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Introduction

The aim of these lectures is to give a self-contained concise introduction to the
ergodic theory of randomly forced partial differential equations (PDE’s). We
consider the 2D Navier–Stokes (NS) system perturbed by a bounded discrete
force, namely,

u̇+ (u,∇)u−∆u+∇p = η(t, x), div u = 0. (0.1)

Here η is a random process of the form

η(t, x) =

∞∑
k=1

ηk(x)δ(t− k), (0.2)

where δ(t) is the Dirac measure concentrated at zero and ηk(x) are independent
identically distributed (i.i.d.) random variables. After studying the initial-
boundary value problem for (0.1), (0.2), we show that the restriction of the
corresponding random dynamical system to integer times generates a homo-
geneous family of Markov chains in an appropriate functional space. For this
Markov chain, we investigate the following questions:

• existence of stationary measures;

• uniqueness of stationary measure;

• mixing properties.

We show that, under some non-degeneracy assumptions on the distribution
of ηk, there is a unique stationary measure, which is exponentially mixing. The
existence is a simple consequence of the Bogolyubov–Krylov argument and a
smoothing property of the semigroup generated by the homogeneous 2D NS
system. The problem of uniqueness and exponential mixing is much more deli-
cate and was studied in [KS00, KS01, KPS02]. 1 The presentation here follows
the papers [KS01, KPS02].

The lectures are organized as follows. In Section 1, we have compiled some
basic facts from probability theory. In particular, we study different metrics
on the space of probability measures and recall the concept of maximal cou-
pling. Section 2 is devoted to the initial-boundary value problem for the NS
system perturbed by a random force of the form (0.2). We construct solutions
of this problem, derive some a priori estimates for them, and show that they
form a homogeneous family of Markov chains. In Section 3, we first use the
Bogolyubov–Krylov argument to construct a stationary measure and then for-
mulate the main theorem on uniqueness and exponential mixing. The section
is concluded by describing the scheme of the proof of that result. Section 4 is
devoted to construction of the coupling operators associated to the family of
Markov chains in question and to investigation of their properties. In the last,
fifth section, we prove the main theorem.

1See also the papers [FM95, EMS01, BKL02, EH01, Mat02, MY02, Hai02, Kuk02b, KS02,
Kuk02a, KS03, Shi04] and references therein for some further results on mixing properties of
randomly forced PDE’s.
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Notation

Given a Polish space (i.e., separable complete metric space), we always assume
that it is endowed with its Borel σ-algebra and consider it as a measurable space
(see Section 1.1 for details). For any random variable ξ, we denote by D(ξ) its
distribution and by σ(ξ) the σ-algebra generated by ξ. If Γ is a subset in a
measurable space, then we denote by IΓ the indicator function of Γ and by Γc

its complement.
For any measurable space (X,B) with measure m, we denote by L∞(X,m)

the space of Borel measurable functions f : X → R such that

‖f‖∞ = ess sup
u∈X

|f(u)| <∞.

For a Polish space X, we denote by Cb(X) the space of continuous functions
f : X → R such that ‖f‖∞ < ∞. If X is a Banach space, then BX(R) stands
for the ball in X of radius R centred at zero.

If (Ω,F ,P) is a probability space and B ∈ F is an event of positive proba-
bility, then the probability of A ∈ F on condition B is defined by the formula

P(A |B) = P(AB)
P(B) .

For real numbers a and b, we denote a∧b (a∨b) their minimum (maximum).

1 Preliminaries

1.1 Probability spaces, random variables, distributions

Let Ω be a set with σ-algebra F , i.e., a family of subsets of Ω that contains Ω
and satisfies the following two properties:

• if Bi ∈ F for i = 1, 2, . . . , then
⋂
iBi ∈ F ;

• if B ∈ F , then Bc = Ω \B ∈ F .

Any pair (Ω,F) possessing the above properties will be called a measurable
space.

Example 1.1. Let X be a Polish space and let BX be the Borel σ-algebra on X,
i.e., the minimal σ-algebra generated by the open subsets of X. Then (X,BX)
is a measurable space. In what follows, we assume that all Polish spaces are
endowed with their Borel σ-algebra.

Let P be a probability measure on a measurable space (Ω,F), i.e., P is a
countably additive function from F to [0, 1] such that P(Ω) = 1. Any such
triple (Ω,F ,P) will be called a probability space.
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Example 1.2. Let us consider the interval I = [0, 1] endowed with the Borel
σ-algebra BI , and let ` be the Lebesgue measure on I. Then (I,BI , `) is a
probability space.

Let (Ω,F ,P) be a probability space and let (X,B) be a measurable space.
Given an X-valued random variable ξ (i.e., a map from Ω to X such that
ξ−1(Γ) ∈ F for any Γ ∈ B), we define its distribution D(ξ) as the image of P
under ξ:

D(ξ)(Γ) = P
(
ξ−1(Γ)

)
= P

(
{ω ∈ Ω : ξ(ω) ∈ Γ}

)
.

Thus, the distribution of ξ is a probability measure on (X,B). The space of all
probability measures on a measurable space (X,B) will be denoted by P(X).

Exercise 1.3. Let µ ∈ P(R) be a probability measure on (R,BR). Show that
there is a real-valued random variable whose distribution coincides with µ. For-
mulate and prove a similar assertion for any measurable space (X,B). Hint:
Consider the probability space (R,BR, µ) and the random variable ξ(ω) = ω.

If X is a separable Banach space, then an X-valued random variable ξ is
said to be integrable if ∫

Ω

‖ξ(ω)‖X P(dω) <∞.

In this case, we denote by E ξ its mean value, that is,

E ξ =

∫
Ω

ξ(ω)P(dω).

1.2 Independence, product of probability spaces

Let (Ω,F ,P) be a probability space, let A be a set of indices, and let Fα ⊂ F ,
α ∈ A, be a family of sub-σ-algebras in Ω.

Definition 1.4. The family {Fα, α ∈ A} is said to be independent if for any
finite set of indices α1, . . . , αn ∈ A and any Bi ∈ Fαi , i = 1, . . . , n, we have

P(B1 · · ·Bn) = P(B1) · · · P(Bn).

Let (X,B) be a measurable space. Consider a family of X-valued random
variables ξα, α ∈ A, defined on the same probability space (Ω,F ,P). Let us
denote by Fα = σ(ξα) the σ-algebra generated by ξα, i.e., the family of sets
B ∈ F that can be represented in the form ξ−1

α (Γ) for some Γ ∈ B.

Definition 1.5. The family {ξα, α ∈ A} is said to be independent if the cor-
responding family of σ-algebras {Fα, α ∈ A} is independent, i.e., for any finite
set of indices α1, . . . , αn ∈ A and any Γi ∈ B, i = 1, . . . , n, we have

P{ξα1
∈ Γ1, . . . , ξαn ∈ Γn} =

n∏
i=1

P{ξαi ∈ Γi}.
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Exercise 1.6. Show that a family {ξα, α ∈ A} of X-valued random variables is
independent iff for any finite set of indices α1, . . . , αn ∈ A and any bounded
measurable functions fi : X → R, i = 1, . . . , n, we have

E
{ n∏
i=1

fi(ξαi)

}
=

n∏
i=1

E fi(ξαi). (1.1)

Hint: Begin with the case of simple functions, i.e., functions that take on finitely
many different values.

We now describe a simple way for constructing independent random vari-
ables. Let (Ωα,Fα,Pα), α ∈ A, be a family of probability spaces. Define the
product space

Ω =
∏
α∈A

Ωα =
{
ω = (ωα, α ∈ A) : ωα ∈ Ωα for any α

}
and denote by F the product σ-algebra, i.e., the minimal σ-algebra generated
by the sets of the form

Bα1,...,αn =
{

(ωα, α ∈ A) : ωα1
∈ B1, . . . , ωαn ∈ Bn

}
,

where n is a finite integer and Bi ∈ Fαi for i = 1, . . . , n.

Exercise∗ 1.7. Show that there is a unique probability measure on (Ω,F) such
that

P(Bα1,...,αn) =

n∏
i=1

Pαi(Bi) for any set Bα1,...,αn . (1.2)

Hint: See Exercise 1.1.14 in [Str93].

The probability space (Ω,F ,P) is called the product space of (Ωα,Fα,Pα),
α ∈ A. It follows from (1.2) that if ξα are some random variables defined on Ωα,
then their natural extensions2 to Ω are independent.

Exercise∗ 1.8. Let ξ1, . . . , ξn be independent X-valued random variables and let
f : X × · · · ×X → R be a bounded measurable function of n variables. Then

E f(ξ1, . . . , ξn) = Eω1
. . .Eωn f(ξ1(ω1), . . . , ξn(ωn)). (1.3)

Hint: Use the technique of π- and λ-systems (cf. Theorem 4.4.2 in [Dud02] or
Section I.5 in [Kry95]).

1.3 Conditional expectation

Let (Ω,F ,P) be a probability space and let ξ be a real-valued integrable random
variable.

