1(t, x) we use
the mean value theorem and take the uniform boundedness of the derivatives of Qρ

and inequality (7.11) into consideration. As a result, we obtain

E0,k,[µ](S(θ)g1) � C4
(
Em−1,k(u, θ) + Em−1,k,[µ](S(θ)z)

)
. (7.13)

Comparing (7.12) and (7.13), we arrive at (7.10).
Thus, the right-hand side of (7.9) belongs to F0,k,[µ] for any z ∈ Fm−1,k,[µ].

Therefore, by Proposition 7.2, for |ε| � 1 equation (7.9) has a unique solution
w = A(z) ∈ Fm−1,k,[µ] for which the estimate

Em−1,k,[µ]
(
S(θ)A(z)

)
� C E0,k,[µ](S(θ)(g − εg1))

� C5
(
Em−1,k(u, θ) + |ε|Em−1,k,[µ](S(θ)z)

)
(7.14)

holds.
We now show that A is a contraction operator. Let us take two arbitrary func-

tions z1, z2 ∈ Fm−1,k,[µ], set wi = A(zi), and consider the difference w = w1 − w2.
It can readily be seen that this difference is a solution of equation (5.15) with
right-hand side

h(t, x) = ε
(
Qρ(ε, t,D(t)(ζu− z2))−Qρ(ε, t,D(t)(ζu− z1))

)
.

Using the mean value theorem it is easy to prove the inequality

‖h(t, ·)‖(k) � C6|ε|Em−1,k(z1 − z2, t),

whence it follows that

E0,k,[µ](S(θ)h) � C6|ε|Em−1,k,[µ]
(
S(θ)(z1 − z2)

)
. (7.15)
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By (7.8), the solution w ∈ Fm−1,k,[µ] of (5.15) satisfies the inequality

Em−1,k,[µ](S(θ)w) � CE0,k,[µ](S(θ)h).

Comparing this inequality with (7.15), we conclude that A is a contraction operator
for |ε| � 1.

Let us denote by w ∈ Fm−1,k,[µ] the fixed point of A, A(w) = w. It follows
from (7.14) that

Em−1,k,[µ](S(θ)w) � C7Em−1,k(u, θ). (7.16)

We shall show that all the required assertions hold for the function v(t, x) defined
by (5.16).

Indeed, by construction, v(t, x) satisfies (5.9). Since ζ(t) = 0 for t � θ, it
follows from (5.16), (7.7), (7.16) that v ∈ Fm−1,k,[µ,−µ]. Consequently, according
to assertion (ii), D(t)v ∈ M(t) for all t ∈ R. Furthermore, (5.16) and (7.16) imply
that

Em−1,k(u− v, t) = Em−1,k(w, t) � C7e
−µ(t−θ)Em−1,k(u, θ) for t � θ + 1.

Comparing this inequality with (7.11) and (7.16), we arrive at (7.2).
We have thus established that for any θ ∈ R, there is a solution v = vθ ∈

Fm−1,k,[µ,−µ] satisfying (7.2). It remains to show that vθ1 ≡ vθ2 for any θ1, θ2 ∈ R.
Direct verification shows that the difference w := vθ1 − vθ2 belongs to

Fm−1,k,[µ,−µ] and is a solution of (5.15) with right-hand side

h(t, x) = ε
(
Qρ(ε, t,D(t)vθ1)−Qρ(ε, t,D(t)vθ2)

)
.

Inequality (7.2) with v = vθi implies that

Em−1,k(vθ1 − vθ2 , t) � C8e
−µtEm−1,k(u, θ).

Therefore w ∈ Fm−1,k,[µ]. Furthermore, it can easily be shown that h belongs to
F0,k,[µ] and satisfies the inequality

E0,k,[µ](h) � C9|ε|Em−1,k,[µ](w).

