1. A. R. Shirikyan. On classical almost periodic solutions of nonlinear hyperbolic equations, Math. Notes 54 (1993), no. 6, 1288-1290.
2. A. R. Shirikyan. On almost periodic solutions of nonlinear hyperbolic equations, Moscow Univ. Math. Bull. 49 (1994), no. 5, 5-8.
3. A. R. Shirikyan. Almost periodic solutions to nonlinear hyperbolic equations, Moscow Univ. Math. Bull. 49 (1994), no. 6, 4-7.
4. L. R. Volevich, A. R. Shirikyan. Quasilinear hyperbolic equations. Solutions bounded in time and almost periodic in time, Russian J. Math. Phys. 4 (1996), no. 4, 527-538.
5. L. R. Volevich, A. R. Shirikyan. Bounded and almost periodic in time solutions to nonlinear high-order hyperbolic equations, Trans. Moscow Math. Soc. 58 (1997), 89-135.
6. L. R. Volevich, A. R. Shirikyan. Exponential dichotomy and exponential splitting for hyperbolic equations, Trans. Moscow Math. Soc. 59 (1998), 95-133.
7. A. Shirikyan, L. Volevich. Bounded and
almost periodic solutions to linear high-order
hyperbolic equations, Math. Nachr. 193 (1998),
137-197. PS
PDF
8. A. Shirikyan. Asymptotic behaviour of solutions to second-order hyperbolic equations with a nonlinear damping term, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. XXII (1998), no. 1, 1-21.
9. L. R. Volevich, A. R. Shirikyan. Stable and unstable manifolds for nonlinear elliptic equations with parameter, Trans. Moscow Math. Soc. 61 (2000), 97-138.
10. L. R. Volevich, A. R. Shirikyan. Local dynamics for high-order semilinear hyperbolic equations, Izv. Math. 64 (2000), no. 3, 439-485. PS PDF
11. S. Kuksin, A. Shirikyan. Stochastic
dissipative PDE's and Gibbs measures, Comm. Math.
Phys. 213 (2000), no. 2, 291-330. PS
PDF
12. S. Kuksin, A. Shirikyan. Ergodicity for
the randomly forced 2D Navier-Stokes equations, Math. Phys.
Anal. Geom. 4 (2001), no. 2, 147-195. PS
PDF
13. S. Kuksin, A. Shirikyan. A coupling
approach to randomly forced nonlinear PDE's. I, Comm. Math.
Phys. 221 (2001), no. 2, 351-366. PS
PDF
14. S. Kuksin, A. Piatnitsky, A. Shirikyan. A
coupling approach to randomly forced nonlinear PDE's. II, Comm.
Math. Phys. 230 (2002), no. 1, 81-85. PS PDF
15. S. Kuksin, A. Shirikyan. On dissipative
systems perturbed by bounded random kick-forces, Ergodic
Theory Dynam. Systems 22 (2002), 1487-1495. PS
PDF
16. A. Shirikyan, L. Volevich. Exponential
dichotomy and time-bounded solutions for first-order hyperbolic
systems, J.
Dynam.
Differential Equations 14 (2002), no. 4, 777-827. PS
PDF
17. A. Shirikyan. Analyticity of solutions for
randomly forced two-dimensional Navier-Stokes equations,
Russian Math. Surveys 57 (2002), no. 4, 785-799. PS
PDF
18. S. Kuksin, A. Shirikyan. Coupling approach
to white-forced nonlinear PDE's, J. Math. Pures Appl. 81
(2002), no. 6, 567-602. PS
PDF
19. S. Kuksin, A. Shirikyan. Some limiting
properties of randomly forced 2D Navier-Stokes equations,
Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), no. 4,
875-891. PS
PDF
20. S. Kuksin, A. Shirikyan. On random attractors for mixing-type systems, Funct. Anal. Appl., 38 (2004), no. 1, 34-46. PS PDF
21. A. Shirikyan, L. Volevich. Qualitative
properties of solutions for linear and non-linear hyperbolic
PDE's, Discrete Contin. Dynam. Systems, Series A 10
(2004), no. 1-2, 517-542. PS
PDF
22. A. Shirikyan. Exponential mixing for 2D
Navier-Stokes equations perturbed by an unbounded noise,
J. Math. Fluid Mech. 6 (2004), no. 2, 169-193. PS
PDF
23. S. Kuksin, A. Shirikyan. Randomly
forced CGL equation: stationary measures and the inviscid limit,
Journal of Physics A: Mathematical and General 37 (2004),
no. 12, 3805-3822. PS
PDF
24. A. Shirikyan. Ergodicity for a class of Markov processes and applications to randomly forced PDE's I, Russian J. Math. Phys. 12 (2005), no. 1, 81-96. PS PDF
25. A. Shirikyan. Law of large numbers and
central limit theorem for randomly forced PDE's, Prob.