2By the natural extension of ξα to Ω we mean the random variable defined by the relation
ξ̃α(ω) = ξα(ωα).
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Proposition 1.9. For any sub-σ-algebra G ⊂ F there is a G-measurable random
variable η such that∫

B

ξ(ω)P(dω) =

∫
B

η(ω)P(dω) for any B ∈ G. (1.4)

If η̃ is another G-measurable random variable satisfying (1.4), then η(ω) = η̃(ω)
for a.e. ω.

Proof. Let us consider a signed measure on (Ω,G) defined by the formula

µ(B) =

∫
B

ξ(ω)P(dω), B ∈ G. (1.5)

The measure µ is absolutely continuous with respect to P. Hence, by the Radon–
Nikodym theorem (see Theorem 5.5.4 in [Dud02]), there is a G-measurable func-
tion η(ω) such that

µ(B) =

∫
B

η(ω)P(dω) for any B ∈ G.

Comparing this relation with (1.5), we arrive at (1.4).
If η̃ is another G-measurable random variable satisfying (1.4), then∫

B

(
η(ω)− η̃(ω)

)
P(dω) = 0 for any B ∈ G,

whence it follows that η = η̃ almost surely.

Definition 1.10. The random variable η constructed in Proposition 1.9 is called
the conditional expectation of ξ given G and is denoted by E (ξ | G).

Exercise 1.11. Let (Ω,F ,P) be a probability space. Suppose that Ω is rep-
resented as a countable union of disjoint subsets Ωi, i ≥ 1, and let G be the
sub-σ-algebra generated by {Ωi, i ≥ 1}. Construct the conditional expectation
of a real-valued random variable ξ given G.

Exercise 1.12. Show that, if ξ is G-measurable, then E (ξ | G) = ξ, and if σ(ξ)
and G are independent, then E (ξ | G) = E ξ. Furthermore, if G ⊂ G′, then

E
(
E (ξ | G′) | G

)
= E (ξ | G). (1.6)

Exercise∗ 1.13. Let ξ and η be random variables defined on a probability space
(Ω,F ,P) and valued in a Polish space X and let G ⊂ F be a σ-algebra such
that ξ is G-measurable and η is independent of G. Show that for any bounded
measurable function f : X ×X → R we have

E
(
f(ξ, η) | G

)
=
(
E f(x, η)

)∣∣
x=ξ

.

Hint: Use the technique of π- and λ-systems.
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1.4 Metrics on the space of probability measures

Let X be a Polish space endowed with its Borel σ-algebra BX . We denote
by Cb(X) the space of continuous functions f : X → R with finite norm

‖f‖∞ := ess sup
u∈X

|f(u)|.

Since the family P(X) of probability measures on (X,BX) is a subset in the
dual space of Cb(X), we can endow it with the dual metric

‖µ1 − µ2‖∗∞ := sup
{
|(f, µ1)− (f, µ2)| : f ∈ Cb(X), ‖f‖∞ ≤ 1

}
,

where, for any f ∈ Cb(X) and µ ∈ P(X), we set

(f, µ) :=

∫
X

f(u)µ(du) =

∫
X

f(u) dµ.

Let us introduce another metric on P(X).

Definition 1.14. The variational distance between two probability measures µ1

and µ2 is defined by the formula

‖µ1 − µ2‖var := sup
{
|µ1(Γ)− µ2(Γ)| : Γ ∈ BX

}
.

Theorem 1.15. For any µ1, µ2 ∈ P(X), we have

‖µ1 − µ2‖∗∞ = 2 ‖µ1 − µ2‖var. (1.7)

Proof. We shall need the following auxiliary assertion, which is of independent
interest.

Proposition 1.16. Let m be a positive Borel measure on X. Suppose that
µ1, µ2 ∈ P(X) are absolutely continuous with respect to m. Then

‖µ1 − µ2‖var =
1

2

∫
X

∣∣ρ1(u)− ρ2(u)
∣∣ dm = 1−

∫
X

(ρ1 ∧ ρ2)(u) dm, (1.8)

where ρi(u), i = 1, 2, is the density of µi with respect to m.

Taking this proposition for granted, let us prove the theorem. Let m be a
measure satisfying the conditions of Proposition 1.16. For instance, we can take
m = µ1 +µ2. Using the first relation in (1.8), for any f ∈ Cb(X) with ‖f‖∞ ≤ 1
we derive∣∣(f, µ1)− (f, µ2)

∣∣ ≤ ∫
X

∣∣f(u)
(
ρ1(u)− ρ2(u)

)∣∣ dm ≤ 2 ‖µ1 − µ2‖var,

which implies that
‖µ1 − µ2‖∗∞ ≤ 2 ‖µ1 − µ2‖var.
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To establish the converse inequality, we set

Y = {u ∈ X : ρ1(u) > ρ2(u)}. (1.9)

Let us consider a function f(u) that is equal to 1 on Y and to −1 on the
complement of Γ. We have

(f, µ1)− (f, µ2) =

∫
X

f(u)
(
ρ1(u)− ρ2(u)

)
dm

=

∫
X

∣∣ρ1(u)− ρ2(u)
∣∣ dm = 2 ‖µ1 − µ2‖var, (1.10)

where we used the first relation in (1.8). To complete the proof of (1.7), it
suffices to choose a sequence fn ∈ Cb(X) such that ‖fn‖∞ ≤ 1 for all n and
fn(u) → f(u) for m-a.e. u ∈ X and note that (fn, µ1) − (fn, µ2) tends to the
left-hand side of (1.10) as n→∞.

Exercise∗ 1.17. Let X be a Polish space endowed with its Borel σ-algebra and
let m be a positive measure on X. Show that for any f ∈ L∞(X,m) there
is a sequence of continuous functions uniformly bounded by ‖f‖∞ that con-
verges to f almost surely. Hint: Any bounded measurable function can be
approximated uniformly by bounded simple functions; the indicator function of
any measurable set can be approximated (in the sense of a.s. convergence) by
bounded continuous functions.

Proof of Proposition 1.16. A direct verification shows that

1
2 |ρ1 − ρ2| = 1

2 (ρ1 + ρ2)− ρ,

where ρ = ρ1 ∧ ρ2. Integrating the above relation over X with respect to m, we
obtain the second equality in (1.8).

We now show that

‖µ1 − µ2‖var ≤ 1−
∫
X

ρ(u) dm. (1.11)

Let Y be the set defined by (1.9). Then, for any Γ ∈ BX , we have

µ1(Γ)− µ2(Γ) =

∫
Γ

(ρ1 − ρ2) dm ≤
∫

Γ∩Y
(ρ1 − ρ2) dm

=

∫
Γ∩Y

(ρ1 − ρ) dm ≤
∫
X

(ρ1 − ρ) dm = 1−
∫
X

ρ(u) dm.

In view of the symmetry, this inequality implies (1.11).
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To prove the converse inequality, we denote by Y c the complement of Y and
note that ρ = ρ1 on Y c and ρ = ρ2 on Y . It follows that

µ1(Y )− µ2(Y ) =

∫
Y

(ρ1 − ρ2) dm

=

(∫
Y

ρ1dm+

∫
Y c
ρ dm

)
−
(∫

Y

ρ2dm+

∫
Y c
ρ dm

)
=

(∫
Y

ρ1dm+

∫
Y c
ρ1dm

)
−
(∫

Y

ρ dm+

∫
Y c
ρ dm

)
= 1−

∫
X

ρ dm.

This completes the proof of the proposition.

In what follows, we shall need a weaker topology on P(X). Let L(X) be the
space of functions f ∈ Cb(X) such that

‖f‖L := ‖f‖∞ + sup
u6=v

|f(u)− f(v)|
dX(u, v)

<∞,

where dX is the metric on X. For any µ1, µ2 ∈ P(X), we set

‖µ1 − µ2‖∗L := sup
{
|(f, µ1)− (f, µ2)| : f ∈ L(X), ‖f‖L ≤ 1

}
. (1.12)

Exercise∗ 1.18. Show that ‖µ1 − µ2‖∗L defines a metric on P(X). Hint: The
triangle inequality is obvious; to prove that µ1 = µ2 if ‖µ1 − µ2‖∗L = 0, it
suffices to show that µ1(F ) = µ2(F ) for any closed set F ⊂ X; to this end, find
a sequence fk ∈ L(X) converging to the indicator function of F .

The following theorem is of fundamental importance. Its proof can be found
in [Dud02, Corollary 11.5.5].

Theorem 1.19. The set P(X) is a complete metric space with respect to ‖ ·‖∗L.

1.5 Maximal coupling of measures

Let X be a Polish space and let µ1, µ2 ∈ P(X).

Definition 1.20. A pair of random variables (ξ1, ξ2) defined on the same prob-
ability space is called a coupling for (µ1, µ2) if

D(ξ1) = µ1, D(ξ2) = µ2.