By (7.8), we have

Em−1,k,[µ](w) � C E0,k,[µ](h) � C C9|ε|Em−1,k,[µ](w),

which implies that w ≡ 0 for |ε| � 1.
(iv) This assertion is an obvious consequence of the smoothness of the operator

G(ε; θ, ·) and formula (5.13).
(v) As was shown in § 5, the operator Rj can be represented in the form (5.25).

We now note that the first term in the right-hand side of (5.25) is an analogue of
the operator Rj for the linear equation

Pε(t, x, ∂)u(t, x) = 0.
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According to [3], Theorem 6.4, the representation

∂jt
(
G(ε, θ)U0

)∣∣∣
t=θ

=
mc−1∑
i=0

(
rij(ε, θ, x, ∂x) + εdij(ε, θ)

)
ui(x) (7.17)

holds for linear equations, where U0 = [u0, . . . , umc−1], the operators

dij(ε, θ) : H(m−1+k−i) → H(m+k−j) (7.18)

depend continuously on θ in the strong operator topology, and their norms are
uniformly bounded with respect to (ε, θ). We set

Bj(ε; θ, U0) =

mc−1∑
i=0

dij(ε, θ)ui + ∂jt
(
G(ε, θ)[0, . . . , 0, f ]

)∣∣∣
t=θ

, (7.19)

where the function f is defined by (5.24). The representation (5.5) is a trivial
consequence of (5.25), (7.17), and (7.19). The continuity of the operator Bj with
respect to [θ, U0] and its uniform Lipschitz property with respect to U0 follow from
the corresponding properties of the operators on the right-hand side of (7.19). Other
details are left to the reader.

(vi) We shall use formula (7.19). Since dij(ε, θ) are continuous operators from

H(m−1+k−i) to H(m+k−j) (see (7.18)), it suffices to consider the second term on
the right-hand side of (7.19). We note that if q does not depend on the (m− 1)th
derivatives, then Qρ is a smooth operator from Rt × Em−1,k to H(k+1) and all its
derivatives are uniformly bounded. This together with Theorem 6.1 implies that

[θ, u0, . . . , umc−1] �→ f(t, x) = Qρ

(
ε, t,D(t)G(ε; θ, u0, . . . , umc−1)

)

is a continuous operator from Rθ×Em−1,k to F0,k+1,[µ,−µ] for |ε| � 1 and satisfies a
Lipschitz condition with uniformly bounded Lipschitz constant with respect to (ε, θ)
for any fixed θ. Furthermore,

f �→ G(ε, θ)[0, . . . , 0, f ]

is a continuous linear operator from F0,k+1,[µ,−µ] to Fm−1,k+1,[µ,−µ] for sufficiently
small ε. It depends continuously on θ in the strong operator topology and its
norm is uniformly bounded with respect to (ε, θ). What has been said implies that
the second term on the right-hand side of (7.19) also possesses all the required
properties.

7.2. Proof of Theorems 5.1 and 5.2. We fix an arbitrary ρ > 0 and define
the desired operators Rj as the restrictions of operators (7.1) constructed in Theo-
rem 7.1 to the cylinder R×Bmc−1,k+mh(ρ). All assertions of Theorems 5.1 and 5.2
are readily deduced from Theorem 7.1. For instance, let us prove the attraction
property.

Suppose that a solution u(t, x) of (0.3), (1.2) is defined throughout the time
axis and that its phase trajectory D(t)u is entirely contained in the ball Bm−1,k(ρ).
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Then u(t, x) is the solution of problem (5.9), (5.10) and belongs to the space
Fm−1,k,[µ,−µ]. Therefore, according to assertion (ii) in Theorem 7.1, D(t)u ∈M(t)
for all t ∈ R. It remains to note that the manifold M(t, ρ) defined in (5.2) is the
intersection of M(t) (see (5.14)) and the ball Bm−1,k(ρ).