Theory Related Fields 134 (2006),
no. 2, 215-247. PS
PDF
26. A. Shirikyan. Ergodicity for a class of
Markov processes and applications to randomly forced PDE's II,
Discrete
Contin.
Dynam.
Systems 6 (2006), no. 4,
911-926. PS
PDF
27. A. Shirikyan. Approximate controllability
for three-dimensional Navier-Stokes equations, Comm. Math.
Phys. 266
(2006), no. 1, 123-151. PS
PDF
29. A. Shirikyan. Exact controllability in projections for three-dimensional Navier-Stokes equations, Annales de l'IHP, Analyse Non Linéaire 24 (2007), 521-537. PS PDF
30. A. Shirikyan. Qualitative properties of stationary measures for three-dimensional Navier–Stokes equations, J. Funct. Anal. 249 (2007), 284-306. PDF
31. A. Shirikyan. Euler equations are not exactly controllable by a finite-dimensional external force, Physica D 237 (2008), no. 10-12, 1317-1323. PDF
32. A. Shirikyan. Local times for solutions of the complex Ginzburg-Landau equation and the inviscid limit, J. Math. Anal. Appl. 384 (2011), 130-137. PDF
33. V. Barbu, S. Rodrigues, A. Shirikyan. Internal exponential stabilization to a non-stationary solution for 3D Navier-Stokes equations, SIAM Journal Control Optimization 49 (2011), no. 4, 1454-1478. PDF
34. E. Priola, A. Shirikyan, L. Xu, J. Zabczyk, Exponential ergodicity and regularity for equations with Lévy noise, Stochastic Process. Appl. 122 (2012), no. 1, 106-133. PDF
35. A. Shirikyan, S. Zelik. Exponential attractors for random dynamical systems and applications, Stochastic PDEs 1 (2013), no 2, 241–281. PDF
36. A. Shirikyan. Control and mixing for 2D Navier-Stokes equations with space-time localised noise, Ann. Sci. Éc. Norm. Supér. 48 (2015), no. 2, 253–280. PDF37. V. Jaksic, V. Nersesyan, C.-A. Pillet, A. Shirikyan. Large deviations from a stationary measure for a class of dissipative PDEs with random kicks, Comm. Pure Appl. Math. 68 (2015), no. 12, 2108-2143. PDF
38. V. Jaksic, V. Nersesyan, C.-A. Pillet, A. Shirikyan. Large deviations and Gallavotti–Cohen principle for dissipative PDEs with rough noise, Comm. Math. Phys. 336 (2015), no. 1, 131–170. PDF
39. K. Ammari, T. Duyckaerts, A. Shirikyan. Local feedback stabilisation to a non-stationary solution for a damped non-linear wave equation, Math. Control Relat. Fields 6 (2016), no. 1, 1-25 PDFPublications in reviewed proceedings of conferences - Conférences publiées avec comité de lecture
1. A. R. Shirikyan. Almost periodic solutions of a non-linear hyperbolic equation, Russian Math. Surveys 48 (1993), no. 4, 211-212.
2. A. R. Shirikyan. Asymptotic behaviour of solutions to the wave equation with a nonlinear damping term, Russian Math. Surveys 50 (1995), no.4, 809.
3. L. R. Volevich, A. R. Shirikyan. Bounded and almost periodic in time solutions for strongly nonlinear hyperbolic equations, Russian Math. Surveys 51 (1996), no. 5, 984.