Let (ξ1, ξ2) be a coupling for (µ1, µ2). Then for any Γ ∈ BX we have

µ1(Γ)− µ2(Γ) = P{ξ1 ∈ Γ} − P{ξ2 ∈ Γ}
= E

{
I{ξ1 6=ξ2}

(
IΓ(ξ1)− IΓ(ξ2)

)}
≤ P{ξ1 6= ξ2},

whence it follows that

P{ξ1 6= ξ2} ≥ ‖µ1 − µ2‖var.
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Definition 1.21. A coupling (ξ1, ξ2) for (µ1, µ2) is said to be maximal if

P{ξ1 6= ξ2} = ‖µ1 − µ2‖var,

and the random variables ξ1 and ξ2 conditioned on the event 3 N = {ξ1 6= ξ2}
are independent, that is, for any Γ1,Γ2 ∈ BX ,

P{ξ1 ∈ Γ1, ξ2 ∈ Γ2 |N} = P{ξ1 ∈ Γ1 |N}P{ξ1 ∈ Γ1 |N},

where, for any B ∈ F , we set P(B |N) = P(BN)
P(N) .

Theorem 1.22. For any pair of measures µ1, µ2 ∈ P(X), there is a maximal
coupling.

Proof. If δ := ‖µ1 − µ2‖var = 1, then any pair (ξ1, ξ2) of independent random
variables with D(ξi) = µi, i = 1, 2, is a maximal coupling for (µ1, µ2). If δ = 0,
then µ1 = µ2, and for any random variable ξ with distribution µ1 the pair (ξ, ξ)
is a maximal coupling. Hence, we can assume that 0 < δ < 1.

Let m(du) be a measure satisfying the conditions of Proposition 1.16 and let

ρi =
dµi
dm

, ρ = ρ1 ∧ ρ2, ρ̂i = δ−1(ρi − ρ).

Direct verification shows that µ̂i = ρ̂idm and µ = (1− δ)−1ρ dm are probability
measures on X. Let ζ1, ζ2, ζ, and α be independent random variables defined
on the same probability space such that

D(ζi) = µ̂i, D(ζ) = µ, P{α = 1} = 1− δ, P{α = 0} = δ.

We claim that the random variables ξi = αζ+(1−α)ζi, i = 1, 2, form a maximal
coupling for (µ1, µ2). Indeed, for any Γ ∈ BX , we have

P{ξi ∈ Γ} = P{ξi ∈ Γ, α = 0}+ P{ξi ∈ Γ, α = 1}
= P{α = 0}P{ζi ∈ Γ}+ P{α = 1}P{ζ ∈ Γ}

= δ

∫
Γ

ρ̂i(u) dm+

∫
Γ

ρ(u) dm = µi(Γ),

where we used the independence of (ζ1, ζ2, ζ, α) and the relation ρi = ρ + δρ̂i.
Furthermore,

P{ξ1 6= ξ2} = P{ξ1 6= ξ2, α = 0}+ P{ξ1 6= ξ2, α = 1}
= P{α = 0}P{ζ1 6= ζ2} = δ,

where we used again the independence of (ζ1, ζ2, ζ, α) and also the relation

P{ζ1 = ζ2} = δ−2

∫∫
{u1=u2}

(
ρ1(u1)− ρ(u1)

)(
ρ2(u2)− ρ(u2)

)
m(du1)m(du2) = 0.

A similar argument shows that the random variables ξ1 and ξ2 conditioned
on {ξ1 6= ξ2} are independent. This completes the proof of Theorem 1.22.

3In the case P{ξ1 6= ξ2} = 0, this condition should be omitted.
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In what follows, we deal with pairs of measures depending on a parameter
and we shall need a maximal coupling for them that depends on the parameter
on a measurable manner.

Theorem 1.23. Let µi(z, dx), i = 1, 2, be two probability measures on RN that
depend on a parameter z ∈ Rn. Suppose that

µi(z, dx) = pi(z, x) dx for any z ∈ Rn,

where pi(z, x) is a measurable function of (z, x) ∈ Rn×RN . Then there are mea-
surable functions ξi(z, ω) : Rn×Ω→ RN , i = 1, 2, defined on the same probability
space such that (ξ1(z, ·), ξ2(z, ·)) is a maximal coupling for (µ1(z, dx), µ2(z, dx))
for any z ∈ Rn.

Exercise∗ 1.24. Prove Theorem 1.23. Hint: Repeat the construction of Theo-
rem 1.22 choosing for ζ1, ζ2, ζ, α measurable functions of (z, ω); begin with the
case N = 1 (see [KS01, Section 4] for details).

2 Randomly forced Navier–Stokes equations

2.1 Cauchy problem

Let us consider the 2D Navier–Stokes (NS) system in a bounded domain D ⊂ R2

with smooth boundary ∂D:

u̇+ (u,∇)u−∆u+∇p = η(t, x), div u = 0, x ∈ D. (2.1)

Here u = (u1, u2) is the velocity field of the fluid, p(t, x) is the pressure,
and η(t, x) is an external force. Equations (2.1) are supplemented with the
Dirichlet boundary condition for u:

u
∣∣
∂D

= 0. (2.2)

Let us set
V =

{
u ∈ C∞0 (D,R2) : div u = 0

}
and denote by H and V the closure of V in L2(D,R2) and H1(D,R2), respec-
tively. Denoting by Π : L2(D,R2) → H the orthogonal projection onto H and
applying it (formally) to Eqs. (2.1), we obtain

u̇+ Lu+B(u, u) = η(t), (2.3)

where L = −Π∆, B(u, v) = Π(u,∇)v, and we retained the notation for the
right-hand side.

Let us assume that η has the form

η(t) =

∞∑
k=1

ηkδ(t− k), (2.4)

where {ηk} is a sequence in H and δ(t) is the Dirac measure concentrated at
zero.
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Definition 2.1. A function ut : R+ → H is called a solution of (2.3), (2.4) if
the following two properties hold for any integer k ≥ 1.

(i) The restriction of ut to interval Ik := [k − 1, k) belongs to the space
C(Ik, H) ∩ L2(Ik, V ) and satisfies the homogeneous NS system

u̇+ Lu+B(u, u) = 0. (2.5)

(ii) There is a limit lim
t→k−

ut = u−k , and uk = u−k + ηk (see Figure 1).

-
t

p p p p
0 1 2 3

qu0

6

-

η1

qu1

~

?

η2 qu2

6

-

η3

qu3

Figure 1: Evolution defined by Equations (2.3), (2.4)

Let us fix an arbitrary function v ∈ H and consider the Cauchy problem
for (2.3), (2.4):

u0 = v. (2.6)

We denote by St : R+ → H the resolving semigroup for Eq. (2.5), i.e., we set
St(v) = ut, where ut ∈ C(R+, H) ∩ L2

loc(R+, V ) is the unique solution of (2.5),
(2.6) defined on the half-line R+.

Theorem 2.2. For any v ∈ H, the problem (2.3), (2.4) has a unique solution ut
satisfying the initial condition (2.6). Moreover, for any integer k ≥ 1, we have

uk = S(uk−1) + ηk, (2.7)

where S = S1.

Proof. For integer values of t, we define ut inductively by relation (2.7), and
for t ∈ [k, k + 1), we set ut = St−k(uk). The resulting function is the unique
solution of the problem in question.

2.2 A priori estimates

The operator L = −Π∆ with domain D(L) = H2(D,R2)∩V is self-adjoint, and
its inverse is compact. It follows that the set {ej} of normalised eigenfunctions
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of L form an orthonormal basis in H. We shall denote by α1 ≤ α2 ≤ · · · the
corresponding eigenvalues. Furthermore, for γ ∈ R, we set

D(Lγ) =

{
u(x) =

∞∑
j=1

fjej(x) :

∞∑
j=1

α2γ
j f

2
j <∞

}
and define powers of L by the formula

(Lγu)(x) =

∞∑
j=1

αγj fjej(x).

Finally, let us introduce the Sobolev norm ‖u‖γ =
(
L
γ
2 u, L

γ
2 u
) 1

2 for u ∈ D(L
γ
2 ).

We shall write | · | and ‖ · ‖ instead of ‖ · ‖0 and ‖ · ‖1 for the norms in H and V ,
respectively.

Theorem 2.3. (i) Let ut be a solution of (2.5). Then

|ut|2 + 2

∫ t

0

‖us‖2ds = |u0|2, (2.8)

t ‖ut‖21/2 +

∫ t

0

s ‖us‖23/2ds ≤ C |u0|2 exp

(
C

∫ t

0

‖us‖2ds
)
, (2.9)

where t ≥ 0, and C > 0 is a constant not depending on ut.
(ii) Let ut and u′t be two solutions of (2.5). Then

‖ut − u′t‖1/2 ≤ C t−
1
2

(
1 + |u0|+ |u′0|

) 3
2 exp

(
C

∫ t

0

(
‖us‖2 + ‖u′s‖2

)
ds

)
|u0 − u′0|,

(2.10)
where the constant C > 0 does not depend on solutions.

Proof. Step 1. Let (·, ·) be the natural scalar product in H. Taking the scalar
product of (2.5) with 2ut, we derive

∂t|ut|2 + 2(Lut, ut) = 0, (2.11)

where we used the relation

(B(v, w), w) = 0, v, w ∈ V. (2.12)

Integration of (2.11) with respect to time results in (2.8).