We now suppose that u(t, x) is the solution of (0.3), (1.2) with J = [θ,+∞)
and that D(t)u ∈ Bm−1,k(ρ1) for t � θ and some ρ1 < ρ. Let us extend u(t, x)
throughout the time axis R as the solution of (5.9), (5.10), (1.1) with Cauchy data

uj(x) = ∂jt u(θ + 0, x), j = 0, . . . , m− 1.

Clearly, the extended function u(t, x) satisfies all conditions in assertion (iii) of
Theorem 7.1. Consequently, there is a solution v(t, x) of problem (5.9), (5.10)
such that D(t)v ∈ M(t) for all t ∈ R and (7.2) holds. We now note that the
phase trajectory D(t)v is contained in the ball Bm−1,k(ρ) for t � T ! 1 since it is
exponentially attracted to D(t)u as t → +∞. Hence, v(t, x) also satisfies (0.3) for
t � T . Setting V0 = D(T )v, we derive (5.3) from (7.2).

The proof of the remaining assertions is left to the reader.

7.3. Proof of Theorem 5.3. (i) By (5.2), if D(t)u ∈M(t, ρ) for t ∈ J , then

∂mct u = Rmc (ε; t, u, ∂tu, . . . , ∂
mc−1
t u), t ∈ J. (7.20)

Note that the remainder Rmc(ε, y, τ, ξ) on dividing the polynomial τmc by
Pc(ε, y, τ, ξ) is equal to Pc(ε, y, τ, ξ) − τmc . Therefore, according to (5.5),

Rmc(ε; t, u, ∂tu, . . . , ∂
mc−1
t u) = ∂mct u− Pc(ε, t, x, ∂)u + εBmc (ε; t, u, . . ., ∂

mc−1
t u).

Substituting this formula into (7.20), we obtain (5.7).
(ii) We begin by showing that the solution of problem (5.7), (5.8) is uniquely

determined by the Cauchy data up to order mc − 1 at an arbitrary point θ ∈ I.
Indeed, suppose that u1 and u2 are two solutions of (5.7), (5.8) and that

Dc(θ)u1 = Dc(θ)u2. Then the difference w = u1 − u2 satisfies (5.8), the initial
conditions

∂jtw(θ, x) = 0, j = 0, . . . , mc − 1,

and the equation

Pc(ε, t, x, ∂)w(t, x) = h(t, x),

where h(t, x) = ε
(
Bmc(ε; t, u1, . . . , ∂

mc−1
t u1)− Bmc(ε; t, u2, . . . , ∂

mc−1
t u2)

)
.

By Theorem 5.2 (ii), the right-hand side h(y) belongs to the space10

C(I,H(k+mh)), and we have

‖h(t, ·)‖(k+mh) � C1|ε|Emc−1,k+mh(u1 − u2, t), t ∈ I, (7.21)

10It is here that we use the property that q does not involve derivatives of order m − 1,
whence, by Theorem 5.2 (ii), it follows that the range of the operator Bmc is H(k+mh) rather
than H(k+mh−1).
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where the constant C1 > 0 does not depend on ε or t. We shall use an estimate for
the norm of the solution of the Cauchy problem for strictly hyperbolic equations
(see [12], Lemma 23.2.1):

Emc−1,k+mh(w, t) � C2

∫
[θ,t]

‖h(r, ·)‖(k+mh)dr, t ∈ I. (7.22)

Comparing (7.21) and (7.22), we conclude that u1(t, x) ≡ u2(t, x) for |ε| � 1.
We now suppose that the interval I1 ⊂ I satisfies the conditions in assertion (ii)

of Theorem 5.3. Let us fix an arbitrary θ ∈ I1 and consider the solution v(t, x) of
problem (0.3), (1.1), (1.2), where

uj(x) =

{
∂jt u(θ, x), j = 0, . . . , mc − 1,

Rj(ε; θ, u(θ, ·), . . . , ∂mc−1t u(θ, x)), j = mc, . . . , m− 1.