4. L. R. Volevich, A. R. Shirikyan. Local linearization for semilinear hyperbolic equations of high order, Russian Math. Surveys 53 (1998), no. 4, 827-828.
5. L. R. Volevich, A. R. Shirikyan. On infinite-dimensional dynamic systems generated by nonlinear hyperbolic equations, ZAMM, Z. Angew. Math. Mech. 78 (1998), Suppl. 3, S1073-S1074.
6. L. R. Volevich, A. R. Shirikyan. Asymptotic properties of solutions to high-order hyperbolic equations generalizing the damped wave equation, International Series in Numerical Mathematics 130 (1999), Birkhäuser-Verlag, Basel/Switzerland, 885-894.
7. L. R. Volevich, A. R. Shirikyan. A center manifold theorem for semilinear hyperbolic equations, ZAMM, Z. Angew. Math. Mech. 79 (1999), Suppl. 2, S313-S314.
8. L. R. Volevich, A. R. Shirikyan. Stable and
unstable manifolds for nonlinear elliptic equations with
parameter, ZAMM, Z. Angew. Math. Mech. 79 (1999),
Suppl. 3, S805-S806.
9. A. Shirikyan. Analyticity of
solutions and Kolmogorov's dissipation scale for 2D
Navier-Stokes equations,
Evolution Equations: Propagation Phenomena - Global Existence -
Influence of Non-Linearities, R. Picard, M. Reissig, W.
Zajaczkowski (eds.), Warszawa, 2003, 49-53. PS
PDF
10. A. Shirikyan. A version of the law of
large numbers and applications, Probabilistic Methods in
Fluids, Proceedings of the Swansea Workshop held on 14 - 19 April
2002, 263--271, World Scientific, New Jersey, 2003. PS
PDF
11. A. Shirikyan. Some mathematical problems of statistical hydrodynamics, XIV International Congress on Mathematical Physics, 304-311, World Sci. Publ., Hackensack, NJ, 2005. PS PDF
12. A. Shirikyan. Controllability of three-dimensional Navier-Stokes equations and applications, Séminaire: Équations aux Dérivées Partielles, 2005-2006, École Polytechnique, Palaiseau, Exp. No. VI, 9 pp., 2006. PS PDF
13. A. Shirikyan. Global controllability and mixing
for the Burgers equation with localised finite-dimensional
external force, New Trends in Differential
Equations, Control Theory and Optimization, V. Barbu,
C. Lefter, I. Vrabie (Eds), pp. 293-300, 2016. PDF
1. L. R. Volevich, A. R. Shirikyan. Équations linéaires hyperboliques d'ordre supé rieur. Solutions bornées et presque-périodiques, C. R. Acad. Sci., Série I 324 (1997), no. 8, 879-884.
2. L. R. Volevich, A. R. Shirikyan. Some problems for strictly hyperbolic equations on the entire time-axis, Appendix in the Russian edition of the book: L. R. Volevich and S. G. Gindikin, Mixed Problems for Partial Differential Equations with Quasihomogeneous Principal Part, URSS, Moscow, 1999, 227-266.
3. A. Shirikyan. Controllability of nonlinear PDE's: Agrachev-Sarychev approach, Jounées EDP (2007), Exposé IV, 11 p. PDF
4. A. Shirikyan. Exponential mixing for randomly forced partial differential equations: method of coupling, Instability in Models Connected with Fluid Flows. I, Edited by C. Bardos and A. Fursikov, International Mathematical Series, 6, Springer, 2008, 155-188. PDF
5. A. Shirikyan. Approximate controllability of the viscous Burgers equation on the real line, Geometric Control Theory and sub-Riemannian Geometry, G. Stefani, U. Boscain, J.-P. Gauthier, A. Sarychev, M. Sigalotti (Eds.), Springer INdAM Series, Vol. 5; 351–370, 2014. PDF
6. A. Shirikyan. Mixing for the Burgers Equation driven by a localised two-dimensional stochastic forcing, Evolution Equations, Long Time Behavior and Control, K. Ammari & S. Gerbi (Eds.), Cambridge, pp 179-194, 2017. PDF