Step 2. Let us take the scalar product of (2.5) with 2tL
1
2u. Performing some

simple transformations, we derive

∂
(
t‖u‖21/2

)
− ‖u‖21/2 + 2t ‖u‖23/2 + 2t (B(u, u), L

1
2u) = 0.

Taking into account the inequality (see Exercise 2.4 below)∣∣(B(u, u), L
1
2u)
∣∣ ≤ C1‖u‖3/2‖u‖ ‖u‖1/2 ≤ 1

2

(
‖u‖23/2 + C2

1 ‖u‖2‖u‖21/2
)
, (2.13)
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we obtain

∂
(
t‖u‖21/2 + 1

)
+ t‖u‖23/2 ≤ C2‖u‖2

(
t‖u‖21/2 + 1

)
. (2.14)

Ignoring the second term on the left-hand side of (2.14) and applying the Gron-
wall inequality, we derive

t ‖ut‖21/2 + 1 ≤ exp

(
C2

∫ t

0

‖us‖2ds
)
. (2.15)

Integrating (2.14) with respect to time and using (2.15) and (2.8) to estimate
the right-hand side, we arrive at (2.9).

Step 3. The difference w = u− u′ of two solutions satisfies the equation

ẇ + Lw +B(w, u) +B(u′, w) = 0. (2.16)

Taking the scalar product of (2.16) with 2w and recalling relation (2.12) and
also the inequality

|(B(w, u), w)| ≤ C3|w| ‖w‖ ‖u‖ ≤ 1
2

(
‖w‖2 + C2

3 ‖u‖2|w|2
)
,

we derive
∂t|w|2 + ‖w‖2 ≤ C2

3 ‖u‖2|w|2.

Repeating the argument applied in Step 2, we see that

|ut− u′t|2 +

∫ t

0

‖us− u′s‖2ds ≤ exp

(
C4

∫ t

0

‖us‖2ds
)
|u0− u′0|2, t ≥ 0. (2.17)

We now take the scalar product of (2.16) with 2tL
1
2w:

∂
(
t‖w‖21/2

)
+ 2t ‖w‖23/2 = ‖w‖21/2 − 2t

{
(B(w, u), L

1
2w) + (B(u′, w), L

1
2w)

}
.

(2.18)
We have (see Exercise 2.4)∣∣(B(w, u), L

1
2w)

∣∣ ≤ C5

(
‖w‖43/2‖u‖

2
3/2|u| |w|

2
) 1

3

≤ 1

8
‖w‖23/2 + 2C2

5 ‖u‖23/2|u| |w|
2, (2.19)∣∣(B(u′, w), L

1
2w)

∣∣ ≤ C6

(
‖u′‖23/2|u

′|‖w‖43/2|w|
2
) 1

3

≤ 1

8
‖w‖23/2 + 2C2

6 ‖u′‖23/2|u
′| |w|2. (2.20)

Substituting these estimates into (2.18), we obtain

∂
(
t‖w‖21/2

)
+ t ‖w‖23/2 ≤ ‖w‖

2
1/2 + C7t

(
‖u‖23/2|u|+ ‖u

′‖23/2|u
′|
)
|w|2.

Integrating this inequality with respect to time and using (2.8), (2.9), and (2.17),
we arrive at (2.10).
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Exercise 2.4. Prove the first inequalities in (2.13), (2.19), and (2.20). Hint: Use
the estimate

‖u‖L∞ + ‖u‖ ≤ const
∥∥u∥∥ β

α+β

1+α

∥∥u∥∥ α
α+β

1−β , (2.21)

where ‖u‖L∞ is the essential supremum of u(x) and 0 < α, β ≤ 1.

In what follows, we shall need the following three estimates for S. They are
consequences of inequalities (2.8), (2.10), and (2.17).

Corollary 2.5. For any v ∈ H, we have

|S(v)| ≤ q |v|, q = e−α1 . (2.22)

Furthermore, there is a constant C > 0 such that, for any v, v′ ∈ H, we have

∣∣S(v)− S(v′)
∣∣ ≤ exp

{
C

∫ 1

0

‖us‖2ds
}
|v − v′|, (2.23)

∥∥S(v)− S(v′)
∥∥

1/2
≤ C exp

{
C

∫ 1

0

(
‖us‖2 + ‖u′s‖2

)
ds

}
|v − v′|, (2.24)

where us and u′s are the solutions of (2.5) that correspond to the initial func-
tions v and v′, respectively.

Proof. Let ut be the solution of (2.5), (2.6). It follows from (2.8) and the
inequality ‖u‖2 ≥ α1|u|2 that

|ut|2 + 2α1

∫ t

0

|us|2ds ≤ |v|2.

Applying the Gronwall inequality, we derive

|ut|2 ≤ e−2α1t|v|2. (2.25)

In particular, for t = 1, we obtain (2.22).
Inequality (2.23) follows from (2.17) with t = 1. Substituting (2.25) into (2.8)

and setting t = 1, we get

2

∫ 1

0

‖us‖2ds ≥ |u0|2(1− e−2α1) ≥ c|u0|2,

where c > 0 is a constant. Combining this inequality and its analogue for u′t
with (2.10), we obtain (2.24).

Finally, we establish an estimate for the difference between two solutions of
Eq. (2.3) with different right-hand sides. Namely, for any integer N ≥ 1, we
denote by HN the subspace in H spanned by the functions ej , j = 1, . . . , N .
Let PN be the orthogonal projection onto HN and let QN = I −PN , where I is
the identity operator.
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Proposition 2.6. Let ut and u′t be two solutions of Eq. (2.3) with right-hand
sides

η(t) =

∞∑
k=1

ηkδ(t− k), η′(t) =

∞∑
k=1

η′kδ(t− k),

respectively. Then there is a constant C > 0 not depending on solutions and
right-hand sides such that, for any integers m < k and N ≥ 1, we have∣∣QN (uk − u′k)

∣∣ ≤ ∣∣QN (ηk − η′k)
∣∣+
(
Cα
− 1

4

N

)k−m
D(m, k)|um − u′m|+

+

k−1∑
l=m+1

(
Cα
− 1

4

N

)k−l
D(l, k)

(
|PN (ul − u′l)|+ |QN (ηl − η′l)|

)
, (2.26)

where we set

D(m, k) = C

∫ k

m

(
‖us‖2 + ‖u′s‖2

)
ds.

Proof. Let us fix an arbitrary N ≥ 1. In view of (2.7), (2.24), and the inequality

|QNv| ≤ α
− 1

4

N ‖v‖1/2, for any integer l ≥ 1, we have∣∣QN (ul − u′l)
∣∣ ≤ ∣∣QN(S(ul−1)− S(u′l−1)

)∣∣+
∣∣QN (ηl − η′l)

∣∣
≤
∥∥S(ul−1)− S(u′l−1)

∥∥
1/2

+
∣∣QN (ηl − η′l)

∣∣
≤ Cα−

1
4

N D(l − 1, l)
∣∣ul−1 − u′l−1

∣∣+
∣∣QN (ηl − η′l)

∣∣.
Arguing by induction, we obtain (2.26).

2.3 Markov chain associated with the NS system

From now on, we shall study the discrete-time random dynamical system (RDS)

uk = S(uk−1) + ηk, (2.27)

u0 = u, (2.28)

where {ηk} is a sequence of independent identically distributed (i.i.d.) H-valued
random variables and u = u(x) is an initial (random) function. We shall some-
times write uk(u) to indicate the dependence of the trajectory on the initial
function u.

Theorem 2.7. Let {uk} be a sequence defined by (2.27), (2.28), where u is
an H-valued random variable independent of {ηk, k ≥ 1}. Suppose that m1 =
E |ηk| <∞. Then

E |uk| ≤ qkE |u|+m1

(
1 + q + · · ·+ qk−1

)
, (2.29)

where q ∈ (0, 1) is the constant in (2.22). Moreover, the sequence {uk} satis-
fies the Markov property. Namely, for any integers k, n ≥ 0 and any bounded
measurable function f : H → R, we have

E
(
f(uk+n) | Fk

)
=
(
E f(un(v))

) ∣∣
v=uk

, (2.30)
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where Fk is the σ-algebra generated 4 by η1, . . . , ηk and u, and the equality holds
almost surely.

Proof. To prove (2.29), we note that

E |uk| ≤ E |S(uk−1)|+ E |ηk| ≤ qE |uk−1|+m1,

where we used (2.22). Iteration of this inequality results in (2.29).
Let us prove the Markov property. We shall write uk(u) = uk(u; η1, . . . , ηk)

to indicate the dependence of the trajectory of (2.27), (2.28) on the random
variables {ηm}. We have

uk+n(u; η1, . . . , ηk+n) = un(uk(u); ηk+1, . . . , ηk+n).