By construction, the initial vector function [u0, . . . , um−1] lies on the manifold
M(θ, ρ). Consequently, by local invariance (see Theorem 5.1), the phase trajec-
tory D(t)v belongs to M(t, ρ) as long as it stays in the ball Bm−1,k(ρ). Therefore,
according to assertion (i), the function v(t, x) satisfies (5.7). Moreover, its Cauchy
data up to order mc − 1 at the initial instant of time t = θ coincide with the
Cauchy data for the function u(t, x). Since the solution of problem (5.7), (5.8),
(5.11) is unique, u(t, x) and v(t, x) coincide on the common domain. It follows
that the maximum interval J on which v(t, x) is defined contains I1 and that
u(t, x) = v(t, x) for t ∈ I1. The theorem is proved.

§ 8. Appendix
In this section we collect some auxiliary assertions used in the main body of the

text.

Lemma 8.1. Let ρ > 0, let 0 < γ � 1, and let k > n/2 and l � 0 be integers.
Then there is a constant C = C(ρ, γ, k, l) > 0 such that

∥∥∥∥Qρ(ε, t, U + V )−
l∑

j=0

1

j!
(DjQρ)(ε, t, U)[V, . . . , V ]

∥∥∥∥
(k)

� C ‖V ‖l+γm−1,k, (8.1)

where U, V ∈ Em−1,k and DjQρ denotes the jth derivative of Qρ with respect to U .

Proof. According to Proposition 4.1, the operator

Qρ(ε, t, U) : Rt × Em−1,k → H(k) (8.2)

is infinitely Frechét differentiable and all its derivatives are uniformly bounded.
Therefore inequality (8.1) with γ = 1 is an obvious consequence of Taylor’s formula.
Let us show that any number in the interval (0, 1) can serve as γ.

Since Qρ(ε, t, U) = 0 for ‖U‖m−1,k � ρ, it can be assumed that ‖U‖m−1,k < ρ.
We first suppose that ‖V ‖m−1,k � 2ρ. Then ‖U+V ‖m−1,k � ρ, and inequality (8.1)
follows from the uniform boundedness of the derivatives DjQρ,

∥∥ (DjQρ)(ε, t, U)[V, . . . , V ]
∥∥
(k)
� const ‖V ‖jm−1,k.
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Now let ‖V ‖m−1,k � 2ρ. By Taylor’s formula, the left-hand side of (8.1) has

const ‖V ‖l+1m−1,k as an upper bound. It remains to note that

‖V ‖l+1m−1,k � (2ρ)1−γ‖V ‖l+γm−1,k for ‖V ‖m−1,k � 2ρ.

Recall that we set S(θ)w(t, x) = w(t + θ, x) for the function w(t, x).

Lemma 8.2. For any ρ > 0 and µ � 0 and an arbitrary integer k > n/2, the
composite operator

C : u(y) �→ Qρ(ε, t,D(t)u)

is a continuous operator from Fm−1,k,[µ,−µ] to F0,k,[µ,−µ] and satisfies a global
Lipschitz condition. Moreover, if u, v ∈ Fm−1,k,[µ,−µ], then

E0,k,[µ,−µ]
(
S(θ)(Cu − Cv)

)
� C Em−1,k,[µ,−µ]

(
S(θ)(u − v)

)
(8.3)

for any θ ∈ R, where the constant C = C(k, ρ) > 0 does not depend on u, v, θ,
or µ.

Proof. Since the operator (8.2) is infinitely continuously differentiable and its
derivatives are bounded, it follows that if u ∈ Fm−1,k,[µ,−µ], then Cu ∈ F0,k,[µ,−µ].
Moreover, by the mean value formula, we have

∥∥Qρ(ε, t,D(t)u)−Qρ(ε, t,D(t)v)
∥∥
(k)
� constEm−1,k(u− v, t),

whence follows (8.3).
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