Since uk(u) is Fk-measurable and {ηi, i ≥ k+1} is independent of Fk, it follows
from the above relation and Exercise 1.13 that

E
(
f(uk+n(u)) | Fk

)
=
(
E f(un(v; ηk+1, . . . , ηk+n)

) ∣∣
v=uk(u)

. (2.31)

Now note that the distributions of the vectors (ηk+1, . . . , ηk+n) and (η1, . . . , ηn)
coincide. Therefore,

E f(un(v; ηk+1, . . . , ηk+n) = E f(un(v; η1, . . . , ηn)),

where v ∈ H is an arbitrary deterministic function. Substitution of the above
relation into the right-hand side of (2.31) completes the proof of (2.30).

Exercise 2.8. In the notation of Theorem 2.7, show that, if f : H×· · ·×H → R
is a bounded measurable function of n+ 1 arguments, then

E
(
f(uk, uk+1, . . . , uk+n) | Fk

)
=
(
E f(v, u1(v), . . . , un(v))

) ∣∣
v=uk

.

The Markov property implies two important corollaries. To formulate them,
we introduce the transition function for the RDS (2.27). Namely, for any de-
terministic function v ∈ H and any integer k ≥ 0, we denote by Pk(v, ·) the
distribution of uk(v):

Pk(v,Γ) = P{uk(v) ∈ Γ}, Γ ∈ BH . (2.32)

Corollary 2.9. Let u(x) be an H-valued random variable independent of {ηk}
and let µ be the distribution of u. Then the distribution of uk = uk(u) is given
by the formula

D(uk)(Γ) =

∫
H

Pk(v,Γ)µ(dv). (2.33)

In particular, the measure D(uk) depends only on µ (but not on the random
variable u).

4We denote by F0 the σ-algebra generated by u.
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Proof. Let us fix an arbitrary Borel set Γ ⊂ H. In view of relation (2.30) with
f(z) = IΓ(z), we have

E IΓ(uk) = E
{
E
(
IΓ(uk) | F0

)}
= E

{(
E IΓ(uk(v))

)∣∣
v=u0

}
.

It remains to note that E IΓ(uk(v)) = P{uk(v) ∈ Γ} = Pk(u,Γ).

Corollary 2.10. The transition function Pk(v,Γ) satisfies the Chapman–Kol-
mogorov relation. Namely, for any k, n ≥ 0, v ∈ H, and Γ ∈ BH , we have

Pk+n(v,Γ) =

∫
H

Pk(v, dz)Pn(z,Γ). (2.34)

Proof. In view of (2.30), we have

Pk+n(v,Γ) = E IΓ(uk+n(v)) = E
{
E
(
IΓ(uk+n(v)) | Fk

)}
= E

{
E
(
IΓ(un(z))

) ∣∣
z=uk(v)

}
= E

{
Pn(uk(v),Γ)

}
.

This expression coincides with the integral on the right-hand side of (2.34).

3 Stationary measures and exponential mixing

3.1 Existence of stationary measures

Let us recall that we denote by Pk(v,Γ) the transition function associated with
the RDS (2.27), (2.28) (see (2.32)). We now introduce the corresponding Markov
semigroups:

Pk : Cb(H)→ Cb(H), Pkf(v) =

∫
H

Pk(v, dz)f(z),

P∗k : P(H)→ P(H), P∗kµ(Γ) =

∫
H

Pk(v,Γ)µ(dv).

Exercise 3.1. Show that operators Pk and P∗k are well defined. Show also that
they form semigroups, that is, P0 = Id and Pk+n = Pn ◦ Pk, and similarly
for P∗k. Hint: Use the Chapman–Kolmogorov relation (2.34).

Exercise 3.2. Show that Pk and P∗k are dual semigroups in the sense that

(Pkf, µ) = (f,P∗kµ) for any f ∈ Cb(H), µ ∈ P(H).

Definition 3.3. A measure µ ∈ P(H) is said to be stationary for the RDS (2.27)
if P∗1µ = µ.

Let us note that, if µ ∈ P(H) is a stationary measure and u(x) is a random
function in H with distribution µ, then the distribution of the trajectory uk
for (2.27), (2.28) coincides with µ for any k ≥ 1. This assertion is a straightfor-
ward consequence of relation (2.33) and Definition 3.3.
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Theorem 3.4. Suppose that E |ηk| <∞. Then the RDS (2.27) has at least one
stationary measure.

Proof. We shall apply the classical Bogolyubov–Krylov argument (e.g., see The-
orem 1.5.8 in [Arn98]).

Step 1. Let uk be the trajectory of (2.27), (2.28) with u ≡ 0 and let µk be
the distribution of uk. We set

µ̄k =
1

k

k−1∑
l=0

µl.

Suppose we have shown that the sequence {µk} is relatively compact in the
space P(X) endowed with the metric ‖ · ‖∗L (see (1.12)). Then there is a subse-
quence µkm and a measure µ ∈ P(H) such that µkm ⇀ µ as m→ +∞, where ⇀
stands for convergence with respect to the metric ‖ · ‖∗L. We claim that µ is a
stationary measure. Indeed, for any f ∈ L(H), we have

(f,P∗1µ) = lim
m→∞

(
f,P∗1µ̄km

)
= lim
m→∞

1

km

km−1∑
l=0

(f,P∗1µl)

= lim
m→∞

{(
f, µ̄km

)
− 1

km

(
f, µ0

)
+

1

km

(
f, µkm

)}
= (f, µ). (3.1)

Since this relation is true for any f ∈ L(H), we conclude that P∗1µ = µ.

Step 2. Let us show that {µk} is relatively compact. We resort to the
following assertion due to Prokhorov (see Theorem 11.5.4 in [Dud02]).

Proposition 3.5. A family {µα} of probability Borel measures on a Polish
space is relatively compact iff for any ε > 0 there is a compact subset Kε such
that µα(Kε) ≥ 1− ε for any α.

We shall show that for any ε > 0 there is a compact set Kε ⊂ H such that
µk(Kε) ≥ 1− ε for any k ≥ 1. This will imply that {µ̄k} is relatively compact.

Since uk = S(uk−1) + ηk, the required assertion will be established if we
prove that

P
{
S(uk−1) /∈ K1

ε

}
≤ ε/2, P

{
ηk /∈ K2

ε

}
≤ ε/2. (3.2)

where K1
ε and K2

ε are compact sets in H. (We can take Kε = K1
ε +K2

ε .)

Step 3. It follows from (2.29) that E |uk| ≤ m1(1 − q)−1 for all k ≥ 1.
Therefore we can choose Rε > 0 so large that

P
{
|uk−1| > Rε

}
≤ R−1

ε E |uk−1| ≤ ε/2. (3.3)

Furthermore, since the embedding Hs ⊂ H is compact for s > 0, we conclude
from inequality (2.24) with v′ = 0 and relation (2.8) that the image under S of
any bounded set in H is relatively compact. Hence, setting K1

ε = S
(
BH(Rε)

)
,

from (3.3) we derive

P
{
S(uk−1) /∈ K1

ε

}
≤ P

{
|uk−1| > Rε

}
≤ ε/2.
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Finally, recall that, by Ulam’s theorem, any probability Borel measure on a
polish space is regular (see Theorem 7.1.4 in [Dud02]). Hence, if χ is the distri-
bution of ηk, then there is a compact set K2

ε ⊂ H such that χ(K2
ε ) ≥ 1 − ε/2.

This is equivalent to the second inequality in (3.2).

Exercise 3.6. Justify the first relation in (3.1). Hint: Use the fact that µn ⇀ µ
iff (f, µn)→ (f, µ) for any f ∈ Cb(H) (see Theorem 11.3.3 in [Dud02]).

Exercise 3.7. Show that any stationary measure µ has a finite moment, that is,

m(µ) :=

∫
H

|v|µ(dv) <∞.

Hint: Use inequality (2.29) and Fatou’s lemma (see Lemma 4.3.3 in [Dud02]
and Theorem 2.2 in [Shi02]).

3.2 Main theorem: uniqueness and mixing

In contrast to the existence of a stationary measure, which holds under rather
general assumptions, to ensure its uniqueness, we have to impose some non-
degeneracy conditions on the distribution of the random variables ηk. Namely,
we shall assume that the following condition is fulfilled.

Hypothesis (H). The i.i.d. random variables ηk have the form

ηk(x) =

∞∑
j=1

bjξjkej(x), (3.4)

where ξjk are independent scalar random variables and bj ≥ 0 are some con-
stants such that

B :=

∞∑
j=1

b2j <∞. (3.5)

Moreover, for any j ≥ 1 the measure πj = D(ξjk) possesses a density pj(r)
(with respect to the Lebesgue measure on R) that is a function of bounded
total variation such that

supp pj ⊂ [−1, 1],

∫ ε

−ε
pj(r) dr > 0 for any ε > 0. (3.6)

Hypothesis (H) implies that, with probability 1, the random variables ηk are
contained in the ball of radius

√
B centered at zero. The following theorem,

which is the main result of this course, is established in [KS01, KPS02].

Theorem 3.8. Suppose that Condition (H) is satisfied. Then for any B0 > 0
there is an integer N ≥ 1 such that, if

B ≤ B0, bj 6= 0 for j = 1, . . . , N, (3.7)
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then the RDS (2.27) has a unique stationary measure µ ∈ P(H). Moreover,
there are positive constants C and β such that, for any functional f ∈ L(H)
and any H-valued random variable u(x) that is independent of {ηk} and has a
finite mean value, we have∣∣E f(uk)− (f, µ)

∣∣ ≤ C ‖f‖L(1 + E |u|
)
e−βk, k ≥ 0, (3.8)

where {uk} is the trajectory defined by (2.27), (2.28).

A scheme of the proof of this theorem is given in the next subsection, and the
details occupy Sections 4 and 5. Here we formulate two important corollaries of
Theorem 3.8.

Corollary 3.9. For any v ∈ H, we have

‖Pk(v, ·)− µ‖∗L ≤ C
(
1 + |v|

)
e−βk, k ≥ 0. (3.9)

Moreover, for any initial measure λ ∈ P(H) with finite moment m(λ) <∞, we
have

‖P∗kλ− µ‖∗L ≤ C
(
1 + m(λ)

)
e−βk, k ≥ 0. (3.10)

Corollary 3.10. For any v ∈ H and f ∈ L(H), we have∣∣Pkf(v)− (f, µ)
∣∣ ≤ C ‖f‖L(1 + |v|

)
e−βk, k ≥ 0. (3.11)

Exercise 3.11. Show that inequalities (3.8), (3.9), (3.10), and (3.11) are pairwise
equivalent.

3.3 Scheme of the proof of the main result

Step 1: Convergence implies uniqueness. We first note that it suffices to estab-
lish inequality (3.8), where µ is a probability measure in H. Indeed, if µ̂ ∈ P(H)
is stationary measure such that m(µ̂) <∞, then, by (3.10), we have

‖µ̂− µ‖∗L = ‖P∗kµ̂− µ‖∗L ≤ C
(
1 + m(µ̂)

)
e−βk.

Passing to the limit as k →∞, we see that µ̂ = µ. Thus, it remains to show that
any stationary measure has a finite moment. This follows from Exercise 3.7.

Step 2: Bounded absorbing invariant set. Since inequalities (3.8) and (3.11)
are equivalent (see Exercise 3.11), we shall prove the latter. To this end, we note
that the ball in H of radius R = 2(1 − q)−1

√
B centred at zero is an invariant

absorbing set for the RDS (2.27). Indeed, it follows from Hypothesis (H) that
P{|ηk| ≤

√
B} = 1. Therefore, in view of (2.22), we have

|S(v) + ηk| ≤ q|v|+
√
B for any v ∈ H, k ≥ 1.

This inequality implies that BH(R) is invariant. Furthermore, its iteration
results in

|uk(v)| ≤ qk|v|+R/2.
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If |v| ≥ R, it follows that

uk(v) ∈ BH(R) for k ≥ `(v) :=

[
log
(
2|v|/R

)
log q−1

]
+ 1, (3.12)

where [a] is the integer part of a ≥ 0.
Suppose now that we have proved inequality (3.11) for v ∈ BH(R) and

assume that |v| > R. Then, applying the Markov property (see (2.30)), for
n ≥ 0 and ` = `(v), we derive

Pn+`f(v) = E
{
E
(
f(un+`(v)) | F`

)}
= E

{
Pnf(u`(v))

}
. (3.13)

Since u`(v) ∈ BH(R) (see (3.12)), we have∣∣Pnf(u`(v))− (f, µ)
∣∣ ≤ C(1 +R)e−βn.

Taking the expectation, using (3.13), and setting k = n+ `, we arrive at∣∣Pkf(v)− (f, µ)
∣∣ ≤ C(1 +R)e−βn = C1(1 + |v|)e−βk,

where we assumed that β > 0 is sufficiently small.
From now on, we shall consider the restriction of the RDS (2.27), (2.28)

to the invariant set X := BH(R). We retain the notation for the associated
objects, such as transition function, Markov semigroups, etc.

Step 3: Comparison of the transition functions with different starting points.
We wish to show that (3.11) holds for any v ∈ X. To this end, it suffices to
prove that

‖Pk(v, ·)− Pk(v′, ·)‖∗L ≤ C e−βk for any v, v′ ∈ X. (3.14)

Indeed, if inequality (3.14) is established, then, by the Chapman–Kolmogorov
relation (2.34), for any l ≥ k, v, v′ ∈ X, and f ∈ L(X) with ‖f‖L ≤ 1, we have∣∣(Pk(v, ·)− Pl(v′, ·), f)

∣∣
=

∣∣∣∣∫
X

Pl−k(v′, dz)

∫
X

(
Pk(v, dw)f(w)− Pk(z, dw)f(w)

)∣∣∣∣
≤ C e−βk

∫
X

Pl−k(v′, dz) = C e−βk. (3.15)

This implies that {Pk(v′, ·)} is a Cauchy sequence in P(X). In view of Theo-
rem 1.19, it must have a limit µ ∈ P(X). Passing to the limit in (3.15) as l→∞,
we arrive at (3.14).

Step 4: Reduction to construction of coupled trajectories. To prove (3.14), let
us fix arbitrary initial functions v, v′ ∈ X. Suppose that for any integer k ≥ 1 we
have constructed a coupling (vk, v

′
k) for the pair of measures (Pk(v, ·), Pk(v′, ·))

such that
P
{
|vk − v′k| > C e−βk

}
≤ C e−βk, (3.16)
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where C and β are positive constants not depending on the initial functions.
Then, setting Qk = {|vk − v′k| > C e−βk}, for any f ∈ L(X) we derive∣∣(Pk(v, ·)− Pk(v′, ·), f)

∣∣ =
∣∣E (f(vk)− f(v′k)

)∣∣
≤ E

{
IQk |f(vk)− f(v′k)|

}
+ E

{
IQck |f(vk)− f(v′k)|

}
≤ 2C ‖f‖∞e−βk + C ‖f‖Le−βk,

whence follows (3.14) (with a different constant C).
Construction of the coupling (vk, v

′
k) is carried out in Section 4, and inequal-

ity (3.16) is established in Section 5.

4 Coupling operators

4.1 Construction and basic properties

Let us recall that we consider the RDS (2.27) in the ball X = BH(R), where the
constant R > 0 is defined in Step 2 of Section 3.3. As before, we denote by PN
and QN the orthogonal projections onto the spaces HN = span{e1, . . . , eN}
and H⊥N , respectively.

Let χ ∈ P(H) be the distribution of ηk and let χN = PNχ. Hypothesis (H)
(see Section 3.2) implies that, if

bj 6= 0 for j = 1, . . . , N, (4.1)

then χN has a density with respect to the Lebesgue measure in HN . Namely,
setting y = (y1, . . . , yN ) ∈ HN , we have

χN (dy) = h(y) dy, h(y) =

N∏
j=1

b−1
j pj

(
yj/bj

)
. (4.2)

Exercise 4.1. Prove relation (4.2).

For any v ∈ H, we denote by χN (v, dy) the distribution of the random
variable PN (S(v) + η1). One easily shows that

χN (v, dy) = h(y − PNS(v)) dy. (4.3)

Proposition 4.2. Suppose that Hypothesis (H) is fulfilled and that (4.1) holds
for some integer N ≥ 1. Then there is a probability space (Ω,F ,P) such that
for any pair of functions v, v′ ∈ H there are two H-valued random variables
ζ = ζ(v, v′, ω) and ζ ′ = ζ ′(v, v′, ω) possessing the following properties:

(i) The distributions of ζ and ζ ′ coincide with χ.

(ii) The random variables (PNζ,PNζ
′) and (QNζ,QNζ

′) are independent, and
the projections QNζ and QNζ

′ coincide for all ω ∈ Ω and do not depend
on (v, v′).
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(iii) The pair
VN = PN

(
S(v) + ζ

)
, V ′N = PN

(
S(v′) + ζ ′

)
is a maximal coupling for (χN (v, ·), χN (v′, ·)). Furthermore, there is a
constant CN ≥ 1 depending only on min{bj : 1 ≤ j ≤ N} such that

P
{
VN 6= V ′N

}
=
∥∥χN (v, ·)− χN (v′, ·)

∥∥
var
≤ CN

∣∣S(v)− S(v′)
∣∣. (4.4)

(iv) The functions ζ and ζ ′ are measurable with respect to (v, v′, ω).

Taking this assertion for granted, let us complete the construction of the
random sequences (vk, v

′
k). We define coupling operators by the formulas

R(v, v′, ω) = S(v) + ζ(v, v′, ω), R′(v, v′, ω) = S(v′) + ζ ′(v, v′, ω). (4.5)

Let (Ωi,Fi,Pi), i ≥ 1, be a sequence of countably many copies of the probability
space constructed in Proposition 4.2 and let (Ω,F ,P) be their direct product
(see Exercise 1.7). The points of Ω will be denoted by ω = (ω1, ω2, . . . ). We
now fix v, v′ ∈ X and set

v0 = v, v′0 = v′,

vk = R(vk−1(ω), v′k−1(ω), ωk), v′k = R′(vk−1(ω), v′k−1(ω), ωk).
(4.6)

Exercise 4.3. (i) Show that, for any U = (v, v′), the sequence Uk = (vk, v
′
k)

constructed above is a Markov chain in the space X ×X (cf. Theorem 2.7
and Exercise 2.8).

(ii) Show that

D(vk) = Pk(v, ·), D(v′k) = Pk(v′, ·) for any k ≥ 0.

We shall investigate properties of the above Markov chain in the next two
subsections. They will be used in Section 5.1 to prove Theorem 3.8.

Proof of Proposition 4.2. For any v, v′ ∈ H, let (VN , V
′
N ) be a maximal coupling

for the pair of measures (χN (v, ·), χN (v′, ·)). By Theorem 1.23, we can assume
that VN and V ′N are defined on the same probability space (Ω1,F1,P1) for all
v, v′ ∈ H and are measurable functions of (v, v′, ω1). Let (Ω2,F2,P2) be the
probability space on which the random variables ηk are defined. We denote
by (Ω,F ,P) the direct product of these two probability spaces and, for any
ω = (ω1, ω2) ∈ Ω, set

ζ(v, v′, ω) = VN (v, v′, ω1)− PNS(v) + QNη1(ω2),

ζ ′(v, v′, ω) = V ′N (v, v′, ω1)− PNS(v′) + QNη1(ω2).
(4.7)

Assertions (i), (ii), (iv) and the first part of (iii) are straightforward conse-
quences of the construction. To prove inequality (4.4), we use Proposition 1.16
and formula (4.2). We have∥∥χN (v, ·)− χN (v′, ·)

∥∥
var

=
1

2

∫
HN

∣∣p(y − PNS(v))− p(y − PNS(v′))
∣∣ dy. (4.8)
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Using relation (4.2) and the mean value theorem, we can show that∫
HN

∣∣p(y − z)− p(y − z′)∣∣ dy ≤ CN |z − z′|, CN =

N∑
j=1

b−1
j Var(pj), (4.9)

where z, z′ ∈ HN are arbitrary points and Var(pj) is the total variation of pj .
Substituting this inequality into (4.8), we arrive at (4.3). This completes the
proof of Proposition 4.2.

Exercise 4.4. Prove (4.9). Hint: See the proof of Lemma 3.2 in [KS01].

4.2 Squeezing

The following property of the coupling operators R and R′ is the crucial point
of the proof.

Lemma 4.5. Suppose that Hypothesis (H) is satisfied. Then for any B0 > 0
there is an integer N ≥ 1 and a constant KN > 0 such that, if (3.7) holds, then

P
{
|R(v, v′, ·)−R′(v, v′, ·)| ≤ 1

2 |v − v
′|
}
≥ 1−KN |v − v′|, (4.10)

where v, v′ ∈ X are arbitrary functions.

Proof. Step 1. We first note that, for any v, v′ ∈ X,∣∣QN (S(v)− S(v′))
∣∣ ≤ C1α

− 1
4

N |v − v
′|, (4.11)

where C1 > 0 is a constant depending only on B > 0. Indeed, combining (2.24)
and (2.8), we see that∥∥S(v)− S(v′)

∥∥
1/2
≤ C exp

{
C
(
|v|2 + |v′|2

)}
|v − v′| for any v, v′ ∈ H.

Using now the Poincaré inequality |QNw| ≥ α
− 1

4

N ‖QNw‖1/2, for any v, v′ ∈ X
we derive ∣∣QN (S(v)− S(v′))

∣∣ ≤ α− 1
4

N

∥∥S(v)− S(v′)
∥∥

1/2

≤ C α−
1
4

N exp
{
C
(
|v|2 + |v′|2

)}
|v − v′|.

This inequality coincides with (4.11).

Step 2. The definition of R and R′ implies that (see (4.5) and (4.7))∣∣R(v, v′, ω)−R′(v, v′, ω)
∣∣ ≤ ∣∣VN (v, v′, ω)− V ′N (v, v′, ω)

∣∣+
∣∣QN (S(v)− S(v′))

∣∣.
(4.12)

It follows from (4.11) that, if N ≥ 1 is sufficiently large, then∣∣QN (S(v)− S(v′))
∣∣ ≤ 1

2
|v − v′|. (4.13)
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Furthermore, by (4.4), we have

P
{
VN = V ′N

}
≥ 1− CN |S(v)− S(v′)|.

Combining this with (4.12) and (4.13) and using the uniform Lipschitz continu-
ity of S on bounded subsets of H (see (2.23)), we derive

P
{
|R −R′| ≤ 1

2 |v − v
′|
}
≥ P

{
VN = V ′N

}
≥ 1−KN |v − v′|,

where KN > 0 depends on B. This completes the proof of the lemma.

Corollary 4.6. Under the conditions of Lemma 4.5, for any v, v′ ∈ H the
sequence Uk = (vk, v

′
k) constructed in Section 4.1 satisfies the inequality

P
{
|vk − v′k| ≤ 2−k|v − v′| for all k ≥ 0

}
≥ 1− 2KN |v − v′|. (4.14)

Proof. For any k ≥ 0, let us set

Gk =
{
|vk − v′k| ≤ 1

2 |vk−1 − v′k−1|
}
, Gk =

k⋂
l=1

Gl.

Since G1 ⊃ G2 ⊃ · · · , inequality (4.14) will be established once we show that

P(Gk) ≥ 1−KN |v − v′|
k−1∑
l=0

2−l. (4.15)

The proof of (4.15) is by induction on k. For k = 1, inequality (4.15) coincides
with (4.10). Assume now that k = m ≥ 2 and that (4.15) is established for
k ≤ m− 1. We have

P(Gm) = E
(
IGm−1

E (IGm | Fm−1)
)
, (4.16)

where Fk is the σ-algebra generated by (vl, v
′
l), l = 1, . . . , k. The Markov

property for Uk = (vk, v
′
k) (see Exercises 4.3 and 2.8) and inequality (4.10)

imply that

E (IGm | Fm−1) = P
{
|R(z, z′, ·)−R′(z, z′, ·)| ≤ 1

2 |z − z
′|
}∣∣∣

(z,z′)=Um−1

≥ 1−KN |vm−1 − v′m−1|. (4.17)

Now note that, on the set Gm−1, we have

|vm−1 − v′m−1| ≤ 2−(m−1)|v − v′|.

Combining this with (4.16) and (4.17) and taking into account the induction
hypothesis, we obtain

P(Gm) ≥
(
1− 21−mKN |v − v′|

)
P(Gm−1) ≥ 1−KN |v − v′|

m−1∑
l=0

2−l,

which completes the proof of the corollary.
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4.3 Dissipation

Recall that we the constant R > 0 is defined in Section 3.3 (see Step 2). The
following lemma shows that, with positive probability, the dynamics pushes the
sequence Uk towards the origin.

Lemma 4.7. Suppose that Hypothesis (H) is fulfilled and that (4.1) holds for
some integer N ≥ 1. Then for any r ∈ (0, R] there is a constant ε(r) > 0 such
that

P
{
|R(v, v′, ·)| ≤

(
γ |v|

)
∨ r, |R′(v, v′, ·)| ≤

(
γ |v′|

)
∨ r
}
≥ ε(r), (4.18)

where γ = 1+q
2 , and v, v′ ∈ X are arbitrary functions.

Let us note that, in view of the inequality in (3.6), for any δ > 0 there
is νδ > 0 such that

P
{
|ζ| ≤ δ

}
≥ νδ, P

{
|ζ ′| ≤ δ

}
≥ νδ, (4.19)

where we used the fact that the distribution of ζ and ζ ′ coincides with that
of ηk. Choosing δ > 0 sufficiently small and combining (4.19) and (2.22), for
any r > 0 we can find ε(r) > 0 such that

P
{
|R(v, v′, ·)| ≤

(
γ |v|

)
∨ r
}
≥ ε, P

{
|R′(v, v′, ·)| ≤

(
γ |v′|

)
∨ r
}
≥ ε.

If R and R′ were independent, these inequalities would imply (4.18). However,
this is not the case, and we have to proceed differently.

Proof of Lemma 4.7. Step 1. It suffices to show that for any δ > 0 there is εδ > 0
such that

Pδ := P
{
|R(v, v′, ·)| ≤ |S(v)|+ 2δ, |R′(v, v′, ·)| ≤ |S(v′)|+ 2δ

}
≥ εδ. (4.20)

Indeed, suppose that (4.20) is already proved and fix an arbitrary r > 0. Setting

δ = r(1−q)
2(1+q) and using (2.22), we derive

|S(v)|+ 2δ ≤ q|v|+ r(1−q)
1+q ≤

(
γ|v|

)
∨ r,

and a similar inequality holds for v′. It follows that the probability on the left-
hand side of (4.18) is bounded from below by Pδ. Since δ depends only on r,
this proves inequality (4.18).

Step 2. Let us recall that VN and V ′N denote the projections of R and R′ to
the space HN and set WN = QNR and W ′N = QNR′. We fix an arbitrary δ > 0,
define the events

Gδ =
{
|VN | ≤ |PNS(v)|+ δ

}
, Fδ =

{
|WN | ≤ |QNS(v)|+ δ

}
,

and denote byG′δ and F ′δ similar events forR′. It is a matter of direct verification
to show that, if ω ∈ Gδ∩Fδ, then |R(v, v′, ω)| ≤ |S(v)|+2δ, and similarly forR′.
In view of the independence of (PNζ,PNζ

′) and (QNζ,QNζ
′), we obtain

Pδ ≥ P(GδFδG
′
δF
′
δ) = P(GδG

′
δ)P(FδF

′
δ).
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Hence, it suffices to find a constant κδ > 0 such that

P(GδG
′
δ) ≥ κδ, P(FδF

′
δ) ≥ κδ. (4.21)

Step 3. We first prove the second inequality in (4.21). Since QNζ = QNζ
′,

it follows from the inequality in (3.6) that, for any δ > 0, we can find κδ > 0
such that

P
{
|QNζ| = |QNζ ′| ≤ δ

}
≥ κδ.

This implies the required estimate.

Step 4. It follows from (4.19) that

P(Gδ) ≥ νδ, P(G′δ) ≥ νδ. (4.22)

We claim that the first inequality in (4.21) holds with κδ = ν2
δ/4. Indeed, let us

set E = {VN = V ′N} and assume that |PNS(v)| ≤ |PNS(v′)|. (The proof in the
other case is similar.) Then GδE ⊂ G′δE and GδG

′
δE = GδE. Since the random

variables VN and V ′N conditioned on Ec are independent (see Definition 1.21),
we conclude that

P(GδG
′
δ) = P(GδG

′
δE) + P(GδG

′
δE

c) = P(GδE) +
P(GδE

c)P(G′δE
c)

P(Ec)

≥ P(GδE) + P(GδE
c)P(G′δE

c). (4.23)

If P(GδE) ≥ κδ, then the required inequality is obvious. In the opposite case,
it follows from (4.22) that

4κδ ≤ P(Gδ)P(G′δ) ≤ P(GδE
c)P(G′δE

c) + 3κδ,

whence we see that P(GδE
c)P(G′δE

c) ≥ κδ. Comparing this with (4.23), we
obtain the first inequality in (4.21).

Corollary 4.8. Under the conditions of Lemma 4.7, for any d > 0 there is an
integer ` = `(d) ≥ 1 and a constant p = p(d) > 0 such that, for any initial
functions v, v′ ∈ X, we have

P
{
|v`| ∨ |v′`| ≤ d

}
≥ p for any v, v′ ∈ X. (4.24)

Exercise 4.9. Prove Corollary 4.8. Hint: Use the Markov property.

5 Proof of the exponential mixing

5.1 Decay of a Kantorovich type functional

Let us recall that we have reduced the proof of Theorem 3.8 to inequality (3.16),
where (vk, v

′
k) is a coupling for (Pk(v, ·), Pk(v′, ·)) (see Section 3.3). By Exer-

cise 4.3 (ii), the random variable Uk = (vk, v
′
k) constructed in Section 4.1 is a
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coupling for the above pair of measures. Thus, Theorem 3.8 will be established
once we show that (3.16) holds.

The proof of (3.16) is based on the exponential decay of a Kantorovich type
functional. To define it, we fix two integers ` ≥ 1 and s ≥ 0 and a small
constant d > 0 and introduce the events 5

Qn,r =
{
dr < |vs+n` − v′s+n`| ≤ dr−1

}
, n, r ≥ 0,

where dr = 2−rd for r ≥ 0 and d−1 = +∞. Let us set

Fn =

∞∑
r=0

2−rP(Qn,r). (5.1)

Theorem 5.1. Let d = (16KN )−1, where KN is the constant in (4.14), and
let ` = `(d) be the integer constructed in Corollary 4.8. Then there is δ ∈ (0, 1)
not depending on the integer s and the initial functions v, v′ ∈ X such that

Fn ≤ δn for all n ≥ 1. (5.2)

Proof. Step 1. For any n ≥ 0, the sets Qn,r, r ≥ 0, are mutually disjoint, and
therefore F0 ≤ 1. Hence, it suffices to show that Fn ≤ δFn−1 for any n ≥ 1.

Setting pn,r = P(Qn,r), we write

P(Qn,r) =

∞∑
m=0

pn−1,mP(Qn,r |Qn−1,m).

Substituting this relation into (5.1) and changing the order of summation, we
obtain

Fn =

∞∑
r=0

2−r
∞∑
m=0

pn−1,mP(Qn,r |Qn−1,m) ≤
∞∑
m=0

pn−1,mΣ(m,n), (5.3)

where

Σ(m,n) =

m∑
r=0

P(Qn,r |Qn−1,m) + 2−(m+1)
∞∑

r=m+1

P(Qn,r |Qn−1,m).

The required inequality will be established if we show that

Σ(m,n) ≤ 2−mδ for any m ≥ 0. (5.4)

Step 2. To prove the above assertion, we first note that Corollaries 4.6 and 4.8
and the choice of the parameters d and ` imply the following inequalities:

m∑
r=0

P(Qn,r |Qn−1,m) ≤ 2−(m+2), m ≥ 1, (5.5)

P(Qn,0 |Qn−1,0) ≤ 1− p, (5.6)

5We do not indicate the dependence on s, since it does not play any role in the estimates.
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where p = p(d) > 0 is the constant in (4.24). Taking these estimates for granted,
let us complete the induction step.

It follows from (5.5) that

Σ(n,m) ≤ 3

4
2−m for m ≥ 1. (5.7)

Furthermore, using (5.6), we derive

Σ(n, 0) ≤ P(Qn,0 |Qn−1,0) +
1

2
P(Qcn,0 |Qn−1,0)

=
1

2

(
P(Qn,0 |Qn−1,0) + 1

)
≤ 1− p

2
. (5.8)

Combining (5.7) and (5.8), we obtain (5.4) with δ =
(
1− p

2

)
∨ 3

4 . Thus, it only
remains to establish inequalities (5.5) and (5.6).

Step 3. We shall confine ourselves to (5.5), since the proof of the other
inequality is similar. To simplify notation, we shall assume that s = 0.

It follows from (4.14) that, if |v − v′| < dm−1, then

P
{
|v` − v′`| > dm

}
≤ 2KNdm−1 = 2−m−2. (5.9)

We now set Bn,m = {|vn` − v′n`| > dm} and note that

m∑
r=0

P(Qn,r |Qn−1,m) = P(Bn,m |Qn−1,m) = p−1
n−1,mP(Bn,mQn−1,m). (5.10)

Using the Markov property, we write

P(Bn,mQn−1,m) = E
{
IQn−1,mE

(
IBn,m | Fn−1

)}
= E

(
IQn−1,mP

{
|v`(Z)− v′`(Z)| > dm

}∣∣
Z=U(n−1)`

)
, (5.11)

where Z = (z, z′) ∈ H ×H, and (vk(Z), v′k(Z)) denotes the trajectory of (4.6)
with v = z and v′ = z′. Since |v(n−1)` − v′(n−1)`| < dm−1 on the set Qn−1,m,

we conclude from (5.9) that the right-hand side of (5.11) does not exceed
2−m−2P(Qn−1,m). Substituting this expression into (5.10), we obtain (5.5).

Exercise 5.2. Prove inequality (5.6). Hint: Repeat the argument used in the
proof of (5.5)

5.2 Proof of Theorem 3.8

The theorem will be established if we show that inequality (3.16) holds for the
random sequence Uk = (vk, v

′
k). Let us fix an arbitrary integer k ≥ 1 and

represent it in the form k = n` + s, where 0 ≤ s < `. Then, by Theorem 5.1,
we have

Fn =

∞∑
r=0

2−rP(Qkr ) ≤ δ−n, (5.12)
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where Qkr = {dr < |vk − v′k| ≤ dr−1}. Let α < 1 be so small that γ := 2αδ < 1.
Consider the event

Bk =

[αn]⋃
r=0

Qkr =
{
|vk − v′k| > d[αn]

}
,

where [q] stands for the integer part of q. It follows from (5.12) that

P(Bk) =

[αn]∑
r=0

P(Qkr ) ≤ 2[αn]

[αn]∑
r=0

2−rP(Qkr ) ≤ 2[αn]Fn ≤
(
2αδ
)n

= γn. (5.13)

Since
d[αn] = 2−[αn]d ≤ 2−αn+1d ≤ 4d 2−αk/`,

we conclude from (5.13) that

P
{
{|vk − v′k| > 4d 2−αk/`

}
≤ γk/`−1.

This implies inequality (3.16) with

C = (4d) ∨ γ−1, β = `−1
{

(α ln 2) ∧ (ln γ−1)
}
.

The proof of Theorem 3.8 is complete.
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